一种含硒的KGA/GAC和/或GDH抑制剂化合物转让专利

申请号 : CN201510789110.5

文献号 : CN106699687B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 阮奔放阮健昵福

申请人 : 杭州伽玛生物科技有限公司

摘要 :

本发明提供了一种具有靶向性的高效低毒治疗癌症新药化合物;根据谷氨酰胺酶和BPTES化合物的晶体结构,通过对依布硒啉(ebselen)分子进行修饰,增加6个碳的长链(或含硫醚长链)以便与谷氨酰胺酶变构位点结合、同时对苯环增加吸电子基团或给电子基团以增加或减少化合物的氧化还原活性、优化化合物的药学性质、谷氨酰胺酶结合力、及化合物的抗肿瘤活性。设计合成的化合物具有靶向性,抑制线粒体功能,阻断肿瘤能量代谢,活性比依布硒啉(ebselen)增加了100倍,对谷氨酰胺依赖的肿瘤抑制能力非常强,可用于泌尿系统肿瘤的治疗或手术后的预防。

权利要求 :

1.一种含硒的与谷氨酰胺酶变构位点相结合的抑制剂和/或谷氨酸脱氢酶抑制剂化合物,其特征在于:该化合物的结构式为或者:

或者:

或者:

2.一种药物组合物,包括如权利要求1中所述的化合物及其药物活性上可接受的盐的化合物的药物组合物。

3.一种包括权利要求1中所述的化合物的药物组合物在对谷氨酰胺代谢有依赖性的癌症治疗中的用途。

4.根据权利要求2所述的药物组合物在对谷氨酰胺代谢有依赖性的癌症治疗中的用途,其特征在于所述的癌症包括肺癌、膀胱癌、前列腺癌以及皮肤癌。

说明书 :

一种含硒的KGA/GAC和/或GDH抑制剂化合物

技术领域

[0001] 本发明属于生物医药领域,具体涉及到一种含硒的与谷氨酰胺酶变构位点相结合的抑制剂和/或谷氨酸脱氢酶抑制剂化合物,包括该新型硒类谷氨酰酶抑制剂对肿瘤(特别是泌尿系统癌)的高抑制活性用途。

背景技术

[0002] 肿瘤细胞基因突变,可造成葡萄糖有氧糖代谢途径的明显改变,即Warburg效应:葡萄糖代谢增加200倍,但产物乳酸被排出体外,不能进入线粒体三羧酸循环,则谷氨酰胺成为肿瘤细胞线粒体产生能量所依赖的原料,而谷氨酰胺酶是谷氨酰胺进入线粒体三羧酸循环必不可少的酶。谷氨酰胺缺乏或谷氨酰胺酶的抑制均能抑制肿瘤细胞的生长。硒对抑制肿瘤的发展有积极的作用,并通过多种机制产生抗癌作用。依布硒啉(ebselen)是谷光甘肽过氧化物酶(GPx)最好的抑制剂,曾经报道它也是谷氨酰胺酶抑制剂(IC50 9nM),但抑制细胞活性很弱(20μM)。

发明内容

[0003] 在怀疑依布硒啉(ebselen)并非通过特异性的结合来抑制谷氨酰胺酶的基础上,而且我们通过分子互作研究表明,依布硒啉对谷氨酰胺酶并无很好的结合力,利用分子互作仪的检测,10μM依布硒啉(ebselen)并不能直接与谷氨酰胺酶结合。因此根据谷氨酰胺酶的变构位点的晶体结构,我们设计合成了一系列的新的对称和不对称的ebselen衍生物,含6个原子或含硫醚的长链和各类取代苯环,可有效结合谷氨酰胺酶的变构位点。实验结果表明这些化合物可直接结合谷氨酰胺酶,并对肿瘤细胞(T24)的活性比依布硒啉(ebselen)增加了100倍。并且谷氨酰胺酶的变构位点的抑制剂具有很好的选择性,对肿瘤细胞的活性增加(<100nM),对正常细胞没有损伤(>10uM)。在免疫缺陷小鼠动物模型上也有显著活性,并且没有毒性。对于各类谷氨酰胺依赖的癌细胞(80-90%),特别是泌尿系统肿瘤有很好的抑制活性。GAC四聚体和BPTES结合图见附图1.
[0004] 同时根据谷氨酰胺酶和BPTES化合物的晶体结构,我们对依布硒啉(ebselen)分子的苯环进行了修饰,增加或减少化合物的氧化还原活性、优化化合物的药学性质、谷氨酰胺酶变构位点的结合力、及化合物的抗肿瘤活性。谷氨酰酶代谢谷氨酰胺(Gln)为肿瘤细胞快速合成蛋白质/脂类/核酸提供重要原料,并维持氧化还原状态,通过线粒体的三羧酸循环为细胞提供能量ATP,使许多肿瘤细胞的生长依赖于谷氨酰胺;因此谷氨酰胺酶抑制剂预测可以抑制肿瘤生长,依布硒啉(ebselen)是谷光甘肽过氧化物酶(GPx)最好的抑制剂,曾有报道依布硒啉(ebselen)对其它多种酶也有抑制作用,因此怀疑依布硒啉(ebselen)是通过硒氧化还原反应对多种酶进行抑制,故缺少专一性,细胞活性小。
[0005] 本发明发现了具有靶向性的高效低毒治疗癌症新药化合物,许多肿瘤细胞的生长依赖于谷氨酰胺在线粒体中的代谢,因此谷氨酰胺酶抑制剂预测可以抑制肿瘤生长,对正常细胞毒性会比较小;同时根据谷氨酰胺酶和BPTES化合物的晶体结构,我们对依布硒啉(ebselen)分子进行了修饰,增加6个碳的长链(或含硫醚长链)以便与谷氨酰胺酶变构位点结合、同时对苯环增加吸电子基团或给电子基团以增加或减少化合物的氧化还原活性、优化化合物的药学性质、谷氨酰胺酶结合力、及化合物的抗肿瘤活性。设计合成的化合物具有靶向性,抑制线粒体功能,阻断肿瘤能量代谢,活性比依布硒啉(ebselen)增加了100倍,对谷氨酰胺依赖的肿瘤抑制能力非常强,可用于泌尿系统肿瘤的治疗或手术后的预防。
[0006] 该发明具体包括如下内容:
[0007] 一种含硒的与谷氨酰胺酶变构位点相结合的抑制剂和/或谷氨酸脱氢酶抑制剂化合物,其特征在于:该化合物的结构式为
[0008]
[0009] 或者:
[0010]
[0011] 或者:
[0012]
[0013] 或者:
[0014]
[0015] 其中R1、R2、R3、R4、R5、R6、R7、R8、R9、R10分别代表一个独立的取代基包含1~20个选自C、H、N、O、S、P、Si和卤素原子的原子。
[0016] 优选地,所述的含硒的与谷氨酰胺酶变构位点相结合的抑制剂和/或谷氨酸脱氢酶抑制剂化合物中所述的R1、R2、R3、R4不同时为H原子,所述的R5、R6、R7、R8不同时为H原子。
[0017] 优选地,所述的含硒的与谷氨酰胺酶变构位点相结合的抑制剂和/或谷氨酸脱氢酶抑制剂化合物中所述的R1、R2、R3、R4、R5、R6、R7、R8为分别代表的独立的取代基包括芳香类杂环,取代烷基,酰胺,醚,脂类,卤素,硅烷类,硫醚,胺类,磷酸基团,亚砜类,磺酰基。
[0018] 优选地,所述的含硒的与谷氨酰胺酶变构位点相结合的抑制剂和/或谷氨酸脱氢酶抑制剂化合物,其特征在于:所述的R9为H原子,所述的R10为取代基包含1~20个选自C、H、N、O、S、P、Si和卤素原子的原子。
[0019] 优选地,所述的含硒的与谷氨酰胺酶变构位点相结合的抑制剂和/或谷氨酸脱氢酶抑制剂化合物,其特征在于:所述的化合物结构式为:所述的R9为H原子,所述的R10包括芳香类杂环,取代烷基,酰胺,醚,脂类,卤素,硅烷类,硫醚,胺类,磷酸基团,亚砜类,磺酰基及其相关衍生物。
[0020] 优选地,所述的含硒的与谷氨酰胺酶变构位点相结合的抑制剂和/或谷氨酸脱氢酶抑制剂化合物包括:
[0021]
[0022]
[0023]
[0024]
[0025]
[0026]
[0027]
[0028] 所述的R取代基包括芳香类杂环,取代烷基,酰胺,醚,脂类,卤素,硅烷类,硫醚,胺类,磷酸基团,亚砜类,磺酰基。
[0029] 本发明还包括一种药物组合物,包括上述的任一化合物及其药物活性上可接受的盐的化合物的药物组合物。
[0030] 本发明包括上述任一所述的化合物的药物组合物在对谷氨酰胺代谢有依赖性的癌症治疗中的用途,所述的癌症包括肺癌、膀胱癌、前列腺癌以及皮肤癌。
[0031] 本发明提供了一类具有靶向性的高效低毒治疗癌症新药药物,根据谷氨酰胺酶和BPTES化合物的晶体结构,对依布硒啉(ebselen)分子进行了修饰,增加6个碳的长链以便与谷氨酰胺酶变构位点结合、同时对苯环增加吸电子基团或给电子基团以增加或减少化合物的氧化还原活性、优化化合物的药学性质、谷氨酰胺酶结合力、及化合物的抗肿瘤活性。设计合成的化合物具有靶向性,抑制线粒体功能,阻断肿瘤能量代谢,活性比依布硒啉(ebselen)增加了100倍,对谷氨酰胺依赖的肿瘤抑制能力非常强,可用于泌尿系统肿瘤以及肺癌、皮肤癌的治疗或手术后的预防。
[0032] 说明书附图
[0033] 图1、GAC四聚体和BPTES结合图;
[0034] 图2、己烷-(3,3'-二甲基)硒啉(200nM,200nM,500nM)与固定在芯片上的KGA的结合效果示意图;
[0035] 图3、依布硒啉(500nM,1000nM)与固定在芯片上的KGA结合效果示意图;
[0036] 图4、化合物中间碳链长对细胞性的影响;
[0037] 图5、动物皮下瘤模型:化合物对A549肿瘤细胞抑制效果图;
[0038] 图6、动物皮下瘤模型:化合物对T24肿瘤细胞抑制效果图。
[0039] 附图标号说明:1、底物结合的活性位点;2、BPTES结合的变构位点。

具体实施方式

[0040] 下面结合实施例对本发明做进一步的详细说明,以下实施例是对本发明的解释而本发明并不局限于以下实施例。
[0041] 实施例
[0042] 一、对称硒啉的合成
[0043] 在50mL的烧瓶中加入1,6-己二胺或者其他相应的二胺化合物,再加入二氯甲烷和TEA,搅拌冰浴条件下加入溶于二氯甲烷的2-氯羰基3-甲基苯基亚硒酸盐2-(chlorocarbonyl)3-methylphenyl hypochloroselenoite,或其它苯环取代的2-氯羰基苯基亚硒酸盐。滴加完毕后撤去冰浴搅拌过夜。
[0044] 后处理:抽滤得到白色固体,加水和甲醇搅拌1小时。抽滤,50℃烘箱烘干。
[0045]
[0046] MS(ESI):529,100%:M+Na;LC:XDB-C184.6mm×5μm,甲醇:水=60:40,V=1mL/min,λ=254nm;1H NMR(500MHz,DMSO)δ7.80(dd,J=7.7,0.8Hz,1H),7.63–7.57(m,1H),7.45–7.39(m,1H),3.71(t,J=7.1Hz,2H),2.5(s,3H),1.70–1.57(m,2H),1.35(t,J=
6.8Hz,2H).
[0047] 己烷-(2,2’-二氟代)硒啉
[0048]
[0049] MS(ESI):537,100%:M+Na;LC:XDB-C184.6mm×5μm,甲醇:水=60:40,V=1mL/min,λ=254nm;1H NMR(500MHz,DMSO)δ7.80(dd,J=7.7,0.8Hz,1H),7.63–7.57(m,1H),7.45–7.39(m,1H),3.71(t,J=7.1Hz,2H),1.70–1.57(m,2H),1.35(t,J=6.8Hz,2H).[0050] 二、不对称硒啉的合成
[0051] 在50mL的烧瓶中加入BOC保护的1,6-己二胺或者其他取代保护相应的二胺化合物,再加入二氯甲烷和TEA,搅拌冰浴条件下加入溶于二氯甲烷的2-氯羰基苯基亚硒酸盐或其它苯环取代的2-氯羰基苯基亚硒酸盐。滴加完毕后撤去冰浴搅拌过夜。抽滤得到白色固体,纯化。
[0052] 己烷-(2’-氟代)硒啉
[0053]
[0054] MS(ESI):519.3,100%:M+Na;LC:XDB-C184.6mm×5μm,甲醇:水=60:40,V=1mL/min,λ=254nm;m.p.205.4~206.9℃;1H NMR(500MHz,DMSO)δ8.04(d,J=8.0Hz,1H),7.80(dd,J=7.7,0.8Hz,2H),7.63–7.57(m,2H),7.45–7.39(m,2H),3.71(t,J=7.1Hz,4H),1.70–1.57(m,4H),1.35(t,J=6.8Hz,4H).
[0055] 苯基乙酰氨基,[1,3,4]-噻二唑-戊基硒啉
[0056] N-{5-[5-(3-Oxo-3H-benzo[d]isoselenazol-2-yl)-pentyl]-[1,3,4]thiadiazol-2-yl}-2-phenyl-acetamide
[0057]
[0058] MS(ESI):487.3,100%:M+H;1H NMR(400MHz,CDCl3)δ7.99(d,J=7.7Hz,1H),7.60–7.50(m,2H),7.40(dd,J=13.7,7.4Hz,3H),7.29–7.23(m,4H),4.02(s,2H),3.82(t,J=
6.9Hz,2H),3.01(t,J=7.3Hz,2H),1.89–1.81(m,2H),1.78–1.70(m,2H),1.50(dd,J=
14.8,7.6Hz,2H).
[0059] 苯基乙酰氨基,[1,3,4]-噻二唑-戊基-[3’-甲基]-硒啉
[0060]
[0061] MS(ESI):500.2,100%:M+H;1H NMR(400MHz,CDCl3)δ7.60–7.50(m,2H),7.40(dd,J=13.7,7.4Hz,3H),7.29–7.23(m,4H),4.02(s,2H),3.82(t,J=6.9Hz,2H),3.01(t,J=7.3Hz,2H),2.48(s,3H),1.89–1.81(m,2H),1.78–1.70(m,2H),1.50(dd,J=14.8,7.6Hz,
2H).
[0062] 苯基乙酰氨基,[1,3,4]-噻二唑-戊基-[2’-氟代]-硒啉
[0063]
[0064] MS(ESI):504,100%:M+H;1H NMR(400MHz,CDCl3)δ7.60–7.50(m,2H),7.40(dd,J=13.7,7.4Hz,3H),7.29–7.23(m,4H),4.02(s,2H),3.82(t,J=6.9Hz,2H),3.01(t,J=
7.3Hz,2H),1.89–1.81(m,2H),1.78–1.70(m,2H),1.50(dd,J=14.8,7.6Hz,2H).
[0065] 二硒啉丙基硫醚
[0066]
[0067] MS(ESI):533.3,100%:M+Na;LC:XDB-C184.6mm×5μm,甲醇:水=60:40,V=1mL/min,λ=254nm;m.p.205.4~206.9℃;1H NMR(500MHz,DMSO)δ8.04(d,J=8.0Hz,1H),7.80(dd,J=7.7,0.8Hz,1H),7.63–7.57(m,1H),7.45–7.39(m,1H),3.71(t,J=7.1Hz,2H),2.77(t,J=6.8Hz,2H),1.70–1.57(m,2H).
[0068] (3)分子互作仪检测化合物与谷氨酰胺酶的结合:KGA酶固定在ForteBio的芯片上,注射化合物溶液(0-1000nM),观察化合物与酶的结合,己烷-(3,3'-二甲基)硒啉有结合,但依布硒啉没有结合(具体效果图见图2、图3)。
[0069] (4)抑制肿瘤细胞生长:各类肿瘤细胞(1000个每孔)加化合物生长3天后,加细胞生长检测试剂(WST8),检测细胞活性。
[0070] 中间链长对细胞性的影响以6个碳为最佳(IC50 100-200nM)
[0071] 新化合物活性与母核比较
[0072]
[0073]
[0074] 部分新化合物对膀胱癌细胞株的抑制能力
[0075]
[0076]
[0077] (4)动物皮下瘤模型:A549肿瘤细胞(1,000,000)接种于裸鼠中,第24-27天肿瘤大小为10mmx10mm,然后每只每天肿瘤附近皮下注射200ul化合物(己烷-(3,3'-二甲基)硒啉)PBS溶液,药量1.0mg/kg。7天后切除肿瘤(n=3)。动物皮下瘤模型:T24肿瘤细胞(1,000,000)接种于裸鼠中,第24-27天肿瘤大小为10mmx10mm,然后每只每天肿瘤附近皮下注射
200ul化合物(己烷-(3,3'-二甲基)硒啉)PBS溶液,药量1.0mg/kg。7天后切除肿瘤(n=6)。
[0078] 此外,需要说明的是,本说明书中所描述的具体实施例,其相关化合物的名称等可以不同,凡依本发明专利构思所述的原理所做的等效或简单变化,均包括于本发明专利的保护范围内。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。