一种脂肪酸甲酯异构化催化剂及其制备方法和应用转让专利

申请号 : CN201610807003.5

文献号 : CN106492877B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王耀王继元

申请人 : 南京康鑫成生物科技有限公司

摘要 :

本发明公开了一种脂肪酸甲酯异构化催化剂及其制备方法和应用。所述的催化剂包括贵金属Ru、TiO2、SiO2和SAPO‑11分子筛,以SAPO‑11分子筛的质量为基准,Ru的含量为SAPO‑11分子筛质量的1~15%,SiO2的含量为SAPO‑11分子筛质量的0.5~10%,TiO2的含量为SAPO‑11分子筛质量的0.5~10%。本发明还公开了所述脂肪酸甲酯异构化催化剂的其制备方法及在催化脂肪酸甲酯进行异构化反应中的应用。本发明脂肪酸甲酯异构化催化剂的活性高,在适宜的反应条件下,脂肪酸甲酯的转化率>90%,异构脂肪酸甲酯的选择性>95%,异构烷烃的选择性<5%。

权利要求 :

1.一种脂肪酸甲酯异构化催化剂,其特征在于,所述的催化剂包括贵金属Ru、TiO2、SiO2和SAPO-11分子筛,以SAPO-11分子筛的质量为基准,Ru的含量为SAPO-11分子筛质量的1~

15%,SiO2的含量为SAPO-11分子筛质量的0.5~10%,TiO2的含量为SAPO-11分子筛质量的

0.5~10%;催化剂中,SiO2和SAPO-11分子筛形成SiO2-SAPO-11分子筛复合载体,所述的Ru和TiO2在SiO2-SAPO-11分子筛复合载体上呈壳型分布,壳层厚度为300~500μm。

2.根据权利要求1所述的脂肪酸甲酯异构化催化剂,其特征在于,所述的Ru的含量为SAPO-11分子筛质量的5~10%,SiO2的含量为SAPO-11分子筛质量的1~5%,TiO2的含量为SAPO-11分子筛质量的1~5%。

3.根据权利要求1~2任一项所述的脂肪酸甲酯异构化催化剂的制备方法,其特征在于,包括以下步骤:(1)将SAPO-11分子筛粉体、粘结剂混匀后,加入含有硅溶胶的水溶液,经捏合、挤出成型后,进行干燥、焙烧,得到SiO2-SAPO-11分子筛复合载体;

(2)将钛酸四丁酯或四氯化钛、含钌化合物、水、酸和有机溶剂混合后搅拌,直至形成透明溶胶;

(3)将所述的SiO2-SAPO-11分子筛复合载体浸渍所述的透明溶胶,依次经干燥、焙烧、氢气还原后得到所述的脂肪酸甲酯异构化催化剂。

4.根据权利要求3所述的制备方法,其特征在于,步骤(1)中,所述粘结剂为羟丙基甲基纤维素、甲基纤维素、淀粉、聚丙烯酰胺、聚乙烯醇和聚乙二醇中的一种或几种;所述粘结剂的用量为SAPO-11分子筛粉体质量的1~5%;所述硅溶胶中,SiO2的质量含量为20~40%。

5.根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述的含钌化合物为氯化钌、醋酸钌、三硝基亚硝酰钌和氯钌酸铵中的一种或几种;所述的有机溶剂为含有1~4个碳原子的醇。

6.根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述的水的质量为钛酸四丁酯质量的10~30%;所述的酸的质量为钛酸四丁酯质量的0.1~1%;所述的有机溶剂的质量为钛酸四丁酯质量的1~3倍。

7.根据权利要求3所述的制备方法,其特征在于,步骤(1)中,所述干燥的温度为50~

200℃,时间为1~20h;所述焙烧的温度为300~600℃,时间为1~10h;步骤(3)中,所述干燥的温度为50~200℃,时间为1~20h;所述焙烧的温度为300~600℃,时间为1~10h;氢气还原的温度为50~200℃,时间为1~5h。

8.根据权利要求1~2任一项所述的脂肪酸甲酯异构化催化剂在催化脂肪酸甲酯进行异构化反应中的应用。

9.根据权利要求8所述的应用,其特征在于,所述异构化反应的条件为:温度为100~-1

250℃,压力为2~4MPa,空速为0.5~2h ,氢气与脂肪酸甲酯的体积比为50~300:1。

说明书 :

一种脂肪酸甲酯异构化催化剂及其制备方法和应用

技术领域

[0001] 本发明属于催化剂的制备技术领域,更具体的说,它涉及一种脂肪酸甲酯异构化催化剂及其制备方法和应用。

背景技术

[0002] 全世界增塑剂生产能力已超过700万/t,我国增塑剂的生产在20世纪50年代中期开始起步,90年代得到快速发展。基于石油化工原料的邻苯二甲酸酯类化合物,包括邻苯二甲酸二辛酯(DOP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二异辛酯(DIOP)、邻苯二甲酸二异丁酯(DIBP)和邻苯二甲酸二异壬酯(DINP)等占据了当前增塑剂的主要市场。该类增塑剂会在环境中扩散,进人生物体内会产生仿雌性激素。如果长期接触人体会造成外周神经系统的损伤且抑制中枢神经系统,具有致畸作用和胚胎毒性,影响体内分泌,导致癌细胞增殖。欧美等发达国家限制或者限量使用邻苯二甲酸酯类增塑剂,但在我国很多被淘汰的邻苯二甲酸酯类增塑剂还大有市场,存在着很大的隐患,因此环保增塑剂的大力研究开发迫在眉睫。
[0003] 当今石油等不可再生资源日益减少,环境问题日益严峻,废弃油脂重回餐桌等食品安全问题时刻困扰着人们。为了达到节约资源、保护生态环境的目的,减少乃至杜绝废弃餐饮油脂重回餐桌的现象,利用我国产量丰富的可再生的生物质资源和废弃餐饮油脂为原料制备无毒、节能环保和高性价比的增塑剂具有重要的环境效益和经济效益。
[0004] 目前重点发展的环保增塑剂主要是植物油基增塑剂,其中异构脂肪酸甲酯是可代替邻苯二甲酸酯的一类具有发展前景的植物油基环保型增塑剂,具有无毒、环保、可再生、制品韧性优良、耐高温、耐低温、不迁移和不喷霜,对光和热有良好的稳定作用等优点。作为辅助增塑剂,尤其与邻苯二甲酸酯增塑剂复配使用可产生良好的协同效应。其极性部分可与塑料的极性部分相互作用,其非极性部分嵌入塑料材料分子链间,削弱分子链间的应力,从而增加了分子链的移动性、降低了分子链的结晶度。
[0005] 《中国油脂》2004年第29卷第6期第24-26页的一篇“异构化棉油甲酯中共轭亚油酸的定量分析研究”的文献研究了棉油甲酯在碘的催化下发生异构化反应的规律,在最佳的异构化条件下,异构化棉油甲酯中共轭亚油酸质量分数可达31.2%,共轭转化率56%。然而《,中国油脂》2007年第32卷第1期第52-55页的一篇“不同脂肪酸甲酯化方法对共轭亚油酸分析的影响”的文献认为脂肪酸甲酯化后产生异构化,该种异构化实质上是氢质子的位置异构与几何异构的综合,是使油脂结构上的双键发生变化的重要反应之一,包括立体变更的顺、反构型变化与双键转移的共轭化反应。该种异构只是一种共轭化反应,而不是真正意义上的碳正离子迁移而产生的异构反应。
[0006] 中国专利CN103740414A(一种异构脂肪酸甲酯生物柴油的制备方法)和中国专利CN104862084A(一种制备生物柴油的工艺)以脂肪酸甲酯生物柴油为原料与气体烷烃在酸负载催化剂上,经烷基化工艺制得异构脂肪酸甲酯生物柴油,其中:酸负载催化剂用量为脂肪酸甲酯的2~10%,气体烷烃与脂肪酸甲酯中的不饱和脂肪酸甲酯的摩尔比为10~40:1、压力控制范围为6~8MPa、温度为90~130℃、反应时间2~4h。制备的产品具有低凝、优异的氧化和水解安定性,凝点比反应前降低10~30℃,氧化安定性提高一倍以上,可成为一种安全及可再生的高端合成柴油产品。然而,这些专利虽然通过烷基化的方法获得了异构脂肪酸甲酯,但是却消耗了甲烷、乙烷、丙烷、丁烷等烷烃资源,增加了生产成本。
[0007] 中国专利CN104099120A(一种利用生物柴油制备航空液体燃料的方法)向原料生物柴油中加入其2~3倍体积的水-甲醇混合液,并加入生物柴油重量1~5%的碱,于30~100℃水解,水解后于电解槽中电解合成得到长碳链的烷烃;将上述电解后长碳链的烷烃在-1
常压下于300~450℃,经催化剂,以0.2~2.0h 的体积空速下作用进行催化裂化;而后在于常压下220~350℃,以丝光沸石作为催化剂,体积空速控制在0.5~2.5h-1异构化反应;异构化反应后的产品经蒸馏处理,收集切割温度在105~240℃之间的馏分即可得到精制的航空燃料调和组分。《催化学报》2014年第35卷第5期第748-756页的一篇“Ni/SAPO-11催化剂上棕榈油加氢脱氧制异构烃燃料”的文献采用水热法介成了小粒、具有介孔结构的SAPO-11分子筛,采用浸渍法制备了不同Ni负载量的Ni/SAPO-11催化剂,SAPO-11较大表面积和介孔结构可分散Ni,使得Ni粒子尺寸较小。在棕榈油加氢脱氧制备液体烃类燃料反应中,Ni/SAPO-
11催化剂的弱/中强酸性质及其匹配的金属-酸双功能可显著抑制积炭反应,提高催化剂的寿命,液体烷烃收率高达70%,异构烷烃选择性超过80%。《化工进展》2007年第26卷第10期第1391-1394页的一篇“植物油加氢制备高十六烷值柴油组分研究进展”的文献介绍了植物油加氢制备柴油的主要化学反应、工艺方法以及该项技术的工业化状况,分析了植物油直接加氢、先加氢后异构、直接脱羧工艺以及植物油与矿物柴油掺炼工艺的特点。其中植物油加氢脱氧得到直链烷烃再临氢异构制备高十六烷值柴油组分的新工艺包括两段,第一段为加氢脱氧段,采用氧化铝或氧化硅负载的Co-Mo或Ni-Mo类催化剂,反应温度200~500℃,压力2~15MPa,氢气与反应原料可并流也可逆流操作;第二段为加氢异构段,所用催化剂包含有金属元素、分子筛和载体,金属元素为Pd、Pt,分子筛为SAPO-11、SAPO-41、ZSM-22及ZSM-
23,载体为Al2O3或SiO2,异构段中氢气和反应原料采用逆流操作方式,反应温度200~500℃,压力2~15MPa。然而,尽管这些文献通过异构的方法制备了异构烷烃,但由于反应温度过高,原料油中酯键上的氧也被脱除了,使得这种异构烷烃难以直接作为增塑剂使用。
[0008] 通过查新,可以发现现有技术的异构脂肪酸甲酯的生产过程中存在着异构转化率低、脂肪酸甲酯中的酯键难以保留等缺点。因此,以脂肪酸甲酯为原料,开发新的生产异构脂肪酸甲酯的技术以取代现有的邻苯二甲酸酯增塑剂具有重要意义。

发明内容

[0009] 发明目的:针对现有技术的异构脂肪酸甲酯的生产过程中存在的异构转化率低、脂肪酸甲酯中的酯键难以保留等缺点,本发明的第一个目的是提供一种生产异构脂肪酸甲酯的催化剂,其催化异构化反应中可以保留脂肪酸甲酯中的酯键,同时具有较高的异构转化率。本发明的第二个目的是提供所述催化剂的制备方法。本发明的第三个目的是提供脂肪酸甲酯异构化催化剂在催化脂肪酸甲酯发生异构化反应中的应用。
[0010] 本发明的技术方案如下:一种脂肪酸甲酯异构化催化剂,所述的催化剂包括贵金属Ru、TiO2、SiO2和SAPO-11分子筛,以SAPO-11分子筛的质量为基准,Ru的含量为SAPO-11分子筛质量的1~15%,SiO2的含量为SAPO-11分子筛质量的0.5~10%,TiO2的含量为SAPO-11分子筛质量的0.5~10%。
[0011] 优选的,上述的脂肪酸甲酯异构化催化剂中,所述的Ru的含量为SAPO-11分子筛质量的5~10%,SiO2的含量为SAPO-11分子筛质量的1~5%,TiO2的含量为SAPO-11分子筛质量的1~5%。更优选的,上述的脂肪酸甲酯异构化催化剂中,所述的Ru的含量为SAPO-11分子筛质量的6~10%,SiO2的含量为SAPO-11分子筛质量的2~5%,TiO2的含量为SAPO-11分子筛质量的2~5%。
[0012] 所述的催化剂中,SiO2和SAPO-11分子筛形成SiO2-SAPO-11分子筛复合载体,所述的Ru和TiO2在SiO2-SAPO-11分子筛复合载体上呈壳型分布,壳层厚度为300~500μm,优选的,壳层厚度为350~450μm,更优选为400~450μm。所述的壳层厚度是在江南永新BM1000型显微镜下测试,将催化剂剖开,含有活性组分的区域呈黑色,与载体自身的白灰色区域存在较大的色差,具有明显的分界线,可用于测量壳层厚度。
[0013] 催化剂中,金属Ru的作用是提供氢化活性中心,金属Ru相较于Pt、Pd、Rh具有更高的低温活性。
[0014] 本发明还提供了所述脂肪酸甲酯异构化催化剂的制备方法,包括以下步骤:
[0015] (1)将SAPO-11分子筛粉体、粘结剂混匀后,加入含有硅溶胶的水溶液,经捏合、挤出成型后,进行干燥、焙烧,得到SiO2-SAPO-11分子筛复合载体;
[0016] (2)将钛酸四丁酯或四氯化钛、含钌化合物、水、酸和有机溶剂混合后搅拌,直至形成透明溶胶;
[0017] (3)将所述的SiO2-SAPO-11分子筛复合载体浸渍所述的透明溶胶,依次经干燥、焙烧、氢气还原后得到所述的脂肪酸甲酯异构化催化剂。
[0018] 步骤(1)中,所述粘结剂为羟丙基甲基纤维素、甲基纤维素、淀粉、聚丙烯酰胺、聚乙烯醇和聚乙二醇中的一种或几种,优选为羟丙基甲基纤维素,其粘结性能最好。
[0019] 所述粘结剂的用量一般为SAPO-11分子筛粉体质量的1~5%,本领域人员熟知根据粘结剂的具体种类确定具体的添加量。所述的粘结剂为羟丙基甲基纤维素时,其用量通常为SAPO-11分子筛粉体质量的2%。
[0020] 所述硅溶胶中,SiO2的质量含量为20~40%,优选为30~40%,更优选为30%。
[0021] 步骤(1)中,所述干燥的温度为50~200℃,时间为1~20h;所述焙烧的温度为300~600℃,时间为1~10h。优选的,所述干燥的温度为80~150℃,时间为8~12h;所述焙烧的温度为500~600℃,时间为2~6h。进一步优选的,所述干燥的温度为100℃,时间为10h;所述焙烧的温度为550℃,时间为4h。
[0022] 步骤(2)中,所述的含钌化合物为氯化钌、醋酸钌、三硝基亚硝酰钌和氯钌酸铵中的一种或几种。具体的,所述的含钌化合物为氯化钌、醋酸钌、三硝基亚硝酰钌、氯钌酸铵、质量比1:1为氯化钌与醋酸钌、质量比1:1为醋酸钌与三硝基亚硝酰钌或质量比1:1为氯化钌与三硝基亚硝酰钌。
[0023] 步骤(2)中,所述的水的质量为钛酸四丁酯质量的10~30%,优选为15~25%,更优选为20~25%。
[0024] 钛酸四丁酯也可以替换为四氯化钛,但四氯化钛接触水后会迅速形成大量的HCl酸雾,对操作人员的健康造成危害,因此优选采用钛酸四丁酯。
[0025] 酸的作用是与钛酸四丁酯络合,防止钛酸四丁酯接触水后形成Ti(OH)4沉淀物,所述的酸为醋酸、盐酸、硫酸或硝酸,优选为醋酸,其络合性能最好。
[0026] 所述酸的质量为钛酸四丁酯质量的0.1~1%,优选为0.3~0.7%。
[0027] 所述的有机溶剂为含有1~4个碳原子的醇,如甲醇、乙醇、异丙醇、正丁醇、正丙醇或异丁醇。所述的有机溶剂的质量为钛酸四丁酯质量的1~3倍,优选为1.5~2.5倍。
[0028] 步骤(3)中,所述干燥的温度为50~200℃,时间为1~20h;所述焙烧的温度为300~600℃,时间为1~10h;氢气还原的温度为50~200℃,时间为1~5h。优选的,所述干燥的温度为100℃,时间为10h;所述焙烧的温度为550℃,时间为4h;氢气还原的温度为100℃,时间为2h。
[0029] 本发明还提供了脂肪酸甲酯异构化催化剂在催化脂肪酸甲酯进行异构化反应中的应用。
[0030] 所述的应用包括:所述的脂肪酸甲酯与催化剂和氢气接触发生异构化反应。
[0031] 所述的异构化反应在固定床反应器中进行。
[0032] 所述异构化反应的条件为:温度为100~250℃,压力为2~4MPa,空速为0.5~2h-1,氢气与脂肪酸甲酯的体积比为50~300:1。优选的,所述异构化反应的条件为:温度为140~160℃,压力为2~4MPa,空速为0.8~1.2h-1,氢气与脂肪酸甲酯的体积比为180~220:1。更-1
优选的,所述异构化反应的条件为:温度为150℃,压力为3MPa,空速为1h ,氢气与脂肪酸甲酯的体积比为200:1。
[0033] 本发明所述的脂肪酸甲酯原料是一种含有酯键的直碳链脂肪酸甲酯,针对原料的C原子数范围为12~22;所述的异构脂肪酸甲酯是一种含有酯键的并且带有1个或多个甲基取代基的支碳链脂肪酸甲酯,所述的异构烷烃是一种带有1个或多个甲基取代基的支碳链烷烃。
[0034] 本发明的技术思路为:采用硅溶胶对SAPO-11分子筛进行改性,调变SAPO-11分子筛载体表面的酸密度和酸强度,为异构化反应的发生提供足够的酸量;另一方面,采用TiO2溶胶促进活性金属Ru的分散度,并通过控制溶胶的黏度来控制Ru-TiO2的负载深度,为异构化反应的氢化过程提供足够的低温活性。
[0035] 与现有技术相比,本发明的有益效果为:
[0036] (1)本发明脂肪酸甲酯异构化催化剂的活性高,在适宜的反应条件下,脂肪酸甲酯的转化率>90%,异构脂肪酸甲酯的选择性>95%,异构烷烃的选择性<5%。
[0037] (2)脂肪酸甲酯的异构化工艺简单,条件温和,易于实现工业化生产。
[0038] (3)本发明脂肪酸甲酯异构化催化剂的制备方法简单。

具体实施方式

[0039] 下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
[0040] 实施例1
[0041] 催化剂的制备过程:
[0042] (1)将SAPO-11分子筛粉体、粘结剂羟丙基甲基纤维素混合均匀,将SiO2的质量含量为20%的硅溶胶用水稀释,加入到上述粉体中,捏合20min后挤成直径1.3mm的条状物,经100℃干燥10h、550℃焙烧4h得到SiO2-SAPO-11分子筛复合载体;其中,粘结剂的质量为SAPO-11分子筛粉体质量的2%,稀释用水的质量为SAPO-11分子筛粉体质量的40%;
[0043] (2)将钛酸四丁酯、氯化钌、水、醋酸和甲醇混合、持续搅拌,直至形成透明溶胶;其中,水的质量为钛酸四丁酯质量的10%,醋酸的质量为钛酸四丁酯质量的0.1%,甲醇的质量为钛酸四丁酯质量的1倍;
[0044] (3)将步骤(1)得到的SiO2-SAPO-11分子筛复合载体浸渍步骤(2)的透明溶胶,经100℃干燥10h、550℃焙烧4h、100℃氢气还原2h得到壳层厚度为300μm的Ru-TiO2/SiO2-SAPO-11异构化催化剂;
[0045] 将制得的催化剂于江南永新BM1000型显微镜下测试观察,Ru和TiO2在SiO2-SAPO-11分子筛复合载体上呈壳型分布,将催化剂剖开,含有活性组分的区域呈黑色,与载体自身的白灰色区域存在较大的色差,具有明显的分界线,可用于测量壳层厚度,测得本实施例的壳层厚度为300μm。
[0046] 上述步骤中,SAPO-11分子筛粉体、硅溶胶、钛酸四丁酯、氯化钌的添加量可根据表1中最终催化剂的构成推算得到,其他实施例同理。
[0047] 催化剂的活性评价:
[0048] 以C原子数为12的脂肪酸甲酯为原料,在固定床反应器中进行脂肪酸甲酯的异构化反应,具体为,在固定床反应器中装填本实施例催化剂,升温、升压后,向反应器中通入脂肪酸甲酯和氢气进行反应,反应条件为温度为100℃,压力为2MPa,空速为0.5h-1,氢气与脂肪酸甲酯的体积比为50:1。反应过程中及时采样,样品的成分采用气相色谱仪进行分析,根据色谱数据,计算脂肪酸甲酯的转化率以及异构脂肪酸甲酯、异构烷烃的选择性。
[0049] 脂肪酸甲酯的转化率(%)=1-未转化的脂肪酸甲酯的量/脂肪酸甲酯原料的量×100%
[0050] 异构脂肪酸甲酯的选择性(%)=异构化脂肪酸甲酯的量/已转化的脂肪酸甲酯的量×100%
[0051] 异构烷烃的选择性(%)=1-异构脂肪酸甲酯的选择性
[0052] 本实施例得到的异构化催化剂的构成及活性指标见表1。
[0053] 实施例2
[0054] 催化剂的制备过程:
[0055] (1)将SAPO-11分子筛粉体、粘结剂羟丙基甲基纤维素混合均匀,将SiO2的质量含量为40%的硅溶胶用水稀释,加入到上述粉体中,捏合20min后挤成直径1.5mm的条状物,经100℃干燥10h、550℃焙烧4h得到SiO2-SAPO-11分子筛复合载体;其中,粘结剂的质量为SAPO-11分子筛粉体质量的2%,稀释用水的质量为SAPO-11分子筛粉体质量的50%;
[0056] (2)将钛酸四丁酯、醋酸钌、水、醋酸和乙醇混合、持续搅拌,直至形成透明溶胶;其中,水的质量为钛酸四丁酯质量的30%,醋酸的质量为钛酸四丁酯质量的1%,乙醇的质量为钛酸四丁酯质量的3倍;
[0057] (3)将步骤(1)得到的SiO2-SAPO-11分子筛复合载体浸渍步骤(2)的透明溶胶,经100℃干燥10h、550℃焙烧4h、100℃氢气还原2h得到壳层厚度为500μm的Ru-TiO2/SiO2-SAPO-11异构化催化剂;
[0058] 催化剂的活性评价:
[0059] 以C原子数为22的脂肪酸甲酯为原料,在固定床反应器中进行脂肪酸甲酯的异构化反应,反应条件为温度为250℃,压力为4MPa,空速为2h-1,氢气与脂肪酸甲酯的体积比为300:1。反应过程中及时采样,分析脂肪酸甲酯的转化率以及异构脂肪酸甲酯、异构烷烃的选择性。
[0060] 本实施例得到的异构化催化剂的构成及活性指标见表1。
[0061] 实施例3
[0062] 催化剂的制备过程:
[0063] (1)将SAPO-11分子筛粉体、粘结剂羟丙基甲基纤维素混合均匀,将SiO2的质量含量为30%的硅溶胶用水稀释,加入到上述粉体中,捏合20min后挤成直径1.5mm的条状物,经100℃干燥10h、550℃焙烧4h得到SiO2-SAPO-11分子筛复合载体;其中,粘结剂的质量为SAPO-11分子筛粉体质量的2%,稀释用水的质量为SAPO-11分子筛粉体质量的45%;
[0064] (2)将钛酸四丁酯、三硝基亚硝酰钌、水、醋酸和异丙醇混合、持续搅拌,直至形成透明溶胶;其中,水的质量为钛酸四丁酯质量的15%,醋酸的质量为钛酸四丁酯质量的0.3%,异丙醇的质量为钛酸四丁酯质量的1.5倍;
[0065] (3)将步骤(1)得到的SiO2-SAPO-11分子筛复合载体浸渍步骤(2)的透明溶胶,经100℃干燥10h、550℃焙烧4h、100℃氢气还原2h得到壳层厚度为350μm的Ru-TiO2/SiO2-SAPO-11异构化催化剂。
[0066] 催化剂的活性评价:
[0067] 以C原子数为18的脂肪酸甲酯为原料,在固定床反应器中进行脂肪酸甲酯的异构化反应,反应条件为温度为150℃,压力为3MPa,空速为1h-1,氢气与脂肪酸甲酯的体积比为200:1。反应过程中及时采样,分析脂肪酸甲酯的转化率以及异构脂肪酸甲酯、异构烷烃的选择性。
[0068] 本实施例得到的异构化催化剂的构成及活性指标见表1。
[0069] 实施例4
[0070] 催化剂的制备过程:
[0071] (1)将SAPO-11分子筛粉体、粘结剂羟丙基甲基纤维素混合均匀,将SiO2的质量含量为30%的硅溶胶用水稀释,加入到上述粉体中,捏合20min后挤成直径1.5mm的条状物,经100℃干燥10h、550℃焙烧4h得到SiO2-SAPO-11分子筛复合载体;其中,粘结剂的质量为SAPO-11分子筛粉体质量的2%,稀释用水的质量为SAPO-11分子筛粉体质量的45%;
[0072] (2)将钛酸四丁酯、氯钌酸铵、水、醋酸和正丁醇混合、持续搅拌,直至形成透明溶胶;其中,水的质量为钛酸四丁酯质量的25%,醋酸的质量为钛酸四丁酯质量的0.7%,正丁醇的质量为钛酸四丁酯质量的2.5倍;
[0073] (3)将步骤(1)得到的SiO2-SAPO-11分子筛复合载体浸渍步骤(2)的透明溶胶,经100℃干燥10h、550℃焙烧4h、100℃氢气还原2h得到壳层厚度为450μm的Ru-TiO2/SiO2-SAPO-11异构化催化剂。
[0074] 催化剂的活性评价与实施例3基本相同。
[0075] 本实施例得到的异构化催化剂的构成及活性指标见表1。
[0076] 实施例5
[0077] 催化剂的制备过程:
[0078] (1)将SAPO-11分子筛粉体、粘结剂羟丙基甲基纤维素混合均匀,将SiO2的质量含量为30%的硅溶胶用水稀释,加入到上述粉体中,捏合20min后挤成直径1.5mm的条状物,经100℃干燥10h、550℃焙烧4h得到SiO2-SAPO-11分子筛复合载体;其中,粘结剂的质量为SAPO-11分子筛粉体质量的2%,稀释用水的质量为SAPO-11分子筛粉体质量的45%;
[0079] (2)将钛酸四丁酯、氯化钌与醋酸钌(质量比1:1)、水、醋酸和正丙醇混合、持续搅拌,直至形成透明溶胶;其中,水的质量为钛酸四丁酯质量的20%,醋酸的质量为钛酸四丁酯质量的0.5%,正丙醇的质量为钛酸四丁酯质量的2倍;
[0080] (3)将步骤(1)得到的SiO2-SAPO-11分子筛复合载体浸渍步骤(2)的透明溶胶,经100℃干燥10h、550℃焙烧4h、100℃氢气还原2h得到壳层厚度为400μm的Ru-TiO2/SiO2-SAPO-11异构化催化剂。
[0081] 催化剂的活性评价与实施例3基本相同。
[0082] 本实施例得到的异构化催化剂的构成及活性指标见表1。
[0083] 实施例6
[0084] 催化剂的制备过程:
[0085] (1)将SAPO-11分子筛粉体、粘结剂羟丙基甲基纤维素混合均匀,将SiO2的质量含量为30%的硅溶胶用水稀释,加入到上述粉体中,捏合20min后挤成直径1.5mm的条状物,经100℃干燥10h、550℃焙烧4h得到SiO2-SAPO-11分子筛复合载体;其中,粘结剂的质量为SAPO-11分子筛粉体质量的2%,稀释用水的质量为SAPO-11分子筛粉体质量的45%;
[0086] (2)将钛酸四丁酯、醋酸钌与三硝基亚硝酰钌(质量比1:1)、水、醋酸和异丁醇混合、持续搅拌,直至形成透明溶胶;其中,水的质量为钛酸四丁酯质量的20%,醋酸的质量为钛酸四丁酯质量的0.5%,异丁醇的质量为钛酸四丁酯质量的2倍;
[0087] (3)将步骤(1)得到的SiO2-SAPO-11分子筛复合载体浸渍步骤(2)的透明溶胶,经100℃干燥10h、550℃焙烧4h、100℃氢气还原2h得到壳层厚度为420μm的Ru-TiO2/SiO2-SAPO-11异构化催化剂。
[0088] 催化剂的活性评价与实施例3基本相同。
[0089] 本实施例得到的异构化催化剂的构成及活性指标见表1。
[0090] 实施例7
[0091] 催化剂的制备过程:
[0092] (1)将SAPO-11分子筛粉体、粘结剂羟丙基甲基纤维素混合均匀,将SiO2的质量含量为30%的硅溶胶用水稀释,加入到上述粉体中,捏合20min后挤成直径1.5mm的条状物,经100℃干燥10h、550℃焙烧4h得到SiO2-SAPO-11分子筛复合载体;其中,粘结剂的质量为SAPO-11分子筛粉体质量的2%,稀释用水的质量为SAPO-11分子筛粉体质量的45%;
[0093] (2)将钛酸四丁酯、氯化钌与三硝基亚硝酰钌(质量比1:1)、水、醋酸和乙醇混合、持续搅拌,直至形成透明溶胶;其中,水的质量为钛酸四丁酯质量的18%,醋酸的质量为钛酸四丁酯质量的0.6%,乙醇的质量为钛酸四丁酯质量的1.5倍;
[0094] (3)将步骤(1)得到的SiO2-SAPO-11分子筛复合载体浸渍步骤(2)的透明溶胶,经100℃干燥10h、550℃焙烧4h、100℃氢气还原2h得到壳层厚度为380μm的Ru-TiO2/SiO2-SAPO-11异构化催化剂。
[0095] 催化剂的活性评价与实施例3基本相同。
[0096] 本实施例得到的异构化催化剂的构成及活性指标见表1。
[0097] 比较例1
[0098] 按照中国专利CN103740414A(一种异构脂肪酸甲酯生物柴油的制备方法)描述的方法制备异构脂肪酸甲酯。
[0099] 以C原子数为18的脂肪酸甲酯为原料与甲烷在硼-磷钨酸/Al2O3催化剂上,经烷基化工艺制得异构脂肪酸甲酯,其中:硼-磷钨酸/Al2O3催化剂用量为脂肪酸甲酯的5%,甲烷与脂肪酸甲酯中的不饱和脂肪酸甲酯的摩尔比为40:1、压力为6MPa、温度为90℃、反应时间为2h。反应结束后分析脂肪酸甲酯的转化率以及异构脂肪酸甲酯、异构烷烃的选择性,结果见表1。
[0100] 表1
[0101]
[0102] 注*:催化剂的构成是以SAPO-11分子筛的质量为基准,Ru、TiO2、SiO2的含量皆为相对于SAPO-11分子筛质量的含量。
[0103] 由实施例和比较例的对比来看,采用本发明方法制备的异构化催化剂的活性高,在温度150℃、压力3Mpa、空速为1h-1、氢气与脂肪酸甲酯的体积比200:1的条件下,脂肪酸甲酯的转化率>90%,异构脂肪酸甲酯的选择性>95%,异构烷烃的选择性<5%。而比较例的脂肪酸甲酯的转化率仅32%,远低于本发明的结果。