基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法转让专利

申请号 : CN201611263595.5

文献号 : CN106834887B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 谢国海秦哲刘宏志王福良朱经涛狄丽华严进宝吴进罗继锋于长江喻尧杜希恩王学伦刘守杰安守勇孙庆强季伟斌

申请人 : 日照宝华新材料有限公司

摘要 :

本发明提供一种基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法,包括选择原材料,其中,原材料按质量百分比包括:0.03~0.07%的C、0.10~0.40%的Si、0.90~1.40%的Mn、0.02~0.04%的Als、0.008~0.020%的Ti、0.01~0.03%的Nb、≤0.0030%的S、≤0.015%的P、≤0.004%的N,其余为铁元素;将原材料依次进行转炉冶炼、LF炉以及RH炉精炼;将从RH炉精炼形成的钢水经过ESP产线生成不同厚度的热轧带钢;其中,在ESP产线中,粗轧出口温度为920~980℃,精轧出口的温度为800~870℃;采用层流冷却前段方式冷却热轧带钢,冷却至550~620℃,然后进入卷取机卷取为成卷带钢,成卷带钢缓冷后,采用1%~2.0%平整量进行平整成卷入库。利用本发明,解决传统热轧成本高、能耗大等问题。

权利要求 :

1.一种基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法,其特征在于,包括:选择原材料,其中,所述原材料按质量百分比包括:0.03~0.065%的C、0.15~0.40%的Si、0.90~1.40%的Mn、0.02~0.04%的Als、0.008~0.020%的Ti、0.01~0.03%的Nb、≤0.0030%的S、≤0.015%的P、≤0.004%的N,其余为铁元素;

将所述原材料依次进行转炉冶炼、LF炉以及RH炉精炼;

将从所述RH炉精炼形成的钢水经过ESP产线生成不同厚度的热轧带钢;其中,在所述ESP产线中,粗轧出口温度为920~980℃,精轧出口的温度为800~870℃,感应加热出口的温度为1050~1170℃;

采用层流冷却前段方式冷却所述热轧带钢,冷却至550~620℃,然后进入卷取机卷取为成卷带钢,所述成卷带钢缓冷后,采用1%~2.0%平整量进行平整成卷入库。

2.如权利要求1所述的基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法,其特征在于,在所述ESP产线中,连铸拉速5.0~6.0m/min,铸坯厚度90~110mm。

3.如权利要求1所述的基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法,其特征在于,在所述ESP产线中,粗轧入口温度为≥950℃。

4.如权利要求1所述的基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法,其特征在于,所述热轧带钢的厚度为1.0~3.5mm。

5.如权利要求1所述的基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法,其特征在于,生产的RE510L钢的金相组织为铁素体和珠光体,其中,所述RE510L钢的屈服强度为≥

420MPa,抗拉强度为≥540MPa ,延伸率为≥28%。

说明书 :

基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法

技术领域

[0001] 本发明涉及金属材料加工与成型技术领域,更为具体地,涉及一种基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法。

背景技术

[0002] 近几年,随着钢铁行情的持续走低,钢铁一直处于微利或无利状态,迫使钢铁厂家不得不探讨降本之道,而国内目前对环保的重视程度进一步加强,环保要求又空前严格,因此探讨降本又环保的钢铁生产工艺已经成为非常必要的生存之路。
[0003] 充分利用ESP开发应用新产品符合国家总体规划和行业规划,符合国家转调创相关政策规定,能够满足工艺现代化、设备大型化、生产集约化、资源和能源循环化、能耗最小化、经济效益最佳化的高起点发展目标,对于推进钢铁行业节能减排和技术进步,促进企业转型升级、科技创新和产品结构调整,都具有十分重要的意义。
[0004] 随着汽车工业的发展,为提高汽车的承载能力,延长汽车使用寿命和节能、节材以及安全行驶等要求,用高强度钢板生产汽车大梁,已成为发展趋势。高强度汽车大梁用钢不但要具有较高的强度、塑性、韧性、良好的疲劳特性和成型性能,同时也要求钢材纯净度较高、夹杂物球化程度高、显微组织优异。
[0005] 目前,国内外薄规格(厚度h<2.0mm)汽车大梁钢主要采用热轧卷板酸洗、冷轧、退火的生产工艺,针对上述问题,本发明提出了一种基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法。

发明内容

[0006] 鉴于上述问题,本发明的目的是提供一种基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法,以解决传统热轧成本高、能耗大等问题,达到节能环保以及降低成本的目的。
[0007] 本发明提供一种基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法,包括:
[0008] 选择原材料,其中,原材料按质量百分比包括:0.03~0.07%的C、0.10~0.40%的Si、0.90~1.40%的Mn、0.02~0.04%的Als、0.008~0.020%的Ti、0.01~0.03%的Nb、≤0.0030%的S、≤0.015%的P、≤0.004%的N,其余为铁元素;
[0009] 将原材料依次进行转炉冶炼、LF炉以及RH炉精炼;
[0010] 将从RH炉精炼形成的钢水经过ESP产线生成不同厚度的热轧带钢;其中,在ESP产线中,粗轧出口温度为920~980℃,精轧出口的温度为800~870℃;
[0011] 采用层流冷却前段方式冷却热轧带钢,冷却至550~620℃,然后进入卷取机卷取为成卷带钢,成卷带钢缓冷后,采用1%~2.0%平整量进行平整成卷入库。
[0012] 此外,优选的方案是,在ESP产线中,连铸拉速5.0~6.0m/min,铸坯厚度90~110mm。
[0013] 此外,优选的方案是,在ESP产线中,粗轧入口温度为≥950℃,感应加热出口的温度为1050~1170℃。
[0014] 此外,优选的方案是,热轧带钢的厚度为1.0~3.5mm。
[0015] 此外,优选的方案是,生产的RE510L钢的金相组织为铁素体和珠光体,其中,RE510L钢的屈服强度为≥420MPa,抗拉强度为≥540MP,延伸率为≥28%。
[0016] 从上面的技术方案可知,本发明提供的基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法,采用ESP全无头薄板坯连铸连轧工艺低成本生产热轧薄规格RE510L汽车大梁用钢,生产工艺流程短,能够解决传统热轧成本高、能耗大等问题,生产工艺流程短,属于低能耗绿色制造工艺范畴,生产出来的热轧产品性能稳定、板形良好、尺寸公差小,热轧状态可达到1.0mm极薄规格带材,可减少冷轧工序轧制道次,达到“以薄代厚,以热代冷”节能降耗的目的。
[0017] 为了实现上述以及相关目的,本发明的一个或多个方面包括后面将详细说明的特征。下面的说明以及附图详细说明了本发明的某些示例性方面。然而,这些方面指示的仅仅是可使用本发明的原理的各种方式中的一些方式。此外,本发明旨在包括所有这些方面以及它们的等同物。

附图说明

[0018] 通过参考以下结合附图的说明的内容,并且随着对本发明的更全面理解,本发明的其它目的及结果将更加明白及易于理解。在附图中:
[0019] 图1为根据本发明实施例的基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法流程示意图;
[0020] 图2为根据本发明实施例的RE510L钢的基体组织的结构示意图。
[0021] 在所有附图中相同的标号指示相似或相应的特征或功能。

具体实施方式

[0022] 在下面的描述中,出于说明的目的,为了提供对一个或多个实施例的全面理解,阐述了许多具体细节。然而,很明显,也可以在没有这些具体细节的情况下实现这些实施例。
[0023] 针对前述提出的传统热轧成本高能耗大等问题,本发明提出了一种基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法,采用ESP工艺从连铸直接生成各种厚度规格带钢RE510L钢,能够降低生产成本,实现以薄代厚,具有很高的社会经济效益。
[0024] 其中,ESP(Endless Strip Production,无头带钢生产)产线,是阿维迪新建的新一代薄板坯连铸连轧生产线,由于其一次浇铸可生产一整条钢带,中间没有任何切头切尾,因而具有全连续带钢生产的优点,单条连铸线具有出色的生产能力、大规模生产大带宽带钢和优质带钢、从钢水到热轧卷的转换成本低、生产线工艺布置最为紧凑等特点。
[0025] 以下将结合附图对本发明的具体实施例进行详细描述。
[0026] 为了说明本发明提供的基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法,图1示出了根据本发明实施例的基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法流程。
[0027] 如图1所示,本发明提供的基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法包括:
[0028] S110:选择原材料,其中,原材料按质量百分比包括:0.03~0.07%的C、0.10~0.40%的Si、0.90~1.40%的Mn、0.02~0.04%的Als、0.008~0.020%的Ti、0.01~0.03%的Nb、≤0.0030%的S、≤0.015%的P、≤0.004%的N,其余为铁元素;
[0029] S120:将原材料依次进行转炉冶炼、LF炉冶炼以及RH炉精炼;
[0030] S130:将从RH炉精炼形成的钢水经过ESP产线生成不同厚度的热轧带钢;其中,在ESP产线中,粗轧出口温度为920~980℃,精轧出口的温度为800~870℃;
[0031] S140:采用层流冷却前段方式冷却热轧带钢,冷却至550~620℃,然后进入卷取机卷取为成卷带钢,成卷带钢缓冷后,采用1%~2.0%平整量进行平整成卷入库。
[0032] 上述步骤为采用ESP工艺生成RE510L钢的具体方法,本发明生产薄规格RE510L钢的方法具体包括冶炼工序、全无头ESP薄板坯连铸连轧工序、冷却工序、卷取工序,即:混铁炉→铁水预处理→BOF(转炉冶炼)→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。本发明制备的RE510L钢屈服强度≥420MPa,抗拉强度为≥540MP,延伸率为≥28%金相组织为铁素体和珠光体,图2示出了根据本发明实施例的RE510L钢的基体组织的结构。本发明采用全无头ESP薄板坯连铸连轧工艺可高效、低成本生产RE510L钢,产品具有性能、尺寸稳定及规格薄的优势。
[0033] 在本发明的步骤S110中,在生成低RE510L钢的原材料选择中,C在原材料中的含量为:0.03~0.07%,研究表明,当w(C)≥0.07%时,钢板在轧后冷却过程中直接由γ转变为各种形态的F,而不发生γ向F+Fe3C的两相转变。当w(C)≤0.07%时,更易得到AF,而AF具有极佳的韧性和极佳的可焊性。因此,本发明中C含量控制在0.03%~0.07%。
[0034] Si在原材料中的含量为:0.10~0.40%,Si除了能提高钢的强度以外,Si能提高马氏体板条间残余奥氏体的稳定性,同时也提高钢的低温回火脆性出现的温度范围,非常重要的是硅能阻止碳的扩散,延缓渗碳体的析出和聚积,提高马氏体的稳定性,因此可以有效提高钢的抗回火软化能力使所开发钢可以在较高的温度下回火,有利于提高钢的热处理适应能力。故在本发明中Si含量控制在0.10%~0.40%。
[0035] Mn在原材料中的含量为:0.9%~1.4%,Mn的最大作用是提高钢的淬透性,同时也是重要的固溶强化元素。锰是碳化物形成元素,也能以固溶状态存在,还具有细化珠光体组织的作用,因而能提高铁素体奥氏体的强度和硬度。Mn对提高钢的抗回火软化能力也有一定的作用,但Mn含量较高时有粗化晶粒和增加回火脆性的倾向,给加工带来困难。故在本发明中Mn含量控制在0.9%~1.4%。
[0036] Nb在原材料中的含量为:0.010%~0.030%,铌起到晶粒细化和沉淀强化作用,从而获得高强度与高韧性的力学性能合理匹配;提高再结晶温度,实现高温轧制。故在本发明中Nb含量控制在0.010%~0.030%。
[0037] Ti在原材料中的含量为:0.008%~0.020%,Ti是一种强烈的碳化物和氮化物形成元素,在高温热轧过程中析出,可有效抑制奥氏体晶粒的长大,起到细化晶粒的作用,TiN、TiC析出物还可以起到析出强化的效果,故在本发明中Ti含量控制在0.008%~0.020%。
[0038] 在步骤S120中,按照上述(步骤S110)的成分进行转炉、LF炉、RH炉冶炼。也就是说,铁水经转炉冶炼后再经过LF炉精炼得到所需成分的钢水。
[0039] 在步骤S130中,在ESP产线中,铸坯进入粗轧入口的温度为≥950℃,中间坯在进入精轧机组前首先进入感应加热炉中,IH(感应加热出口温度为1050~1170℃,从感应加热炉出来进入精轧机组,并且精轧出口的温度不低于820℃,并且,在ESP产线中,根据实际需求,在生成设备上设定不同的参数,从而生成1.0~3.5mm不等厚度的RE510L钢。
[0040] 在本发明的实施例中,生成的RE510L钢的厚度与其屈服强度、抗拉强度之间成反比,如果生成的RE510L钢的厚度大,那么其屈服强度和抗拉强度会减小,如果生成的低RE510L钢的厚度小,那么其屈服强度和抗拉强度会增大。
[0041] 其中,需要说明的是,IH为感应加热出口温度,感应加热炉位于转毂剪之后,精轧机之前的位置,感应加热的作用是加热带钢,保证精轧温度,也可以说是调节中间坯的温度,IH温度按照带钢精轧要求且兼顾带钢表面质量而定,低于某一温度会造成精轧温度不合,高于某一温度则浪费能源。
[0042] 在ESP产线中,从RH炉冶炼出来的钢水进入连铸机,以5.0~6.0m/min的拉速进行浇铸,从连铸机出来的铸坯直接进入3架粗轧机制成中间坯,然后经过摆式剪,将铸坯头部楔形段进行分段和切掉,接着铸坯进入堆垛机(堆垛机的作用是当后面设备出现故障时,可以在此堆垛机处下线)。正常轧制时直接通过,随后中间坯经转毂式飞剪切头尾,然后进入感应加热炉加热到1050~1170℃,随后进入精轧机组,从精轧机组出来生成热轧带钢。从精轧机组生成的热轧带钢经过层流冷却后卷取入库。
[0043] 根据上述生成RE510L钢的方法,本发明根据如下的具体实施例作进一步的说明。
[0044] 实施例1
[0045] 在实施例中全无头ESP薄板坯连铸连轧流程生产RE510L钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
[0046] 本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.035Wt%;Si:0.15Wt%;Mn:1.05Wt%;Als:0.032Wt%;Nb:0.012Wt%;Ti:0.013Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0032Wt%。余量为Fe。
[0047] LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
[0048] 连铸工序控制中间包过热度18℃,拉速5.5m/min,铸坯厚度95mm。
[0049] 将铸坯经三道次粗轧进行轧制,粗轧入口温度1050℃,粗轧出口温度980℃。
[0050] 将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1120℃。
[0051] 将经感应加热中间坯经5道次精轧轧制成1.0mm厚度热轧带钢,精轧出口温度在850℃。
[0052] 将钢带经层流冷却,采用前段冷却模式冷却至630℃,然后进入卷取机卷取为成卷带钢。
[0053] 采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
[0054] 生成的RE510L钢的性能如表1所示:
[0055] 表1
[0056]
[0057] 实施例2
[0058] 在实施例中全无头ESP薄板坯连铸连轧流程生产RE510L钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
[0059] 本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.038Wt%;Si:0.18Wt%;Mn:1.08Wt%;Als:0.030Wt%;Nb:0.018Wt%;Ti:0.013Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0035Wt%,余量为Fe。
[0060] LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
[0061] 连铸工序控制中间包过热度20℃,拉速5.5m/min,铸坯厚度95mm。
[0062] 将铸坯经三道次粗轧进行轧制,粗轧入口温度1050℃,粗轧出口温度980℃。
[0063] 将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1140℃。
[0064] 将经感应加热中间坯经5道次精轧轧制成1.2mm厚度热轧带钢,精轧出口温度在850℃。
[0065] 将钢带经层流冷却,采用前段冷却模式冷却至630℃,然后进入卷取机成卷,将缓冷后热卷采用1%平整量进行平整成卷取入库
[0066] 生成的RE510L钢的性能如表2所示:
[0067] 表2
[0068]
[0069] 实施例3
[0070] 在实施例中全无头ESP薄板坯连铸连轧流程生产RE510L钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
[0071] 本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.040Wt%;Si:0.20Wt%;Mn:1.10Wt%;Als:0.032Wt%;Nb:0.020Wt%;Ti:0.013Wt%;S:0.0025Wt%;P:0.012Wt%;N:0.0033Wt%。余量为Fe。
[0072] LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
[0073] 连铸工序控制中间包过热度21℃,拉速5.5m/min,铸坯厚度95mm。
[0074] 将铸坯经三道次粗轧进行轧制,粗轧入口温度1040℃,粗轧出口温度970℃。
[0075] 将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1150℃。
[0076] 将经感应加热中间坯经5道次精轧轧制成1.5mm厚度热轧带钢,精轧出口温度控制在840℃。
[0077] 将钢带经层流冷却,采用前段冷却模式冷却至620℃,然后进入卷取机卷取为成卷带钢,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
[0078] 生成的RE510L钢的性能如表3所示:
[0079] 表3
[0080]
[0081] 实施例4
[0082] 在实施例中全无头ESP薄板坯连铸连轧流程生产RE510L钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
[0083] 本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.042Wt%;Si:0.22Wt%;Mn:1.10Wt%;Als:0.032Wt%;Nb:0.020Wt%;Ti:0.014Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0035Wt%。余量为Fe。
[0084] LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
[0085] 连铸工序控制中间包过热度20℃,拉速5.5m/min,铸坯厚度95mm。
[0086] 将铸坯经三道次粗轧进行轧制,粗轧入口温度1030℃,粗轧出口温度970℃。
[0087] 将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1130℃;
[0088] 将经感应加热中间坯经5道次精轧轧制成1.8mm厚度热轧带钢,精轧出口温度控制在840℃。
[0089] 将钢带经层流冷却,采用前段冷却模式冷却至620℃,然后进入卷取机成卷,将缓冷后热卷采用1%平整量进行平整成卷取入库。
[0090] 生成的RE510L钢的性能如表4所示:
[0091] 表4
[0092]
[0093] 实施例5
[0094] 在实施例中全无头ESP薄板坯连铸连轧流程生产RE510L钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
[0095] 本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.045Wt%;Si:0.23Wt%;Mn:1.12Wt%;Als:0.031Wt%;Nb:0.022Wt%;Ti:0.013Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0030Wt%。余量为Fe。
[0096] LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
[0097] 连铸工序控制中间包过热度22℃,拉速5.3m/min,铸坯厚度95mm。
[0098] 将铸坯经三道次粗轧进行轧制,粗轧入口温度1020℃,粗轧出口温度960℃。
[0099] 将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1130℃。
[0100] 将经感应加热中间坯经5道次精轧轧制成2.0mm厚度热轧带钢,精轧出口温度控制在830℃。
[0101] 将钢带经层流冷却,采用前段冷却模式冷却至620℃,然后进入卷取机卷取为成卷带钢。
[0102] 采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
[0103] 生成的RE510L钢的性能如表5所示:
[0104] 表5
[0105]
[0106] 实施例6
[0107] 在实施例中全无头ESP薄板坯连铸连轧流程生产RE510L钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
[0108] 本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.052Wt%;Si:0.25Wt%;Mn:1.15Wt%;Als:0.031Wt%;Nb:0.022Wt%;Ti:0.014Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0035Wt%。余量为Fe。
[0109] LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
[0110] 连铸工序控制中间包过热度22℃,拉速5.3m/min,铸坯厚度95mm。
[0111] 将铸坯经三道次粗轧进行轧制,粗轧入口温度1010℃,粗轧出口温度960℃。
[0112] 将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1130℃。
[0113] 将经感应加热中间坯经5道次精轧轧制成2.5mm厚度热轧带钢,精轧出口温度控制在830℃。
[0114] 将钢带经层流冷却,采用前段冷却模式冷却至620℃,然后进入卷取机卷取为成卷带钢成卷,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
[0115] 生成的RE510L钢的性能如表6所示:
[0116] 表6
[0117]
[0118] 实施例7
[0119] 在实施例中全无头ESP薄板坯连铸连轧流程生产RE510L钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
[0120] 本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.051Wt%;Si:0.26Wt%;Mn:1.15Wt%;Als:0.030Wt%;Nb:0.023Wt%;Ti:0.015Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0030Wt%。余量为Fe。
[0121] LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
[0122] 连铸工序控制中间包过热度22℃,拉速5.3m/min,铸坯厚度95mm。
[0123] 将铸坯经三道次粗轧进行轧制,粗轧入口温度1010℃,粗轧出口温度955℃。
[0124] 将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1125℃。
[0125] 将经感应加热中间坯经5道次精轧轧制成2.5mm厚度热轧带钢,精轧出口温度控制在830℃。
[0126] 将钢带经层流冷却,采用前段冷却模式冷却至615℃,然后进入卷取机卷取为成卷带钢成卷,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
[0127] 生成的RE510L钢的性能如表7所示:
[0128] 表7
[0129]
[0130] 实施例8
[0131] 在实施例中全无头ESP薄板坯连铸连轧流程生产RE510L钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→缓冷→平整→成品。
[0132] 本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.052Wt%;Si:0.30Wt%;Mn:1.28Wt%;Als:0.032Wt%;Nb:0.028Wt%;Ti:0.020Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0036Wt%。余量为Fe。
[0133] LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
[0134] 连铸工序控制中间包过热度22℃,拉速5.2m/min,铸坯厚度95mm。
[0135] 将铸坯经三道次粗轧进行轧制,粗轧入口温度1000℃,粗轧出口温度950℃。
[0136] 将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1140℃。
[0137] 将经感应加热中间坯经5道次精轧轧制成3.0mm厚度热轧带钢,精轧出口温度控制在820℃。
[0138] 将钢带经层流冷却,采用前段冷却模式冷却至610℃,然后进入卷取机卷取为成卷带钢成卷,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
[0139] 生成的RE510L钢的性能如表8所示:
[0140] 表8
[0141]
[0142] 实施例9:
[0143] 在实施例中全无头ESP薄板坯连铸连轧流程生产RE510L钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→平整→成品。
[0144] 本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.065Wt%;Si:0.37Wt%;Mn:1.35Wt%;Als:0.032Wt%;Nb:0.030Wt%;Ti:0.022Wt%;S:0.0020Wt%;P:0.012Wt%;N:0.0036Wt%。余量为Fe。
[0145] LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
[0146] 连铸工序控制中间包过热度22℃,拉速5.2m/min,铸坯厚度95mm。
[0147] 将铸坯经三道次粗轧进行轧制,粗轧入口温度990℃,粗轧出口温度945℃。
[0148] 将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1160℃。
[0149] 将经感应加热中间坯经5道次精轧轧制成3.5mm厚度热轧带钢,精轧出口温度控制在820℃。
[0150] 将钢带经层流冷却,采用前段冷却模式冷却至610℃,然后进入卷取机卷取为成卷带钢成卷,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
[0151] 生成的RE510L钢的性能如表9所示:
[0152] 表9
[0153]
[0154] 实施例10:
[0155] 在实施例中全无头ESP薄板坯连铸连轧流程生产RE510L钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→平整→成品。
[0156] 本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.03Wt%;Si:0.11Wt%;Mn:1.40Wt%;Als:0.030Wt%;Nb:0.020Wt%;Ti:0.01Wt%;S:0.0015Wt%;P:0.010Wt%;N:0.0025Wt%。余量为Fe。
[0157] LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
[0158] 连铸工序控制中间包过热度22℃,拉速5.0m/min,铸坯厚度90mm。
[0159] 将铸坯经三道次粗轧进行轧制,粗轧入口温度950℃,粗轧出口温度920℃。
[0160] 将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1050℃。
[0161] 将经感应加热中间坯经5道次精轧轧制成3.0mm厚度热轧带钢,精轧出口温度控制在800℃。
[0162] 将钢带经层流冷却,采用前段冷却模式冷却至550℃,然后进入卷取机卷取为成卷带钢成卷,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
[0163] 生成的RE510L钢的性能如表10所示:
[0164] 表10
[0165]
[0166] 实施例11:
[0167] 在实施例中全无头ESP薄板坯连铸连轧流程生产RE510L钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→平整→成品。
[0168] 本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.068Wt%;Si:0.35Wt%;Mn:0.95Wt%;Als:0.028Wt%;Nb:0.010Wt%;Ti:0.015Wt%;S:0.0023Wt%;P:0.011Wt%;N:0.0031Wt%。余量为Fe。
[0169] LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
[0170] 连铸工序控制中间包过热度22℃,拉速6.0m/min,铸坯厚度110mm。
[0171] 将铸坯经三道次粗轧进行轧制,粗轧入口温度970℃,粗轧出口温度980℃。
[0172] 将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1170℃。
[0173] 将经感应加热中间坯经5道次精轧轧制成2.0mm厚度热轧带钢,精轧出口温度控制在870℃。
[0174] 将钢带经层流冷却,采用前段冷却模式冷却至620℃,然后进入卷取机卷取为成卷带钢成卷,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
[0175] 生成的RE510L钢的性能如表11所示:
[0176] 表11
[0177]
[0178] 实施例12:
[0179] 在实施例中全无头ESP薄板坯连铸连轧流程生产RE510L钢的工艺流程为混铁炉→铁水预处理→BOF→LF→RH→ESP连铸连轧→层流冷却→卷取→平整→成品。
[0180] 本实施例铁水、废钢等原材料依次进行转炉冶炼、LF精炼、RH精炼,钢水成分控制为C:0.07Wt%;Si:0.40Wt%;Mn:1.0Wt%;Als:0.025Wt%;Nb:0.015Wt%;Ti:0.025Wt%;S:0.0018Wt%;P:0.009Wt%;N:0.0028Wt%。余量为Fe。
[0181] LF、RH精炼的钢水经过ESP产线连铸、粗轧、感应加热、精轧、层流冷却、卷取、平整工艺生产不同厚度的热轧带钢。
[0182] 连铸工序控制中间包过热度22℃,拉速5.5m/min,铸坯厚度100mm。
[0183] 将铸坯经三道次粗轧进行轧制,粗轧入口温度970℃,粗轧出口温度980℃。
[0184] 将经粗轧中间坯产品经感应炉加热,感应炉IH出口温度控制在1150℃。
[0185] 将经感应加热中间坯经5道次精轧轧制成1.8mm厚度热轧带钢,精轧出口温度控制在850℃。
[0186] 将钢带经层流冷却,采用前段冷却模式冷却至600℃,然后进入卷取机卷取为成卷带钢成卷,采用1%平整量对缓冷后的成卷带钢进行平整成卷入库。
[0187] 生成的RE510L钢的性能如表12所示:
[0188] 表12
[0189]
[0190] 需要说明的是,上述实施例生成的RE510L钢在厚度上的浮动非常小可以忽略不计,屈服强度和抗拉强度均会有30MPa的上下浮动,在本发明中特此说明。
[0191] 通过上述实施方式可以看出,本发明提供的基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法,采用ESP全无头薄板坯连铸连轧工艺低成本生产热轧薄规格RE510L汽车大梁用钢,生产工艺流程短,能够解决传统热轧成本高、能耗大等问题,生产工艺流程短,属于低能耗绿色制造工艺范畴,生产出来的热轧产品性能稳定、板形良好、尺寸公差小,热轧状态可达到1.0mm极薄规格带材,可减少冷轧工序轧制道次,达到“以薄代厚,以热代冷”节能降耗的目的。
[0192] 如上参照附图以示例的方式描述了根据本发明提出的基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法。但是,本领域技术人员应当理解,对于上述本发明所提出的基于ESP薄板坯连铸连轧流程生产薄规格RE510L钢的方法,还可以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应当由所附的权利要求书的内容确定。