降低基平面位错对碳化硅外延层影响的方法转让专利

申请号 : CN201611159148.5

文献号 : CN106711031B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李赟

申请人 : 中国电子科技集团公司第五十五研究所

摘要 :

本发明公开了一种降低基平面位错对碳化硅外延层影响的方法,包括在碳化硅衬底上,利用界面高温退火处理,促进BPD‑TED转化点下移,远离高掺缓冲层表面,并通过加入渐变缓冲层减少高掺缓冲层和外延层的浓度差异,并对高温氢气刻蚀的高掺缓冲层界面进行修复,利用低速外延模式下,横向外延生长增强的特性对高掺杂缓冲层进行表面腐蚀坑修复,提高后续外延层的表面质量。该方法可以将基平面位错转化点降低至高掺缓冲层界面之下,有效降低外延层中基平面位错在大电流作用下衍生层错缺陷的概率,工艺兼容于常规的外延工艺。

权利要求 :

1.一种降低基平面位错对碳化硅外延层影响的方法,其特征在于:包括以下步骤:(1)将碳化硅衬底置于碳化硅外延系统反应室内的石墨基座上;

(2)采用氩气对反应室气体进行多次置换,然后向反应室通入氢气,逐渐加大氢气流量至60~120L/min,设置反应室的压力为80~200mbar,并将反应室逐渐升温至1550~1700℃,到达设定温度后,保持所有参数不变,对碳化硅衬底进行5~15分钟原位氢气刻蚀处理;

(3)原位氢气刻蚀处理完成后,向反应室通入小流量的硅源和碳源,控制进气端C/Si比为0.85;控制硅源和氢气的流量比小于0.03%,并通入掺杂源,生长出厚度为0.5-5μm,掺杂-3浓度~5E18cm 的高掺缓冲层;

(4)关闭生长源和掺杂源,在10分钟内采用线性变化的方式将生长温度提高至1700~

1900℃,反应室压力提高至500~800mbar,氢气流量降低至30~60L/min,对高掺缓冲层进行高温退火处理,处理时间为10-60分钟;

(5)在10分钟内采用线性变化的方式将生长温度降低至1550~1700℃,反应室压力降低至80~200mbar,氢气流量提高至60~120L/min;

(6)向反应室通入小流量的硅源和碳源,硅源和碳源的流量与步骤(3)相同,并通入掺杂源,掺杂源的起始流量与步骤(3)相同,并逐渐降低至五分之一,生长出厚度为0.5-2μm,掺杂浓度由~5E18cm-3渐变至~1E18cm-3的渐变缓冲层;

(7)采用线性缓变的方式将生长源和掺杂源的流量改变至生长外延结构所需的设定值,根据常规工艺程序生长外延结构;

(8)在完成外延结构生长后,关闭生长源和掺杂源,在氢气氛围中将反应室温度降至室温,然后将氢气排出,并通入氩气对反应室气体进行多次置换,并利用氩气将反应室压力提高至大气压,然后开腔取片。

2.根据权利要求1所述的降低基平面位错对碳化硅外延层影响的方法,其特征在于:掺杂源为n型掺杂源氮气或p型掺杂源三甲基铝。

3.根据权利要求1所述的降低基平面位错对碳化硅外延层影响的方法,其特征在于:硅源为硅烷、二氯氢硅、三氯氢硅或四氯氢硅,碳源为甲烷、乙烯、乙炔或丙烷。

4.根据权利要求1所述的降低基平面位错对碳化硅外延层影响的方法,其特征在于:步骤(7)中所述外延结构为JBS结构、PIN结构、JFET结构、MOSFET结构或SIT结构。

5.根据权利要求1所述的降低基平面位错对碳化硅外延层影响的方法,其特征在于:外延层与高掺缓冲层、渐变缓冲层的掺杂类型相同。

说明书 :

降低基平面位错对碳化硅外延层影响的方法

技术领域

[0001] 本发明涉及一种高表面质量碳化硅外延层的生长方法,尤其涉及一种降低基平面位错对碳化硅外延层影响的方法。

背景技术

[0002] 现在商用碳化硅衬底晶体的完美度大幅度提高,但是碳化硅衬底中还是存在大量的基平面位错(BPD),BPD可能会延伸至外延层,并且在正向导通电流的作用下会演变成堆垒层错(SF),造成高频二极管器件正向导通电压漂移。由于刃位错(TED)对器件性能的影响要小得多,所以提高碳化硅外延生长过程中BPD转化为TED的比例,阻止衬底中的BPD向外延层中延伸对提高器件的性能是十分重要的。目前通过采用4°偏轴衬底代替8°偏轴衬底的方法以及KOH熔融腐蚀预处理衬底的方法可以大大提高BPD向TED转化的效率。
[0003] 但是即使是转化后的TED缺陷,在大电流注入的情况下,依然会衍生出新的SF,进入外延层,影响器件性能。正向导通电流作用下,堆垒层错的形成主要由BPD缺陷的不全位错移动产生,激活位错移动的能量来源于电子-空穴复合,电子-空穴复合速率和掺杂浓度成正比,因此在高掺杂浓度的缓冲层内BPD缺陷很难形成SF。转化位置越深,BPD衍生SF所需要的注入电流便越大,因此为了降低BPD缺陷对器件性能的影响,生长很厚(10μm以上)的高掺缓冲层,使BPD转化的位置更深,远离缓冲层和外延层界面。然而这种方法并不可取,会大大增长外延工艺时间,导致开销增大。而且如果缓冲层浓度和外延层浓度差别大,也会在外延层中引入应力导致晶体质量下降。
[0004] 转换后的TED在高温(1700℃以上)作用下可以在位错线性拉力以及表面象力的作用下滑移,在滑移过程中,TED特征长度降低,能量降低,是一个自发过程,并且可以多次发生,最终可以促进BPD-TED缺陷转化点下移,如图1所示,由TED1转变为TED2。但是在高温退火过程中,由于温度高,氢气对碳化硅刻蚀速率快,容易破坏缓冲层表面,导致后续生长的外延材料表面退化,所以该原理一直没有应用于外延工艺。

发明内容

[0005] 发明目的:针对以上问题,本发明提出一种降低基平面位错对碳化硅外延层影响的方法。
[0006] 技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种降低基平面位错对碳化硅外延层影响的方法,包括以下步骤:
[0007] (1)将碳化硅衬底置于碳化硅外延系统反应室内的石墨基座上;
[0008] (2)采用氩气对反应室气体进行多次置换,然后向反应室通入氢气,逐渐加大氢气流量至60~120L/min,设置反应室的压力为80~200mbar,并将反应室逐渐升温至1550~1700℃,到达设定温度后,保持所有参数不变,对碳化硅衬底进行5~15分钟原位氢气刻蚀处理;
[0009] (3)原位氢气刻蚀处理完成后,向反应室通入小流量的硅源和碳源,控制硅源和氢气的流量比小于0.03%,并通入掺杂源,生出长厚度为0.5-5μm,掺杂浓度~5E18cm-3的高掺缓冲层;
[0010] (4)关闭生长源和掺杂源,在10分钟内采用线性变化的方式将生长温度提高至1700~1900℃,反应室压力提高至500~800mbar,氢气流量降低至30~60L/min,对高掺缓冲层进行高温退火处理,处理时间为10-60分钟;
[0011] (5)在10分钟内采用线性变化的方式将生长温度降低至1550~1700℃,反应室压力降低至80~200mbar,氢气流量提高至60~120L/min;
[0012] (6)向反应室通入小流量硅源和碳源,硅源和碳源的流量与步骤(3)相同,并通入掺杂源,掺杂源的起始流量与步骤(3)相同,并逐渐降低至五分之一,生长出厚度为0.5-2μm,掺杂浓度由~5E18cm-3渐变至~1E18cm-3的渐变缓冲层;
[0013] (7)采用线性缓变的方式将生长源和掺杂源的流量改变至生长外延结构所需的设定值,根据常规工艺程序生长外延结构;
[0014] (8)在完成外延结构生长后,关闭生长源和掺杂源,在氢气氛围中将反应室温度降至室温,然后将氢气排出,并通入氩气对反应室气体进行多次置换,并利用氩气将反应室压力提高至大气压,然后开腔取片。
[0015] 有益效果:本发明与现有技术相比,对高掺杂缓冲层进行高温退火处理,促进BPD-TED转化点下移,远离有源层,降低了BPD缺陷向外延层中延伸层错缺陷的可能性;同时通过高温退火工艺的优化,降低高温氢气对高掺杂缓冲层的破坏,并设计渐变缓冲层进一步提高外延材料的表面质量;该方法兼容于常规的外延工艺,适用于批量生产。

附图说明

[0016] 图1是外延材料中BPD-TED转化位置变化示意图;
[0017] 图2a是常规外延材料的碳化硅PiN二极管的正向特性;
[0018] 图2b是改进后的外延材料的碳化硅PiN二极管的正向特性。

具体实施方式

[0019] 下面结合附图和实施例对本发明的技术方案作进一步的说明。
[0020] 本发明所述的降低基平面位错对碳化硅外延层影响的方法,通过降低高温退火过程中的氢气流量以及提高反应室压力抑制氢气对衬底的刻蚀作用,完成对高掺杂缓冲层的高温退火处理,然后继续采用低外延速率生长的渐变缓冲层,可以降低外延层和高掺缓冲层的掺杂浓度差异,可以提高后续外延层的表面质量,该外延方法可以有效降低外延层中基平面位错在大电流作用下衍生层错缺陷的概率,工艺兼容于常规的外延工艺,具体包括以下步骤:
[0021] (1)将碳化硅衬底置于SiC外延系统反应室内,放置于石墨基座上,石墨基座上具有碳化钽涂层,碳化硅衬底可以选取偏向<11-20>方向4°或者8°的硅面碳化硅衬底;
[0022] (2)采用氩气对反应室气体进行多次置换,然后向反应室通入氢气,逐渐加大氢气流量至60~120L/min,设置反应室的压力为80~200mbar,并将反应室逐渐升温至1550~1700℃,到达设定温度后,保持所有参数不变,对碳化硅衬底进行5~15分钟原位氢气刻蚀处理;
[0023] (3)向反应室通入小流量的硅源和碳源,其中,硅源可以是硅烷、二氯氢硅、三氯氢硅、四氯氢硅等,碳源可以是甲烷、乙烯、乙炔、丙烷等,控制硅源和氢气的流量比小于0.03%,调节碳源流量,控制进气端C/Si比为0.85,并通入n型掺杂源高纯氮气(N2),或者通入p型掺杂源三甲基铝(TMA),可以通入1000sccm高纯氮气(N2),设定生长时间24分钟,生出长厚度为0.5-5μm,掺杂浓度~5E18cm-3的高掺缓冲层;
[0024] (4)关闭生长源和掺杂源,在10分钟内通过线性变化的方式将生长温度提高至热退火温度1700~1900℃,反应室压力提高至500~800mbar,氢气流量降低至30~60L/min,对高掺缓冲层进行高温退火处理,处理时间为10-60分钟,利用界面高温退火处理,促进BPD-TED转化点下移,远离高掺缓冲层表面;
[0025] (5)然后在10分钟内通过线性变化的方式将生长温度减低至生长温度1550~1700℃,反应室压力降低至80~200mbar,氢气流量提高至60~120L/min;
[0026] (6)向反应室通入小流量硅源和碳源,硅源和碳源流量与步骤(3)相同,并通入n型掺杂源高纯氮气(N2),通入或者p型掺杂源三甲基铝(TMA),掺杂源的起始流量与步骤(3)相同,并逐渐降低至该数值的五分之一左右,例如高纯氮气流量由1000sccm缓变为200sccm,设定生长时间12分钟,生长出厚度为0.5-2μm,掺杂浓度由~5E18cm-3渐变至~1E18cm-3的渐变缓冲层,通过加入渐变缓冲层减少高掺缓冲层和外延层的浓度差异,并对高温氢气刻蚀的高掺缓冲层界面进行修复,在保证外延晶体质量的前提下,可以有效降低外延层中基平面位错在大电流作用下衍生层错缺陷的概率;
[0027] (7)采用线性缓变(ramping)的方式改变生长源及掺杂源的流量,控制SiH4/H2流量比为0.2%,进气端C/Si比为1.05,并通入氯化氢气体,设定进气端Cl/Si比为2.5,并通入5sccm的氮气,外延时间设定为180分钟,均设定为生长外延结构所需的设定值,根据常规工艺程序生长外延结构,例如JBS结构、PiN结构、JFET结构、MOSFET结构和SIT结构等;其中,外延层的掺杂类型与高掺缓冲层以及渐变缓冲的掺杂类型相同;
[0028] (8)在完成外延结构生长之后,关闭生长源和掺杂源,在氢气氛围中将反应室温度降至室温,反应室温度达到室温后,将氢气排外后,并通入氩气对反应室内的气体进行多次置换,并利用氩气将反应室压力充气至大气压,然后开腔取片。
[0029] 本发明中氢气流量的设置适用于大型碳化硅外延设备,针对小型外延炉时,可以根据实际情况设定氢气流量。
[0030] 该外延方法可以将基平面位错转化点降低至高掺缓冲层界面之下,有效降低外延层中基平面位错在大电流作用下衍生层错缺陷的概率,工艺兼容于常规的外延工艺。如图2所示是老化试验数据,其中,图2a是基于常规外延材料的碳化硅PiN二极管的正向特性,图2b是基于工艺改进外延材料的碳化硅PiN二极管的正向特性,通过对比可以发现,外延材料改进前,碳化硅PiN二极管正向特性测试中表现出压降持续增大现象,外延材料改进后,碳化硅PiN二极管具备稳定的正向特性,说明通过外延工艺优化,可以大大降低基平面位错对碳化硅外延层的影响。