在透射电子显微镜下快速精确测量小角晶界取向差的方法转让专利

申请号 : CN201710146128.2

文献号 : CN106802306B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 闫志刚林耀军

申请人 : 燕山大学

摘要 :

本发明涉及一种在透射电子显微镜下快速精确测量小角晶界取向差的方法。该方法包含两个部分:第一、利用透射电镜双倾技术采集晶粒特定菊池线;第二、提出一种计算相邻晶粒之间取向差的新方法。步骤为:使用双倾样品杆把待测区域的中心晶粒倾转到特定的晶带轴,并采集该晶粒的菊池线;然后在相同的条件下采集与之相邻的晶粒的菊池线,叠加采集的菊池线,测量参数;最后采用公式cosΘ=(cosγ+cosγcosθ+cosθ‑1)/2计算晶粒之间的位向差。本发明具有操作简单、计算便捷、精度高等优点。

权利要求 :

1.一种在透射电子显微镜下快速精确测量小角晶界取向差的方法:该方法的实现有赖于计算两个晶体取向差的方法;

首先,选取晶体结构为立方晶系晶体;

定义晶粒Ⅰ的[100]Ⅰ、[010]Ⅰ、[001]Ⅰ分别为坐标系Ⅰ中的XⅠ、YⅠ、ZⅠ,定义晶粒Ⅱ的[100]Ⅱ、[010]Ⅱ、[001]Ⅱ分别为坐标系Ⅱ中的XⅡ、YⅡ、ZⅡ,其中坐标系Ⅰ中晶粒Ⅰ的ZⅠ轴与坐标系Ⅱ中晶粒Ⅱ的ZⅡ轴夹角为θ;

则计算两个晶体取向差的方法是:

为计算两个晶粒的取向差,引入第三个坐标系:ZⅢ轴平行于坐标系Ⅰ中ZⅠ轴,XⅢ轴为垂直于ZⅠ轴和ZⅡ轴所在的平面,YⅢ轴垂直于XⅢ轴和ZⅢ轴所在的平面;根据坐标系Ⅰ中的晶粒Ⅰ和坐标系Ⅱ中的晶粒Ⅱ与坐标系Ⅲ的几何关系,在坐标系Ⅲ中使坐标系Ⅱ中的晶粒Ⅱ与坐标系Ⅰ中的晶粒Ⅰ重合,只需两步旋转:第一步,XⅢ轴旋转θ角,使得晶粒坐标系Ⅰ的ZⅠ轴与晶粒坐标系Ⅱ的ZⅡ轴重合;第二步,ZⅢ轴旋转γ角,使得晶粒坐标系Ⅰ的XⅠ轴和YⅠ轴分别与晶粒坐标系Ⅱ的XⅡ轴和YⅡ轴重合;因此在坐标系Ⅲ中使坐标系Ⅱ中的晶粒旋转到坐标系Ⅰ中的晶粒,可通过一次XⅢ轴旋转和一次ZⅢ轴旋转得到实现,对应的旋转矩阵分别为:由坐标系Ⅱ中的晶粒旋转到坐标系Ⅰ中的晶粒的旋转矩阵为:

RⅡ-Ⅰ=Rz(γ)·Rx(θ)   (3)

根据旋转矩阵RⅡ-Ⅰ可以计算坐标系Ⅱ中的晶粒与坐标系Ⅰ中的晶粒的取向差Θ:cosΘ=(R11+R22+R33-1)/2   (5)

Rij为旋转矩阵的第i行j列的值,则公式(5)是可以表示为:

cosΘ=(cosγ+cosγcosθ+cosθ-1)/2   (6)其中θ为坐标系Ⅰ中的晶粒与坐标系Ⅱ中的晶粒相对于XⅢ轴的转角,γ为坐标系Ⅰ中的晶粒与坐标系Ⅱ中的晶粒相对于ZⅢ轴的转角;在坐标系Ⅰ中的晶粒和坐标系Ⅱ中的晶粒的同一晶带轴菊池线能叠加到同一图片时,样品不倾转;

更进一步,在所述方法中,最终采用的坐标系为坐标系Ⅰ中的晶粒和坐标系Ⅱ中的晶粒共同决定,与透射电子显微镜坐标系无关, 所以,只要在坐标系Ⅰ晶粒和坐标系Ⅱ晶粒的同一晶带轴菊池线能叠加到同一图片上的所有情况,样品不倾转;

所述一种在透射电子显微镜下快速精确测量小角晶界取向差的方法,该方法内容包括如下步骤:步骤一:采用透射电子显微镜双倾杆倾转样品,使得坐标系Ⅰ中晶粒的[001]Ⅰ晶带轴处在正带轴位置,并采集坐标系Ⅰ中晶粒Ⅰ此时的会聚束电子衍射花样,即菊池线;

步骤二:保持透射电子显微镜的相机常数L和会聚束衍射条件的参数不变,采集坐标系Ⅱ中晶粒Ⅱ的会聚束电子衍射花样,即菊池线;

步骤三:使用软件叠加所采集坐标系Ⅰ中晶粒的菊池花样和坐标系Ⅱ中晶粒的菊池花样;

步骤四:测量坐标系Ⅰ中晶粒的[001]Ⅰ菊池极与坐标系Ⅱ中晶粒的[001]Ⅱ菊池极的距离s,以及[001]Ⅱ菊池极相对[001]Ⅰ菊池极垂直于图面的转角γ;

步骤五:计算θ角,根据菊池线的几何特性,θ=arctan(s/L)=s/L;

步骤六:采用公式(6)cosΘ=(cosγ+cosγcosθ+cosθ-1)/2计算坐标系Ⅰ中晶粒与坐标系Ⅱ中晶粒的取向差。

2.根据权利要求1所述的一种在透射电子显微镜下快速精确测量小角晶界取向差的方法,其特征在于:所述的晶体结构还包括三斜晶系、单斜晶系、正交晶系、正方晶系、六方晶系和菱方晶系。

3.根据权利要求1所述的一种在透射电子显微镜下快速精确测量小角晶界取向差的方法,其特征在于:在步骤一中,所述的坐标系Ⅰ中晶粒的晶带轴还包括晶带轴[110]、[111]和[112]。

说明书 :

在透射电子显微镜下快速精确测量小角晶界取向差的方法

技术领域

[0001] 本发明涉及材料微观分析领域,特别涉及一种在透射电子显微镜下快速精确测量小角晶界取向差的方法。

背景技术

[0002] 透射电子显微镜是材料科学研究的重要手段:不仅能够获取材料的微观图像;同时可以检测样品的成分信息;通过高分辨成像技术,还能够直接观察晶体材料的原子排列;还可以通过衍射标定物相。因此在透射电子显微镜下测量晶粒之间的取向差,结合以上分析手段,能够更好的表征和分析材料的微观结构,特别是晶界结构。
[0003] 在多晶材料中,晶界对材料力学性能和物理性能有着十分重要的影响,一直是材料科学研究的重要领域。研究表明晶界角度(即相邻晶粒的取向差)的不同会使其在材料变形时产生截然不同的变形行为:在变形过程中大角晶界(取向差大于10°)能够完全阻碍位错运动,小角晶界(取向差小于10°)一方面都能和运动的位错发生反应生成新的位错,而另一方面运动的位错能够穿过小角晶界。同时晶界类型对材料中合金元素的富集和析出相的形成产生重要影响。因此,如何精确测量晶粒之间的取向差对多晶材料的微观理论研究起到至为关键的作用。
[0004] 目前,在透射电子显微镜下测量晶体取向的方法有:(1)基于菊池线和极射投影图的菊池线方法;(2)基于对电子衍射花样的ASTAR技术;(3)基于电子显微镜双倾杆倾转技术。三种方法各有利弊,早期的菊池线+投影图方法,测量简单,后期结果处理比较麻烦,而且需要测试者有晶体学基础;ASTAR技术是最近新出现的测量技术,优势是操作和分析都是自动化控制,容易操作,不过这个方法需要在透射电子显微镜上加装昂贵的硬件和软件;而电子显微镜倾转技术,需要对每个晶粒的三个带轴倾转到正带轴方向,由于测试比较复杂,后期实验数据处理繁琐,使用的不多。

发明内容

[0005] 本发明克服了现有技术中的缺点,提供一种简单易行的透射电子显微镜下快速精确测量小角晶界取向差的方法。该方法能够在材料进行微观检测的同时快速测定取向差。操作简单、计算方便。
[0006] 为了解决上述存在的技术问题,本发明是通过以下技术方案实现的:
[0007] 一种在透射电子显微镜下快速精确测量小角晶界取向差的方法,该方法的实现有赖于计算两个晶体取向差的方法;
[0008] 首先,选取晶体结构为立方晶系晶体;
[0009] 定义晶粒Ⅰ的[100]Ⅰ、[010]Ⅰ、[001]Ⅰ分别为坐标系Ⅰ中的XⅠ、YⅠ、ZⅠ,定义晶粒Ⅱ的[100]Ⅱ、[010]Ⅱ、[001]Ⅱ分别为坐标系Ⅱ中的XⅡ、YⅡ、ZⅡ,其中坐标系中晶粒Ⅰ的ZⅠ轴与坐标系中晶粒Ⅱ的ZⅡ轴夹角为θ;
[0010] 则计算两个晶体取向差的方法是:
[0011] 为计算两个晶粒的取向差,引入第三个坐标系:ZⅢ轴平行于坐标系Ⅰ中ZⅠ轴,XⅢ轴为垂直于ZⅠ轴和ZⅡ轴所在的平面,YⅢ轴垂直于XⅢ轴和ZⅢ轴所在的平面;根据坐标系Ⅰ中的晶粒和坐标系中的晶粒Ⅱ与坐标系Ⅲ的几何关系,在坐标系Ⅲ中使坐标系Ⅱ中的晶粒与坐标系Ⅰ中的晶粒重合,只需两步旋转:第一步,XⅢ轴旋转θ角,使得晶粒坐标系Ⅰ的ZⅠ轴与晶粒坐标系Ⅱ的ZⅡ轴重合;第二步,ZⅢ轴旋转γ角,使得晶粒坐标系Ⅰ的XⅠ轴和YⅠ轴分别与晶粒坐标系Ⅱ的XⅡ轴和YⅡ轴重合;因此在坐标系Ⅲ中使坐标系Ⅱ中的晶粒旋转到坐标系Ⅰ中的晶粒,可通过一次XⅢ轴旋转和一次ZⅢ轴旋转得到实现,对应的旋转矩阵分别为:
[0012]
[0013]
[0014] 由坐标系Ⅱ中的晶粒旋转到坐标系Ⅰ中的晶粒的旋转矩阵为:
[0015] RⅡ-Ⅰ=Rz(γ)·Rx(θ)  (3)
[0016]
[0017] 根据旋转矩阵RⅡ-Ⅰ可以计算坐标系Ⅱ中的晶粒与坐标系Ⅰ中的晶粒的取向差Θ:
[0018] cosΘ=(R11+R22+R33-1)/2  (5)
[0019] Rij为旋转矩阵的第i行j列的值,则公式(5)是可以表示为:
[0020] cosΘ=(cosγ+cosγcosθ+cosθ-1)/2  (6)
[0021] 其中θ为坐标系Ⅰ中的晶粒Ⅰ与坐标系Ⅱ中的晶粒Ⅱ相对于XⅢ轴的转角,γ为坐标系Ⅰ中的晶粒Ⅰ与坐标系Ⅱ中的晶粒Ⅱ相对于ZⅢ轴的转角;在坐标系Ⅰ中的晶粒和坐标系Ⅱ中的晶粒的同一晶带轴菊池线能叠加到同一图片时,样品不倾转;
[0022] 更进一步,在本发明方法中,最终采用的坐标系为坐标系Ⅰ中的晶粒和坐标系Ⅱ中的晶粒共同决定,与透射电子显微镜坐标系无关。所以,只要坐标系Ⅰ中的晶粒和坐标系Ⅱ中的晶粒的同一晶带轴菊池线能叠加到同一图片上的情况,样品不倾转;
[0023] 所述一种在透射电子显微镜下快速精确测量小角晶界取向差的方法,该方法内容包括如下步骤:
[0024] 步骤一:采用透射电子显微镜双倾杆倾转样品,使得坐标系Ⅰ中晶粒的[001]Ⅰ晶带轴处在正带轴位置,并采集坐标系Ⅰ中晶粒Ⅰ此时的会聚束电子衍射花样,即菊池线;
[0025] 步骤二:保持透射电子显微镜的相机常数L和会聚束衍射条件的参数不变,采集坐标系Ⅱ中晶粒Ⅱ的会聚束电子衍射花样,即菊池线;
[0026] 步骤三:使用软件叠加所采集坐标系Ⅰ中晶粒的菊池花样和坐标系Ⅱ中晶粒Ⅱ的菊池花样;
[0027] 步骤四:测量坐标系Ⅰ中晶粒的[001]Ⅰ菊池极与坐标系Ⅱ中晶粒的[001]Ⅱ菊池极的距离s,以及[001]Ⅱ菊池极相对[001]Ⅰ菊池极垂直于图面的转角γ;
[0028] 步骤五:计算θ角,根据菊池线的几何特性,θ=arctan(s/L)=s/L;
[0029] 步骤六:采用公式(6)cosΘ=(cosγ+cosγcosθ+cosθ-1)/2计算坐标系Ⅰ中晶粒与坐标系Ⅱ中晶粒的取向差。
[0030] 更进一步,本发明方法不仅适用于立方晶系的晶体结构,所述的晶体结构还包括三斜晶系、单斜晶系、正交晶系、正方晶系、六方晶系和菱方晶系。方法等同立方晶系。
[0031] 更进一步,在本发明方法的步骤一中,所述的坐标系Ⅰ中晶粒的晶带轴还包括晶带轴[110]、[111]和[112]。本发明方法也可用于高指数晶带轴的测量,由于一般高指数晶带轴的菊池线图像衬度很差,因此会降低其测量的精确度。
[0032] 由于采用上述技术方案,本发明提供的一种在透射电子显微镜下快速精确测量小角晶界取向差的方法,与现有技术相比具有这样的有益效果:
[0033] 1、不需要加装硬件和软件,可使用普通透射电子显微镜测量取向差。
[0034] 2、操作过程简单易行,只需要采集图像并叠加,然后测量菊池极之间的距离和角度。
[0035] 3、计算公式简洁,可在检测过程中快速计算出取向差,指导进一步的工作。

附图说明

[0036] 图1为本发明方法参考坐标系的示意图,以及在此坐标系中测定取向差的示意图;
[0037] 图2为本发明实例1提供的两个晶粒[110]带轴的菊池花样叠加图;
[0038] 图3为本发明实例2提供的两个晶粒[001]带轴的菊池花样叠加图;
[0039] 图4位本发明实例3提供的两个晶粒[110]带轴的菊池花样叠加图。

具体实施方式

[0040] 下面结合附图和实例对本发明的技术方案进行详细描述。
[0041] 一种在透射电子显微镜下快速精确测量小角晶界取向差的方法:该方法的实现有赖于计算两个晶体取向差的方法;
[0042] 首先,选取晶体结构为立方晶系晶体;
[0043] 定义晶粒Ⅰ的[100]Ⅰ、[010]Ⅰ、[001]Ⅰ分别为坐标系Ⅰ中的XⅠ、YⅠ、ZⅠ,定义晶粒Ⅱ的[100]Ⅱ、[010]Ⅱ、[001]Ⅱ分别为坐标系Ⅱ中的XⅡ、YⅡ、ZⅡ,其中坐标系Ⅰ中晶粒的ZⅠ轴与坐标系Ⅱ中晶粒的ZⅡ轴夹角为θ,如图1中的a和b所示;
[0044] 则计算两个晶体取向差的方法是:
[0045] 为计算两个晶粒的取向差,引入第三个坐标系:ZⅢ轴平行于坐标系Ⅰ中ZⅠ轴,XⅢ轴为垂直于ZⅠ轴和ZⅡ轴所在的平面,YⅢ轴垂直于XⅢ轴和ZⅢ轴所在的平面,如图1中的a和b所示;根据坐标系Ⅰ中的晶粒和坐标系Ⅱ中的晶粒与坐标系Ⅲ的几何关系,在坐标系Ⅲ中使坐标系Ⅱ中的晶粒与坐标系Ⅰ中的晶粒重合,只需两步旋转:第一步,XⅢ轴旋转θ角,使得晶粒坐标系Ⅰ的ZⅠ轴与晶粒坐标系Ⅱ的ZⅡ轴重合;第二步,ZⅢ轴旋转γ角,使得晶粒坐标系Ⅰ的XⅠ轴和YⅠ轴分别与晶粒坐标系Ⅱ的XⅡ轴和YⅡ轴重合;因此在坐标系Ⅲ中使坐标系Ⅱ中的晶粒旋转到坐标系Ⅰ中的晶粒,可通过一次XⅢ轴旋转和一次ZⅢ轴旋转得到实现,对应的旋转矩阵分别为,如图1中的c和d所示:
[0046]
[0047]
[0048] 由坐标系Ⅱ中的晶粒旋转到坐标系Ⅰ中的晶粒的旋转矩阵为:
[0049] RⅡ-Ⅰ=Rz(γ)·Rx(θ)  (3)
[0050]
[0051] 根据旋转矩阵RⅡ-Ⅰ可以计算坐标系Ⅱ中的晶粒与坐标系Ⅰ中的晶粒的取向差Θ:
[0052] cosΘ=(R11+R22+R33-1)/2  (5)
[0053] Rij为旋转矩阵的第i行j列的值,则公式(5)是可以表示为:
[0054] cosΘ=(cosγ+cosγcosθ+cosθ-1)/2  (6)
[0055] 其中θ为坐标系Ⅰ中的晶粒与坐标系Ⅱ中的晶粒相对于XⅢ轴的转角,γ为坐标系Ⅰ中的晶粒与坐标系Ⅱ中的晶粒中的相对于ZⅢ轴的转角;在坐标系Ⅰ中的晶粒和坐标系Ⅱ中的晶粒的同一晶带轴菊池线能叠加到同一图片时,样品不倾转,如图1中的e所示;
[0056] 更进一步,在本发明方法中,最终采用的坐标系为坐标系Ⅰ中的晶粒和坐标系Ⅱ中的晶粒共同决定,与透射电子显微镜坐标系无关。所以,只要坐标系Ⅰ中的晶粒和坐标系Ⅱ中的晶粒的同一晶带轴菊池线能叠加到同一图片上的所有情况,样品不倾转。
[0057] 所述一种在透射电子显微镜下快速精确测量小角晶界取向差的方法,该方法内容包括如下步骤:
[0058] 步骤一:采用透射电子显微镜双倾杆倾转样品,使得坐标系Ⅰ中晶粒的[001]Ⅰ晶带轴处在正带轴位置,并采集坐标系Ⅰ中晶粒Ⅰ此时的会聚束电子衍射花样,即菊池线;
[0059] 步骤二:保持透射电子显微镜的相机常数L和会聚束衍射条件的参数不变,采集坐标系Ⅱ中晶粒Ⅱ的会聚束电子衍射花样,即菊池线;
[0060] 步骤三:使用软件叠加所采集坐标系Ⅰ中晶粒Ⅰ的菊池花样和坐标系Ⅱ中晶粒Ⅱ的菊池线;
[0061] 步骤四:测量坐标系Ⅰ中晶粒的[001]Ⅰ菊池极与坐标系Ⅱ中晶粒的[001]Ⅱ菊池极的距离s,以及[001]Ⅱ菊池极相对[001]Ⅰ菊池极垂直于图面的转角γ;
[0062] 步骤五:计算θ角,根据菊池线的几何特性,θ=arctan(s/L)=s/L;
[0063] 步骤六:采用公式(6)cosΘ=(cosγ+cosγcosθ+cosθ-1)/2计算坐标系Ⅰ中晶粒与坐标系Ⅱ中晶粒的取向差。
[0064] 下面结合具体实例来详细说明本发明。
[0065] 实施例1
[0066] 检测材料为甩带的7075铝合金薄带,平均晶粒尺寸1μm。截取3mm×5mm×0.05mm的薄带,用水砂纸研磨,厚度达到30μm。截取Φ3mm样品进行双喷减薄制备出薄区。
[0067] 利用Jem2010电镜的双倾样品杆将上述制备好的样品装夹在电镜上,使用电压为200KV。找到样品中待检测两个晶粒。
[0068] 步骤一:利用双倾技术将晶粒坐标系Ⅰ(以下简称晶粒Ⅰ)倾转到低指数晶带轴,此晶粒距离[110]晶带轴比较近,就把晶粒Ⅰ倾转到[110]晶带轴。调整相机常数250mm时,拍摄晶粒Ⅰ菊池线。
[0069] 步骤二:保持相机常数不变,采集晶粒坐标系Ⅱ(以下简称晶粒Ⅱ)的菊池线。
[0070] 步骤三:使用Gatan DigitalMicrograph软件将采集的晶粒Ⅰ菊池线和晶粒Ⅱ的菊池线叠加到一起,并注意保持透射斑的重合,如图2所示。
[0071] 步骤四:测量晶粒Ⅰ的[110]Ⅰ菊池极与晶粒Ⅱ的[110]Ⅱ菊池极的距离s=11.35mm,以及[110]Ⅱ菊池极相对[110]Ⅰ菊池极垂直于图面的转角γ=0.6°。
[0072] 步骤五:θ=s/L=0.0454rad=2.6°。
[0073] 步骤六:采用公式cosΘ=(cosγ+cosγcosθ+cosθ-1)/2计算晶粒Ⅰ与晶粒Ⅱ的取向差:Θ=2.7°。
[0074] 实施例2
[0075] 检测材料为热压烧结5083Al,平均晶粒尺寸200nm。截取3mm×5mm×0.5mm的薄片,用水砂纸研磨,厚度达到30μm。截取Φ3mm样品进行双喷减薄制备出薄区。
[0076] 利用Jem2010电镜的双倾样品杆将上述制备好的样品装夹在电镜上,使用电压为200KV。找到样品中待检测两个晶粒。
[0077] 步骤一:利用双倾技术将晶粒Ⅰ倾转到低指数晶带轴,此晶粒距离[001]晶带轴比较近,就把晶粒Ⅰ倾转到[001]晶带轴。调整相机常数250mm时,拍摄晶粒Ⅰ菊池线。
[0078] 步骤二:保持相机常数不变,采集晶粒Ⅱ的菊池线。
[0079] 步骤三:使用Gatan DigitalMicrograph软件将采集的晶粒Ⅰ菊池线和晶粒Ⅱ的菊池线叠加到一起,并注意保持透射斑的重合,如图3所示。
[0080] 步骤四:测量晶粒Ⅰ的[001]Ⅰ菊池极与晶粒Ⅱ的[001]Ⅱ菊池极的距离s=7.98mm,以及[001]Ⅱ菊池极相对[001]Ⅰ菊池极垂直于图面的转角γ=1.21°。
[0081] 步骤五:θ=s/L=0.03192rad=1.83°。
[0082] 步骤六:采用公式cosΘ=(cosγ+cosγcosθ+cosθ-1)/2计算晶粒Ⅰ与晶粒Ⅱ的取向差:Θ=2.2°。
[0083] 实施例3
[0084] 检测材料为热压烧结5083Al,平均晶粒尺寸100nm。截取3mm×5mm×0.5mm的薄片,用水砂纸研磨,厚度达到30μm。截取Φ3mm样品进行双喷减薄制备出薄区。
[0085] 利用Jem2010电镜的双倾样品杆将上述制备好的样品装夹在电镜上,使用电压为200KV。找到样品中待检测两个晶粒。
[0086] 步骤一:直接观察发现晶粒Ⅰ在低指数晶带轴[110]附近,调整相机常数250mm时,直接拍摄晶粒Ⅰ菊池线。
[0087] 步骤二:保持相机常数不变,采集晶粒Ⅱ的菊池线。
[0088] 步骤三:使用Gatan DigitalMicrograph软件将采集的晶粒Ⅰ菊池线和晶粒Ⅱ的菊池线叠加到一起,并注意保持透射斑的重合,如图4所示。
[0089] 步骤四:测量晶粒Ⅰ的[110]Ⅰ菊池极与晶粒Ⅱ的[110]Ⅱ菊池极的距离s=18.3mm,以及[001]Ⅱ菊池极相对[001]Ⅰ菊池极垂直于图面的转角γ=1.1°。
[0090] 步骤五:θ=s/L=0.0732rad=4.3°。
[0091] 步骤六:采用公式cosΘ=(cosγ+cosγcosθ+cosθ-1)/2计算晶粒Ⅰ与晶粒Ⅱ的取向差:Θ=4.4°。