一种与杨树抗逆基因表达调控相关的内参基因及其应用转让专利

申请号 : CN201710036922.1

文献号 : CN106754965B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 严涵薇项艳陈竹刘欢龙

申请人 : 安徽农业大学

摘要 :

本发明公开了一种与杨树抗逆基因表达调控相关的内参基因及其应用,所述内参基因具有如SEQ ID NO.1所示的核苷酸序列,该内参基因相比较传统的杨树看家基因,在非生物胁迫下具有更高的稳定性,是一种更为理想的杨树抗逆相关基因表达调控相关的内参基因,该基因对杨树抗逆相关基因的表达水平的研究,以及系统地进行杨树的抗逆性研究具有重要意义,对进一步选育抗逆优良植株具有重要的指导作用。

权利要求 :

1.一种与杨树抗逆基因表达调控相关的内参基因,其特征在于,所述内参基因的核苷酸序列如SEQ ID NO.1所示。

2.一种如权利要求1所述的内参基因在作为杨树非生物胁迫下抗逆相关基因实时荧光定量PCR检测中的应用。

3.根据权利要求2所述的一种内参基因在作为杨树非生物胁迫下抗逆相关基因实时荧光定量PCR检测中的应用,其特征在于,所述非生物胁迫包括盐胁迫和干旱胁迫。

4.一种定量分析如权利要求1所述的内参基因的方法,其特征在于,包括以下步骤:(1)提取杨树组织总RNA,并反转录成cDNA;

(2)以所述内参基因的特异性区域进行引物设计,获得实时荧光定量PCR引物:SEQ ID NO.3:上游引物:AAACATTGGACGGGGTGCTCSEQ ID NO.4:下游引物:CCCACATGAGGCTGGAGGAC(3)以步骤(1)的cDNA为模板,利用步骤(2)的引物进行实时荧光定量PCR分析,其中,实时荧光定量PCR扩增反应体系为:1μL模板cDNA,1μL上游引物,1μL下游引物,10μL SYBRR Premix Ex TaqTM II,7μL无菌水;实时荧光定量PCR扩增反应程序为:95℃预变性30秒;95℃变性5秒,60℃退火18秒,72℃延伸15秒,39个循环;

(4)反应结束后,采集溶解曲线的荧光信号,利用Bio-Rad iQ5分析软件,根据溶解曲线导出Ct值,作为后续数据分析的基础。

说明书 :

一种与杨树抗逆基因表达调控相关的内参基因及其应用

技术领域

[0001] 本发明涉及的是是基因工程的技术领域,尤其涉及的是一种与杨树抗逆基因表达调控相关的内参基因及其应用。

背景技术

[0002] 杨树(Populus trichocarpa)是重要的绿化能源树种,大力发展杨树产业,对于森林资源的丰富,自然生态环境的改善大有裨益。杨树在我国主要分布于华北、西北等干旱和半干旱地区,干旱不仅会影响叶片的光合速率、枝条生长速率和干物质积累,也会使杨树干重减轻、材积减少,从而制约着杨树的速生丰产。干旱往往与高盐度引起的渗透胁迫有关,影响杨树的生长和产量。杨树作为重要的木本模式作物,在抗旱、抗高盐等抗逆境胁迫等分子遗传改良方面发展显著。随着基因工程技术的不断发展,抗逆基因的研究也越来越受到大家的青睐。因此,研究抗逆相关基因的表达水平不仅可以系统的研究杨树的抗病过程,还可以更好的指导杨树抗逆优良植株的选育。
[0003] 实时荧光定量PCR(Quantitative real-time PCR)是最常用、最快速、最简单的基因表达水平定量分析的方法。作为强有力的检测基因表达谱的方法,它可以分析基因在不同生长时期和不同组织器官中的表达差异,以及不同环境条件下的样本间基因的表达差异等,它的优点主要表现在具有更高的灵敏度和特异性,并且与以前的分子技术相比有更广泛的动态范围。也正是这些优点使得它对内参基因的选取十分严苛。由于在PCR过程中的各种差异,结果的校正和标准化仍然是最具挑战性的问题。而内参基因的使用被认为是最合适的标准方法,因为其可以灵敏地修正RNA起始量和反转录效率等的差异,进而获取靶基因特异表达的真差。
[0004] 理想的内参基因应当在任何情况下都能够稳定的表达。在实时荧光定量PCR表达分析中,看家基因是最为常用的内参基因。由于看家基因是细胞的重要组分,且表达稳定,因此在使用时无需验证其适用性,然而有研究表明,看家基因在不同的实验条件下表达也会有很大的差异(Suzuki et al.,2000;Thellin et al.,1999;Vandesompele et al.,2002)。一些常用的内参基因在一定条件下由于不稳定性的表达而不再适合作为内参基因,并逐渐被新的内参基因所取代。随着基因芯片技术和转录组测序技术的发展,利用基因表达数据挖掘新的内参基因已经成为基因研究者参考选择的一种有效方法。然而,目前这种方法仍未在木本植物中广泛应用,使得并不适合所有实验条件的传统内参基因仍被不少研究者沿用,这成为基因表达分析研究的一个弊端。
[0005] 目前,甘油醛磷酸脱氢酶(glyceraldehyde-3-phosphate,GAPDH)、肌动蛋白(actin)、泛素(ubiquitin,UBQ)、泛素结合酶(ubiquitin conjugating enzyme,UBC)、18S核糖体RNA(18S rRNA)、25S核糖体RNA(25SrRNA)、转录延伸因子(elongation factor 1 alpha,EF1α)、微管蛋白(tubulin beta,TUB)和翻译延长因子(translation elongation factor,TEF)等看家基因是较为常用的内参基因(Kim et al.,2003)。然而,由于植物发育阶段和不同的实验条件,大多数看家基因的转录水平也不同。到目前为止仍未发现一个适合作为所有条件下基因表达分析的内参基因。例如,研究人员发现,在红三叶(Trifolium pratense)叶片中,UBC2和UBQ10表达最稳定;在茎中,UBC2和YLS8表达较为稳定;在根中,EIF-4a和UBC2表达稳定;而在各个组织中,GAPDH和SAND的稳定性均较低。此外,Actin、ubiquitin、18S rRNA、EF1α、TUB和TUA等传统看家基因已应用于杨树实时荧光定量PCR分析中,然而,在系统筛选方面,这些基因仍有很多不足(Pettengill et al.,2012)。因此,为了提高实时荧光定量PCR数据的准确性,筛选合适的内参基因就显得尤为重要。

发明内容

[0006] 本发明的目的在于克服现有技术的不足,提供了一种与杨树抗逆基因表达调控相关的内参基因及其应用,以提供一种更稳定、更理想的与杨树各种抗逆基因表达调控相关的新的内参基因。
[0007] 本发明是通过以下技术方案实现的:
[0008] 本发明提供了一种与杨树抗逆基因表达调控相关的内参基因,所述内参基因具有如SEQ ID NO.1所示的核苷酸序列,命名为PtRG1。利用InterproScan软件对PtRG1进行功能预测,发现PtRG1参与了mRNA翻译成蛋白质的过程。
[0009] 本发明还提供了一种上述内参基因在作为杨树非生物胁迫下抗逆相关基因实时荧光定量PCR检测中的应用。
[0010] 进一步地,所述非生物胁迫包括盐胁迫和干旱胁迫。
[0011] 本发明还提供了一种定量分析所述内参基因的方法,包括以下步骤:
[0012] (1)提取杨树组织总RNA,并反转录成cDNA;
[0013] (2)以所述内参基因的特异性区域进行引物设计,获得实时荧光定量PCR引物:
[0014] SEQ ID NO.3:上游引物:AAACATTGGACGGGGTGCTC
[0015] SEQ ID NO.4:下游引物:CCCACATGAGGCTGGAGGAC
[0016] (3)以步骤(1)的cDNA为模板,利用步骤(2)的引物进行实时荧光定量PCR分析,其中,实时荧光定量PCR扩增反应体系为:1μL模板cDNA,1μL上游引物,1μL下游引物,10μL SYBRR Premix Ex TaqTM II,7μL无菌水;实时荧光定量PCR扩增反应程序为:95℃预变性30秒;95℃变性5秒,60℃退火18秒,72℃延伸15秒,39个循环;
[0017] (4)反应结束后,采集溶解曲线的荧光信号,利用Bio-Rad iQ5分析软件,根据溶解曲线导出Ct值,作为后续数据分析的基础。
[0018] 本发明相比现有技术具有以下优点:本发明提供了一种与杨树抗逆基因表达调控相关的内参基因及其应用,该内参基因相比较传统的杨树看家基因,在非生物胁迫下具有更高的稳定性,是一种更为理想的杨树抗逆相关基因表达调控相关的内参基因,对杨树抗逆相关基因的表达水平的研究,以及系统地进行杨树的抗逆性研究具有重要意义,对进一步选育抗逆优良植株具有重要的指导作用。

附图说明

[0019] 图1为geNorm分析盐胁迫下内参基因的表达稳定性结果图;
[0020] 图2为geNorm分析干旱胁迫下内参基因的表达稳定性结果图。

具体实施方式

[0021] 实施例1
[0022] 1、材料
[0023] 本实施例所用方法如无特别说明均为本领域的技术人员所知晓的常规方法,所用的试剂等材料,如无特别说明,均为市售购买产品。
[0024] 2、方法
[0025] 2.1内参基因的筛选
[0026] 2.1.1收集与杨树抗逆基因表达相关的基因芯片,选择编号为GSE13990,GSE15242,GSE21171和GSE23637的基因芯片为特异性筛选芯片;GSE13990,GSE15242,GSE21171和GSE23637的基因芯片数据从https://www.ncbi.nlm.nih.gov/gds/?term=网站直接下载获得。
[0027] 2.1.2利用美国昂飞公司开发的归一化基因芯片数据处理软件Expression Consle,对4个基因芯片中包含的探针进行归一化处理,步骤包括:
[0028] 步骤一:利用Expression Consle软件自带的MAS5算法计算获得基因芯片中每个探针的P-Value值,筛选P-Value值<0.05的探针;
[0029] 步骤二:利用Expression Consle软件自带的RMA算法计算筛选后的探针在盐胁迫和干旱胁迫条件下的信号表达值和CV值,将探针按照CV值从小到大的顺序进行排序,CV值越小代表探针的数据离散程度越小;
[0030] 2.1.3选择排序靠前的探针所对应的杨树基因为候选基因,利用InterproScan软件对候选基因进行功能预测,选择参与杨树生命基础功能的相关基因为所述内参基因,比如,选择参与能量代谢、氨基酸合成的相关基因,这些基因参与细胞基础代谢合成,其功能保守,推测其在生物体内表达稳定。
[0031] 2.1.4筛选获得内参基因PtRG1、PtRG2,其核苷酸序列依次如SEQ ID NO.1、SEQ ID NO.2所示。
[0032] 2.2杨树叶片总RNA的提取及反转录
[0033] 取3cm高的南林95杨树组培生根苗,对其分别进行盐胁迫和干旱胁迫处理后采集叶片,获得待测样品,Trizol法提取待测样品总RNA,利用TAKARA公司反转录试剂盒PrimeScriptTM RT Master Mix(R036A)将提取的RNA反转录成cDNA,作为模版cDNA备用。
[0034] 所述盐胁迫处理的方法为:用200mmol/L的NaCl进行喷洒处理,然后分别于0,1,4,8,12,24小时采集叶片,作为待测样品。
[0035] 所述干旱胁迫处理的方法为:用体积比为25%的聚乙二醇(PEG)进行喷洒处理,然后分别于0、1、4、8、12、24小时采集叶片,作为待测样品。
[0036] 同时设置对照组,对照组不做任何胁迫处理。
[0037] 2.3引物设计
[0038] 利用Primer5.0软件对PtRG1、PtRG2和另外3个杨树常用看家基因actin、PtUBQ、PtUKN1进行引物设计,获得的引物序列如下表1所示:
[0039] 表1:内参基因的引物序列表
[0040]
[0041] 2.4实时荧光定量PCR分析
[0042] 采用大连宝生物工程有限公司的SYBRR Premix Ex TaqTMII实时定量PCR试剂盒进行定量分析。使用Bio-Radi Cycler IQ实时定量PCR仪和96孔板。每个孔按照20μL体系加样:1μL模板cDNA,1μL上游引物(10μmol/L),1μL下游引物(10μmol/L),10μL SYBRR Premix Ex TaqTM II,7μL无菌水。每个样品重复4次。扩增反应程序为:95℃预变性30秒;95℃变性5秒,60℃退火18秒,72℃延伸15秒,39个循环,采集溶解曲线的荧光信号,实验数据采用相对定量法分析。
[0043] 利用Bio-Rad iQ5分析软件,根据溶解曲线导出南林95杨树组培苗叶片中经过不同处理的待测样品的Ct值,作为后续数据分析的基础。
[0044] 3、数据处理与分析
[0045] 3.1 geNorm分析
[0046] 将实时荧光定量PCR得到的Ct值转换为相对定量数据,步骤为:首先找到最低的Ct值minCt,然后用其他基因的Ct值减去minCt,得到△Ct,且△Ct≥0,然后使用Excel软件计算出每一个基因在不同实验条件下相对于最高表达量的基因的相对表达量E=2-△Ct,最后,将计算好的数据保存为Excel文件,存放到geNorm软件InputData文件夹里,利用geNorm软件计算出每一个基因的M值。结果如图1、2所示。
[0047] geNorm软件中的M值指基因的平均表达稳定指数,M值越小,基因的稳定性越高,反之则越低,可由此确定最稳定的基因。一般情况下,以M=1.5为上限,只有小于1.5的基因才被认为表达相对稳定。图1、2中可以看出,在盐胁迫下,5个基因的稳定性从低到高排序为PtRG1=PtRG2<1.5
[0048] 3.2 NormFinder分析
[0049] 将实时荧光定量PCR得到的Ct值转换为相对定量数据,步骤为:首先找到最低的Ct值minCt,然后用其他基因的Ct值减去minCt,得到△Ct,且△Ct≥0,然后使用Excel软件计算出每一个基因在不同实验条件下相对于最高表达量的基因的相对表达量E=2-△Ct,最后,将计算好的数据保存为Excel文件,导入到NormFinder程序中,计算得到候选内参基因的M值。结果如下表2、3所示:
[0050] 表2:NormFinder软件分析盐胁迫下内参基因的表达稳定性
[0051]
[0052] 表3:NormFinder软件分析干旱胁迫下内参基因的表达稳定性
[0053]
[0054] NormFinder分析中的M值指基因的稳定表达值,M值越低,则该基因的表达越稳定。表2、3中可看出,无论在盐胁迫下还是干旱胁迫下,PtRG1的表达相比较杨树看家基因更为稳定。NormFinder分析也证实了在盐胁迫和干旱胁迫下,PtRG1稳定性优于常规看家基因。
[0055] 3.3 BestKeeper分析
[0056] BestKeeper程序为根据内参基因的Ct值经EXCEL软件计算获得标准差SD及相关数据,结果如下表4、5所示:
[0057] 表4:BestKeeper软件分析盐胁迫下内参基因的表达稳定性
[0058]
[0059] 表5:BestKeeper软件分析干旱胁迫下内参基因的表达稳定性
[0060]
[0061] BestKeeper程序分析中,SD值越小,基因的稳定性越好。因此,从表4、5中可看出,在盐胁迫和干旱胁迫下,PtRG1稳定性排名均为第一,优于其它3个看家基因。
[0062] 4、结论
[0063] 本发明利用实时荧光定量PCR方法,用geNorm、NormFinder和BestKeeper这3个软件对本发明的PtRG1内参基因和基因芯片筛选的另一新型内参基因PtRG2以及3个看家基因在盐和干旱胁迫条件下不同时间段的基因表达量进行统计学的比较分析,综合三款软件的分析结果表明,在盐胁迫和干旱胁迫下,PtRG1的表达相对都很稳定,更适合作为杨树在盐和干旱胁迫下实时荧光定量PCR的内参基因。
[0064] 以上为本发明一种详细的实施方式和具体的操作过程,是以本发明技术方案为前提下进行实施,但本发明的保护范围不限于上述的实施例。