不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略转让专利

申请号 : CN201710003698.6

文献号 : CN106787805B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王秀云王汝田王位权母兴军

申请人 : 东北电力大学

摘要 :

本发明公开了一种不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略,其特点是:对整流级和逆变级五相桥臂采用空间矢量调制策略求取各开关状态的占空比,当控制负载中性点电压为相应的零序电压时,任意负载下均可使输出负载电压对称,进而根据零序电压求得逆变级中线,即N相桥臂的占空比;将整流级和逆变级六相桥臂的占空比与载波相结合,计算出两级调制波;对整流级和逆变级采用同一个载波分别与两级调制波相比较所产生两级功率开关的驱动信号,对五相六桥臂双级矩阵变换器进行控制,使负载中性点的电压为相应的零序电压,从而使得输出负载电压为五相正弦对称电压。具有科学合理,适用性强,效果佳,算法简单等优点。

权利要求 :

1.一种不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略,其特征是,它包括:

1)整流级的三相桥臂的输入端与三相交流电源相连接,逆变级的前五相桥臂的输出端分别与五相负载相连接,逆变级的第六相桥臂的输出端与负载中性点N连接,因此将逆变级的第六相桥臂定义为逆变级N相桥臂;对逆变级的前五相桥臂、整流级采用空间矢量调制策略求取各开关状态的占空比,当控制负载中性点电压为相应的零序电压时,任意负载下均可使输出负载电压对称,进而根据零序电压求得逆变级N相桥臂的占空比;

2)将整流级和逆变级各桥臂的占空比与载波相结合,计算出两级调制波;

3)对整流级和逆变级采用同一个载波分别与两级调制波相比较所产生两级功率开关的驱动信号,对五相六桥臂双级矩阵变换器进行控制,使负载中性点电压为相应的零序电压,从而使得输出负载电压为五相正弦对称电压。

2.根据权利要求1所述的不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略,其特征是,所述零序电压为:其中,Uom为输出相电压幅值;θv为输出电压扇区角;M=0.4;L=0.8cos(π/5);umax为输出五相电压的最大值;η为同一方向上的中矢量与大矢量的相对比率,为了保证输出五相电压波形为正弦波,η应等于0.618。

3.根据权利要求2所述的不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略,其特征是,所述逆变级N相桥臂的占空比函数为:式中upn为直流侧电压;

逆变级N相桥臂和整流级的组合占空比为:

式中,dμ,dγ分别为整流级两个最大的极性为正的线电压占空比:dM=1-dN。

4.根据权利要求3所述的不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略,其特征是,所述五相六桥臂双级矩阵变换器载波PWM控制:载波是周期为Ts,幅值为-1和1的等腰三角波,其表达式为:

逆变级N相桥臂调制波为:

5.根据权利要求1所述的不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略,其特征是:(1)在五相六桥臂双级矩阵变换器的基础上,根据空间矢量调制算法,确定一个开关周期内,整流级各矢量占空比dμ、dγ和逆变级N相桥臂占空比dN,进而确定逆变级N相桥臂和整流级的组合占空比dN1、dN2、dN3、dN4;

(2)对逆变级N相桥臂进行载波脉冲宽度调制分析,得到调制信号uN1、uN2的大小,控制负载中性点电压为相应的零序电压urZ,使其在不平衡负载下获得对称的五相电压。

说明书 :

不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略

技术领域

[0001] 本发明属于电力电子功率变换器控制领域,是一种不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略,用于解决五相双级矩阵变换器带不平衡负载时输出负载电
压不平衡的问题。

背景技术

[0002] 随着电力电子变换器的快速发展,由多相(相数大于3)变换器供电的多相电机驱动系统,为实现大功率交流传动提供了新的途径,多相矩阵变换器也因此得到了广泛的研
究。与传统的三相驱动系统相比,多相电机驱动系统具有许多优点,其中的容错特性可以提高系统的可靠性,即当多相电机的某一相或是某几相发生故障(相当于不平衡负载)而无法
正常运行时,系统仍能以剩余的无故障相进行降额运行,且无需停机。另一方面,在实际应用中,矩阵变换器经常会遇到负载不平衡的情况。负载不平衡时将会导致负载电压不对称,不对称的负载电压不利于负载的正常运行,甚至会损坏负载。
[0003] 现阶段对于多相输出的矩阵变换器带不平衡负载的相关研究相对较少。已有研究者提出了五相六桥臂单级矩阵变换器的拓扑结构,并对逆变级使用三维电压空间矢量调制
方法,然而逆变级共有64个矢量,构成80个四面体,算法非常复杂。
[0004] 近年来,载波PWM的方法在矩阵变换器中得到了广泛的应用,受到了研究者们的关注,已通过对三相双级矩阵变换器和五相双级矩阵变换器进行载波脉冲宽度调制,验证了
载波PWM方法的有效性和可行性。

发明内容

[0005] 本发明的目的是,提出一种科学合理,适用性强,效果佳,算法简单的不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略。
[0006] 实现发明目的采用的技术方案是,一种不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略,其特征是,它包括:
[0007] 1)整流级的三相桥臂的输入端与三相交流电源相连接,逆变级的前五相桥臂的输出端分别与五相负载相连接,逆变级的第六相桥臂的输出端与负载中性点N连接,因此将逆变级的第六相桥臂定义为N相桥臂;对整流级、逆变级的前五相桥臂采用空间矢量调制策略求取各开关状态的占空比,当控制负载中性点电压为相应的零序电压时,任意负载下均可
使输出负载电压对称,进而根据零序电压求得逆变级N相桥臂的占空比;
[0008] 2)将整流级和逆变级各桥臂的占空比与载波相结合,计算出两级调制波;
[0009] 3)对整流级和逆变级采用同一个载波分别与两级调制波相比较所产生两级功率开关的驱动信号,对五相六桥臂双级矩阵变换器进行控制,使负载中性点电压为相应的零
序电压,从而使得输出负载电压为五相正弦对称电压。
[0010] 所述零序电压为:
[0011]
[0012] 其中,Uom为输出相电压幅值;θv为输出电压扇区角;M=0.4;L=0.8cos(π/5);umax为输出五相电压的最大值;η为同一方向上的中矢量与大矢量的相对比率,为了保证输出五相电压波形为正弦波,η应等于0.618。
[0013] 逆变级N相桥臂的占空比函数为:
[0014]
[0015] 式中,upn为直流侧电压;
[0016] 逆变级N相桥臂和整流级的组合占空比为:
[0017]
[0018] 式中,dμ,dγ分别为整流级两个最大的极性为正的线电压占空比:dM=1-dN。
[0019] 所述五相六桥臂双级矩阵变换器载波PWM控制:
[0020] 载波是周期为Ts,幅值为-1和1的等腰三角波,其表达式为:
[0021]
[0022] 逆变级N相桥臂调制波为:
[0023]
[0024] 进一步为:
[0025] (1)在五相六桥臂双级矩阵变换器的基础上,根据空间矢量调制算法,确定一个开关周期内,整流级各矢量占空比dμ、dγ和逆变级N相桥臂占空比dN,进而确定逆变级N相桥臂和整流级与的组合占空比d N1、d N2、dN3、dN4;
[0026] (2)对逆变级N相桥臂进行载波脉冲宽度调制分析,得到调制信号uN1、uN2的大小,控制负载中性点电压为相应的零序电压urZ,使其在不平衡负载下获得对称的五相电压。
[0027] 与现有技术相比,本发明的有益效果是:
[0028] 本发明是一种不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略,能够使其在五相负载不平衡时仍能保证输出负载电压对称,在缺相情况下也可保证其他相的正
常运行,五相六桥臂双级矩阵变换器的双级均采用载波脉冲宽度调制的方法,避免了使用
三维电压空间矢量调制方法的复杂性,具有方法科学合理,适用性强,效果佳,算法简单等优点。

附图说明

[0029] 图1为五相六桥臂双级矩阵变换器的拓扑结构图;
[0030] 图2为整流级输入相电压区间划分示意图;
[0031] 图3为逆变级电压空间矢量在基波空间的分布示意图;
[0032] 图4为参考输出电压矢量合成示意图;
[0033] 图5为整流级和逆变级的开关状态组合和排列顺序示意图;
[0034] 图6为五相六桥臂双级矩阵变换器载波脉冲宽度调制示意图;
[0035] 图7为由平衡负载切换到B相负载断线的仿真波形图;
[0036] 图8为不平衡负载下的仿真波形图。

具体实施方式

[0037] 下面结合附图和具体实施例对本发明的技术方案作进一步详细描述。
[0038] 本发明的一种不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略,使其在平衡负载和不平衡负载的情况下均能保证输出对称电压。五相六桥臂双级矩阵变换器的
拓扑结构如图1所示,新增加的N相桥臂连接到五相负载的中性点N处。图1中,ua、ub、uc为三相输入对称电压;Lf,Cf分别为输入滤波器的电感和电容;upn,ipn分别为直流侧的电压和电流;uA、uB、uC、uD、uE和iA、iB、iC、iD、iE分别为输出五相电压和电流;uN、iN分别为N相桥臂的输出电压和电流。
[0039] 假设输入电压为三相对称正弦电压:
[0040]
[0041] Uim为输入电压幅值;ωi为输入电压的角频率;为输入电压的初始相角。
[0042] 为了减少换向时间,减少开关损耗,提高输入电压利用率,整流级采用无零矢量的调制方法,即在每个载波PWM调制周期内,直流侧的电压由相应的两个最大的极性为正的线电压合成。图2为输入相电压的区间划分示意图。
[0043] 以第1区间为例,两个最大的极性为正的线电压为uab,uac,设其相应的占空比为dμ,dγ,其表达式如下:
[0044]
[0045] 在第1区间内,直流侧电压upn的表达式为:
[0046]
[0047] 式中,uab,uac分别为a,b两相的线电压和a,c两相的线电压。
[0048]
[0049] 表1
[0050] 直流侧电压可以应用于逆变级有效矢量和零矢量占空比的计算。表1给出了其他区间两个最大的极性为正的线电压所对应的占空比。
[0051] 假设输出五相参考电压为五相对称正弦电压:
[0052]
[0053] Uom为输出相电压幅值;ωo为输出电压的角频率; 为输出电压的初始相角。
[0054] 逆变级的电压空间矢量在基波空间的分布如图3所示。它包括30个有效矢量(十个大矢量、十个中矢量和十个小矢量)和两个零矢量。每个电压扇区均有六个有效矢量相邻,为了得到最大的输出参考电压Uref,仅选用相邻的两个大矢量UαL,UβL和两个中矢量UαM,UβM以及零矢量U0V,U0U来合成输出参考电压矢量,如图4所示,假设输出参考电压矢量Uref位于第Ⅰ区间,图中,
[0055]
[0056] θv为输出电压扇区角;M=0.4;L=0.8cos(π/5);TαL、TαM、TβL、TβM和dαL、dαM、dβL、dβM分别为相应有效矢量的作用时间和占空比,d0V,d0U分别为两个零矢量的占空比;η为同一方向上的中矢量与大矢量的相对比率,为了保证输出五相电压波形为正弦波,η应等于0.618。
[0057] 整流级的任务是对三相输入电压进行调制,输出直流电压给逆变级供电,负载上的输出电压是由逆变级输出的,所以当输入电压对称、负载为不平衡负载时,只需对图1中的逆变级进行分析。
[0058] 为了便于分析,将upn平均分成两部分,中点为O,电位为零。uAO、uBO、uCO、uDO、uEO为输出五相桥臂对O点的电压,uNO为N相桥臂对O点的电压;uAN、uBN、uCN、uDN、uEN为五相负载电压;则输出电压方程为:
[0059] uXO-uNO=uXN,X=A,B,C,D,E  (6)
[0060] 由公式(6)可知,五相输出电压由五相桥臂对O点的电压和负载的中性点电压决定,由节点电压法可计算中性点电压uNO:
[0061]
[0062] 式中,
[0063]
[0064] 对于五相双级矩阵变换器来说,由于五相负载不对称,由式(7)可知,负载中性点的电位uNO不再为0,发生了漂移。结合式(6)知负载上的电压不再是五相对称的正弦波,所以五相矩阵变换器不能带不平衡负载。当采用五相六桥臂双级矩阵变换器时,负载中性点的
电位便可由N相桥臂的输出电压uNO控制,只要对N相桥臂采用适当的控制方法,就有可能获得五相正弦对称的输出电压。
[0065] 假设输入电压位于第1区间,输出参考电压矢量位于第Ⅰ扇区内(此时,-π/6≤ωit≤π/6,θv=ωot,0≤ωot≤π/5),整流级输出的两段直流电压为uab,uac,且对应的占空比为dμ,dγ;逆变级的输出电压由矢量U0、U29、U25、U24、U16、U31来合成,各矢量对应的占空比为d0、d29、d25、d24、d16、d31,对应的开关状态为(11111)、(11101)、(11001)、(11000)、(10000)、(00000)。以A相为例,根据公式(3)可以得到A相桥臂对O点的电压为:
[0066]
[0067] 根据图3中对应矢量各扇区的开关状态和公式(3)可以得到逆变级的五相桥臂对O点的电压为:
[0068]
[0069] 其中,dA、dB、dC、dD、dE分别为:
[0070]
[0071] 再将式(11)和式(5)代入式(10)中,化简可得:
[0072]
[0073] 式中,
[0074]
[0075] 式(12)中的各电压减去式(4)中的各相输出参考相电压,可得各相电压的零序电压分量:
[0076]
[0077] 由式(14)可得:
[0078]
[0079] 同理,可以得到:
[0080]
[0081] 由式(15)和式(16)知:
[0082] urAZ=urBZ=urCZ=urDZ=urEZ=urZ  (17)
[0083] 以同样的方法,可以推出其他扇区内的urAZ、urBZ、urCZ、urDZ和urEZ,且可以得到同式(17)一样的结论。
[0084] 式(14)、(15)和式(16)说明了逆变级采用空间矢量调制时的输出电压中除参考电压外,还含有零序电压分量urZ,零序分量urZ可由输出参考电压矢量的幅值和所在扇区的扇区角θv确定。
[0085] 由以上分析可知,当负载为五相平衡负载时,中性点电压为零序电压urZ,负载电压波形为五相对称的正弦波;当负载不平衡时,中性点电压发生了漂移,不再为零序电压,负载电压波形为五相不对称电压。
[0086] 由于N相桥臂直接连接到负载的中性点处,可以直接对中性点电压uNO进行控制。由式(6)和(17)可得:
[0087] urX+urZ-uNO=uXN X=A,B,C,D,E  (18)
[0088] 式(18)说明,只要以适当的方法控制中性点电压uNO为零序分量urZ,无论负载处于什么状态,都可使五相输出电压为对称的五相参考电压。
[0089] 以输入参考电压位于第1区间,输出参考电压位于第Ⅰ扇区为例,假设逆变级N相上桥臂SNp的占空比为dN,其下桥臂SNn的占空比为1-dN,则N相桥臂的电压uNO为:
[0090]
[0091] 当uNO=urZ时,可以求得N相桥臂的占空比为:
[0092]
[0093] 因为逆变级和整流级使用的是同一个载波,且整流级每个采样周期中有两种开关状态,所以,逆变级的开关状态需要分为两组,来获得对称的五相输出电压。逆变级和整流级的各组合占空比如下:
[0094]
[0095]
[0096] 式中,dM=1-dN。
[0097] 式(21)为逆变级五相部分与整流级的组合占空比;式(22)为逆变级N相桥臂与整流级的组合占空比。
[0098] 为了得到对称的输入输出正弦波形,减少谐波的产生,要在逆变级零矢量作用时对整流级进行换流,所以整流级和逆变级的开关组合和排列顺序如图5所示。
[0099] 载波PWM控制策略是将调制波与高频载波进行比较,产生开关的调制信号。将根据空间矢量脉冲宽度调制原理所求得整流级和逆变级各桥臂占空比,与三角载波相结合,计
算出调制波,进而与载波信号相比较,来产生整流级和逆变级功率开关的PWM控制信号。如图6所示,为五相六桥臂双级矩阵变换器载波PWM示意图。
[0100] 图中,载波是周期为Ts,幅值为-1和1的等腰三角波,其表达式为:
[0101]
[0102] T1为整流级b相下桥臂开关导通时间,其表达式为:
[0103]
[0104] 将T1代入公式(23)可求得整流级调制波的大小为:
[0105] u1=2dμ-1  (25)
[0106] 将调制信号u1与三角载波ut相比较,可以的到整流级开关调制信号。由图6可知,Sap=1,在一个采样周期内a相上桥臂开关持续导通;当u1大于ut时,Sbn=1即B相下桥臂开关导通,上桥臂开关关断;当u1小于ut时,Scn=1即c相下桥臂开关导通,上桥臂开关关断。
[0107] 图6中,逆变级五相部分以E相为例。逆变级的开关状态在半个采样周期切换两次,所以各相的开关信号需要由两个信号来合成,通过分析可知,SE、SN可分别由SE1、SE2和SN1、SN2经过同或逻辑运算得到,其表达式如下:
[0108]
[0109]
[0110] 式中,SE,SN分别为逆变级E相桥臂和N相桥臂的开关函数。当SP=1时,P相上桥臂开关导通,下桥臂开关关断;当SP=0时,P相下桥臂开关导通,上桥臂开关关断(P=A,B,C,D,E,N)。
[0111] 将式(19)、式(20)代入式(21)可得调制波uE1、uE2和uN1、uN2分别为:
[0112]
[0113]
[0114] 式中,uoffset为偏移电压,其表达式为:
[0115]
[0116] 将调制波uE1、uE2和uN1、uN2分别与三角载波ut相比较,当uQ大于ut时,SQ=1;否则,SQ=0(Q=E1,E2,N1,N2)。
[0117] 以相同的方法,可以推导出各桥臂在不同扇区组合下调制波的大小,且与式(29),式(30)结构相同。
[0118] 为了验证不平衡负载下五相六桥臂双级矩阵变换器载波PWM控制策略的有效性和可行性,图7给出五相负载从平衡状态切换到B相负载断线状态下的输出五相负载电压波
形、输出五相电流波形和中线电流波形;图8给出了不平衡负载情况下,采用本发明方法时的输出五相负载电压波形、输出五相电流波形和中线电流波形。
[0119] 图7中,五相六桥臂双级矩阵变换器在0.04s时从五相负载平衡状态切换到B相负载断线状态,当负载平衡时,输出电压和电流波形均为对称的正弦波,此时输出中线桥臂电流几乎为零;当B相负载断线时,输出负载电压保持五相对称电压不变,B相电流变为零,其他相电流保持不变;中线电流变大,这是由负载不对称引起的。
[0120] 图8中,当负载不平衡时,输出五相负载电压为五相对称正弦波,由于各相负载不同,输出负载电流为不对称的正弦波,中线电流不为零,这是由于负载不平衡引起的。
[0121] 具体实施方式分别给出了负载平衡和不平衡的情况下,本发明的控制策略均能保证输出相电压的对称,从而验证了五相六桥臂双级矩阵变换器在实际应用中的价值。
[0122] 尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述具体实施方式是示意性的,而非限制性的,本领域的普通技术人员在本发明的启示下,在不脱离发明宗旨的情况下,还可以做出其它形式,这些均属于本发明的保护之内。