一种氧化锌纳米棒/黑硅异质结纳米光电探测器及其制备方法转让专利

申请号 : CN201710025876.5

文献号 : CN106684201B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王莉任治飞何淑娟李晶晶于永强吴春艳罗林保

申请人 : 合肥工业大学

摘要 :

本发明公开了一种氧化锌纳米棒/黑硅异质结纳米光电探测器及其制备方法,其特征在于:是以p‑型硅片为衬底,在衬底的上表面形成有黑硅层,在黑硅层上形成有氧化锌纳米棒阵列层;在氧化锌纳米棒阵列层上设置有顶电极;在衬底的下表面设置有底电极。本发明的纳米光电探测器采用氧化锌纳米棒阵列作为主要的感光层,纳米棒排布均匀且致密,具有较大的比表面积,使得纳米光电探测器的感光面积显著地增加,大幅增加了光生载流子的数量,提升了纳米光电器件的灵敏度。

权利要求 :

1.一种氧化锌纳米棒/黑硅异质结纳米光电探测器的制备方法,其特征在于:所述纳米光电探测器是以p-型硅片为衬底(1),在所述衬底(1)的上表面形成有黑硅层(2),在所述黑硅层(2)上形成有氧化锌纳米棒阵列层(3);在所述氧化锌纳米棒阵列层(3)上设置有顶电极(4);在所述衬底(1)的下表面设置有底电极(5);

构成所述氧化锌纳米棒阵列层(3)的氧化锌纳米棒垂直于黑硅层生长;

所述p-型硅片的表面形成有金字塔结构;

所述顶电极(4)和所述底电极(5)皆为通过涂抹银浆而形成的银电极;

所述纳米光电探测器的制备方法,包括如下步骤:

a、对p-型硅片进行超声清洗并吹干备用;

b、将1~3g KOH固体和10mL异丙醇溶解在40mL水中,制得碱性刻蚀液;然后将p-型硅片放入碱性刻蚀液中,80~85℃水浴条件下加热20~40分钟,取出后冲洗,即在p-型硅片的上表面形成金字塔结构;

c、将0.042g硝酸银颗粒和10.7mL质量浓度为40%的氢氟酸溶解于50mL水中,获得溶液A;

将2mL质量浓度为30%的过氧化氢和10.7mL质量浓度为40%的氢氟酸加入到50mL水中,获得酸性刻蚀液;

将10mL质量浓度为68%的硝酸加入到10mL水中,获得溶液B;

然后将表面形成有金字塔结构的p-型硅片依次在溶液A中浸泡1min,在酸性刻蚀液中刻蚀1~3min,在溶液B中浸泡2~3h;取出后用去离子水清洗,即在p-型硅片的上表面形成黑硅层;

d、将0.16g二水合醋酸锌溶解于15mL乙二醇甲醚中,制成旋涂液;然后使用匀胶机将所述旋涂液滴在黑硅层上,并在3000转/秒的转速下旋涂20~40s,再在150℃下烘烤10分钟;

重复滴液、旋涂、烘烤3~5次,使黑硅层上形成氧化锌籽晶层;

e、将0.2~0.6g六水合硝酸锌和0.21g乌洛托品溶解于30mL水中,制得氧化锌纳米棒阵列的生长液;将形成有氧化锌籽晶层的p-型硅片竖直浸入盛有生长液的反应釜中,95℃生长6h;然后取出并清洗,即在黑硅层上形成氧化锌纳米棒阵列层;

f、利用银浆分别从p-型硅片底部和氧化锌纳米棒阵列的顶部引出底电极和顶电极,即完成氧化锌纳米棒/黑硅异质结纳米光电探测器的制备。

说明书 :

一种氧化锌纳米棒/黑硅异质结纳米光电探测器及其制备

方法

技术领域

[0001] 本发明涉及一种光电探测器,更具体地说是涉及一种氧化锌纳米棒/黑硅异质结纳米光电探测器及其制备方法。

背景技术

[0002] 光电探测器件可以将感应到的光信号转换为电信号,具有重要的军用价值和广阔的民用市场。光电探测器件的结构层自下而上依次为绝缘衬底、感光层和电极。纳米光电探测器是采用纳米材料作为感光层的光电探测器,其具有易于集成、低功耗、低成本的特点。更为重要的是,纳米光电探测器与同种材质的薄膜光电探测器相比,具有更高的灵敏度和反应速度。氧化锌为近年来广泛研究的II-VI族半导体材料,室温禁带宽度~3.37eV,激子结合能~60meV,对于紫外线非常敏感。
[0003] 现有的氧化锌光电探测器主要是采用氧化锌薄膜作为感光层,用普通的平面硅作为衬底。这使得氧化锌光电探测器存在感光面积小、对入射光吸收不充分以及灵敏度低的问题。因而,如何使用一种经济便捷的方法提升氧化锌光电探测器对入射光的吸收利用,这在光电探测器领域有着重要的意义。

发明内容

[0004] 本发明是为避免上述现有技术所存在的不足之处,提供一种氧化锌纳米棒/黑硅异质结纳米光电探测器及其制备方法,以期有效增大光电探测器的感光面积,提高对入射光的利用率,提高光电探测器的灵敏度。
[0005] 本发明解决技术问题采用如下技术方案:
[0006] 本发明的氧化锌纳米棒/黑硅异质结纳米光电探测器,是以p-型硅片为衬底,在所述衬底的上表面形成有黑硅层,在所述黑硅层上形成有氧化锌纳米棒阵列层;在所述氧化锌纳米棒阵列层上设置有顶电极;在所述衬底的下表面设置有底电极。
[0007] 构成所述氧化锌纳米棒阵列层的氧化锌纳米棒垂直于黑硅层生长。
[0008] 所述p-型硅片的表面形成有金字塔结构。
[0009] 所述顶电极和所述底电极皆为通过涂抹银浆而形成的银电极。
[0010] 上述氧化锌纳米棒/黑硅异质结纳米光电探测器的制备方法,包括如下步骤:
[0011] a、对p-型硅片进行超声清洗并吹干备用;
[0012] b、将1~3g KOH固体和10mL异丙醇溶解在40mL水中,制得碱性刻蚀液;然后将p-型硅片放入碱性刻蚀液中,80~85℃水浴条件下加热20~40分钟,取出后冲洗,即在p-型硅片的上表面形成金字塔结构;
[0013] c、将0.042g硝酸银颗粒和10.7mL质量浓度为40%的氢氟酸溶解于50mL水中,获得溶液A;
[0014] 将2mL质量浓度为30%的过氧化氢和10.7mL质量浓度为40%的氢氟酸加入到50mL水中,获得酸性刻蚀液;
[0015] 将10mL质量浓度为68%的硝酸加入到10mL水中,获得溶液B;
[0016] 然后将表面形成有金字塔结构的p-型硅片依次在溶液A中浸泡1min,在酸性刻蚀液中刻蚀1~3min,在溶液B中浸泡2~3h;取出后用去离子水清洗,即在p-型硅片的上表面形成黑硅层;
[0017] d、将0.16g二水合醋酸锌溶解于15mL乙二醇甲醚中,制成旋涂液;然后使用匀胶机将所述旋涂液滴在黑硅层上,并在3000转/秒的转速下旋涂20~40s,再在150℃下烘烤10分钟;重复滴液、旋涂、烘烤3~5次,使黑硅层上形成氧化锌籽晶层;
[0018] e、将0.2~0.6g六水合硝酸锌和0.21g乌洛托品溶解于30mL水中,制得氧化锌纳米棒阵列的生长液;将形成有氧化锌籽晶层的p-型硅片竖直放入盛有生长液的反应釜中,95℃生长6h;然后取出并清洗,即在黑硅层上形成氧化锌纳米棒阵列层;
[0019] f、利用银浆分别从p-型硅片底部和氧化锌纳米棒阵列的顶部引出底电极和顶电极,即完成氧化锌纳米棒/黑硅异质结纳米光电探测器的制备。
[0020] 与已有技术相比,本发明的有益效果体现在:
[0021] 1、本发明的纳米光电探测器采用氧化锌纳米棒阵列作为主要的感光层,纳米棒排布均匀且致密,具有较大的比表面积,使得纳米光电探测器的感光面积显著地增加,大幅增加了光生载流子的数量,提升了纳米光电器件的灵敏度。
[0022] 2、本发明的纳米光电探测器以表面具有准有序晶微结构的黑硅层为衬底,作为清洁高效的新型硅基太阳能电池原材料的一种,拥有极好的陷光效应,能够提升入射光的吸收率、抑制入射光的反射率,在低成本的前提下提升了能量的转换效率,从而进一步提升了纳米光电探测器的灵敏度。
[0023] 3、本发明采用氧化锌纳米棒垂直于生长面的结构,在光照情况下能够快速地在氧化锌纳米棒表面以及黑硅衬底表面收集到大量的光生载流子,并且借由纳米棒垂直结构的优点,这些光生载流子能够非常快速地在纳米棒中传输,提高了光电探测器的速度,并且克服了在平面硅上光生载流子传输损耗较大的缺点。
[0024] 4、本发明从黑硅层的制备到氧化锌纳米棒阵列的合成,全部采用水溶液的方法,无需大型仪器,极大地简化了纳米光电探测器的制备流程,大幅地降低了成本,使得氧化锌纳米棒/黑硅异质结纳米光电探测器非常易于实现。

附图说明

[0025] 图1为本发明氧化锌纳米棒/黑硅异质结纳米光电探测器的结构示意图;其中1为衬底,2为黑硅层,3为氧化锌纳米棒阵列层,4为顶电极,5为底电极;
[0026] 图2为本发明实施例1中黑硅层上生长的氧化锌纳米棒阵列的场发射扫描电子显微镜图片(顶视图);
[0027] 图3为本发明实施例1中氧化锌纳米棒/黑硅异质结纳米光电探测器在黑暗条件下的整流特性曲线;
[0028] 图4为本发明实施例1中氧化锌纳米棒/黑硅异质结纳米光电探测器在不同光照强度下的光伏特性曲线;
[0029] 图5为本发明实施例1中氧化锌纳米棒/黑硅异质结纳米光电探测器在频率为10赫兹的光源下采用归一化处理后的时间响应特性;
[0030] 图6为本发明实施例2中黑硅层上生长的氧化锌纳米棒阵列的场发射扫描电子显微镜图片(顶视图);
[0031] 图7为本发明实施例3中黑硅层上生长的氧化锌纳米棒阵列的场发射扫描电子显微镜图片(顶视图)。

具体实施方式

[0032] 实施例1
[0033] 如图1所示,本实施例的氧化锌纳米棒/黑硅异质结纳米光电探测器,是以p-型硅片为衬底1,在衬底1的上表面形成有黑硅层2,在黑硅层2上形成有氧化锌纳米棒阵列层3;在氧化锌纳米棒阵列层3上设置有顶电极4;在衬底1的下表面设置有底电极5。其中,构成氧化锌纳米棒阵列层3的氧化锌纳米棒垂直于黑硅层生长。p-型硅片的表面形成有金字塔结构。顶电极4和底电极5皆为通过涂抹银浆而形成的银电极。
[0034] 本实施例的纳米光电探测器按如下步骤进行制备:
[0035] 1、依次采用丙酮、酒精和纯净水对p-型硅片进行超声清洗,然后利用纯度高为99.9%的氮气将p-型硅片吹干备用;
[0036] 2、取纯度为85%的KOH固体1g、纯度为99.5%的异丙醇溶液10mL溶解于40mL水中,制得碱性刻蚀液;将处理过的p-型硅片水平放入装有碱性刻蚀液的烧杯中,把烧杯放入水浴锅中,在85℃的条件下进行加热,加热时间为30分钟;之后用去离子水反复冲洗,得到表面有金字塔结构的p-硅片;
[0037] 3、取0.042g纯度为99.8%的硝酸银颗粒、10.7mL质量浓度为40%的氢氟酸,溶解于50mL水中,获得溶液A;
[0038] 取2mL质量浓度为30%的过氧化氢、10.7mL质量浓度为40%的氢氟酸,加入50mL的水中,制成酸性刻蚀液;
[0039] 将10mL质量浓度为68%的硝酸加入到10mL水中,获得溶液B;
[0040] 然后将表面形成有金字塔结构的p-型硅片依次在溶液A中浸泡1min,在酸性刻蚀液中刻蚀2.5min,在溶液B中浸泡3h;取出后用去离子水反复清洗,即在p-型硅片的上表面形成黑硅层;
[0041] 4、将0.16g纯度为99.99%的二水合醋酸锌溶解于15mL纯度为99.5%的乙二醇甲醚中,制成旋涂液;然后使用匀胶机将旋涂液滴在黑硅层上,并在3000转/秒的转速下旋涂30s,再放入高温干燥箱中在150℃下烘烤10分钟;重复滴液、旋涂、烘烤3次,使黑硅层上形成氧化锌籽晶层;
[0042] 5、取0.4g纯度为99.99%的六水合硝酸锌和0.21g纯度为99.5%的乌洛托品,溶解于30mL水中,制成氧化锌纳米棒阵列的生长液;随后将形成有氧化锌籽晶层的p-型硅片竖直放入盛有生长液的反应釜中,再将反应釜放入高温干燥箱中,在95℃的条件下生长6小时;然后取出并用去离子水小心地清洗,即在黑硅层上形成氧化锌纳米棒阵列层;
[0043] 图2为本实施例中黑硅层上生长的氧化锌纳米棒阵列的场发射扫描电子显微镜图片(顶视图),可以看出,氧化锌纳米棒均匀且致密,在黑硅的微金字塔表面能够观察到,氧化锌垂直于生长面生长;
[0044] 6、利用银浆分别从p-型硅片底部和氧化锌纳米棒阵列的顶部引出底电极和顶电极,即完成氧化锌纳米棒/黑硅异质结纳米光电探测器的制备。
[0045] 图3为本实施例的样品在黑暗条件下的整流特性曲线,从图中可以看出,样品在黑暗条件下,当外加负偏压时通过探测器的电流非常小,而在正偏压的情况下通过探测器的电流迅速上升,具有非常良好的整流特性。
[0046] 图4为本实施例的样品在不同光照强度下的光伏特性曲线(依次为1.02mW/cm2、2.14mW/cm2、3.02mW/cm2、4.02mW/cm2、5.14mW/cm2、6.15mW/cm2),从图中可以看出,当照射在样品上的光照强度逐渐增大时,该纳米光电探测器的开路电压也逐渐增大,具有良好的光生伏特效应,并且光伏的大小与光照强度呈现正相关关系。
[0047] 图5为本实施例的样品在频率为10赫兹的光源下采用归一化处理后的时间响应特性,从图中可以看出在10赫兹的光源照射下,该纳米光电探测器拥有极好的在开启和闭合状态间的切换能力,并且波形展现出非常好的稳定性以及可重复性。
[0048] 实施例2
[0049] 本实施例的氧化锌纳米棒/黑硅异质结纳米光电探测器与实施例1的结构相同,制备方法也基本相同,区别仅在于步骤5中的生长液为:0.2g六水合硝酸锌和0.21g乌洛托品溶解于30mL水中。
[0050] 本实施例黑硅层上生长的氧化锌纳米棒阵列的场发射扫描电子显微镜图片(顶视图)如图6所示,从图中可以看出在六水合硝酸锌浓度相对较小的情况下,生长的氧化锌纳米棒直径也相对变小,同时也更为密集。
[0051] 实施例3
[0052] 本实施例的氧化锌纳米棒/黑硅异质结纳米光电探测器与实施例1的结构相同,制备方法也基本相同,区别仅在于步骤5中的生长液为:0.6g六水合硝酸锌和0.21g乌洛托品溶解于30mL水中。
[0053] 本实施例黑硅层上生长的氧化锌纳米棒阵列的场发射扫描电子显微镜图片(顶视图)如图7所示,从图中可以看出在六水合硝酸锌浓度相对较大的情况下,生长的氧化锌纳米棒直径也相对变大,同时也更为稀疏。
[0054] 以上所述仅为本发明的示例性实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。