光感测材料与光学装置转让专利

申请号 : CN201510995832.6

文献号 : CN106854194B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 林建文蔡易良杨忠烈刘仕贤廖钊铻郑功龙

申请人 : 财团法人工业技术研究院

摘要 :

本发明提供的光学装置,包括:第一透明基板;第二透明基板;以及夹设于第一透明基板与第二透明基板之间的液晶材料,且液晶材料包括光感测材料,其结构为:其中A1是或,其中A2与A3分别各自选自或其中X是卤素;R是H、C1‑12的烷基或C1‑12的烷氧基;以及R’是C1‑12的烷基。

权利要求 :

1.一种光感测材料,其特征在于,其结构为:其中R是C1-12的烷基。

2.一种光学装置,其特征在于,包括:一第一透明基板;

一第二透明基板;以及一夹设于该第一透明基板与该第二透明基板之间的液晶材料,该液晶材料包括光感测材料,其结构为:其中R是C1-12的烷基。

说明书 :

光感测材料与光学装置

技术领域

[0001] 本发明涉及光感测材料技术领域,特别涉及应用光感测材料的光学装置。

背景技术

[0002] 感光变色性为本领域公知的物理现象,其可见于某些化合物中。此现象的详细讨论可参考有机化学40中的研讨专文“感光变色性:分子与系统”(由H.Durr及H.Bouas-Laurent主编,Elsevier,1990)。吡喃衍生物是已知的具有感光变色效果的化合物,其在激发状态下具有吸收波长。
[0003] 上述感光变色材料可应用于变色镜片、智能窗、隔热贴或其他感光变色的样用,其需具有快速与可逆的光变色特性。然而现有的感光变色材料的紫外光吸收系数较低,即对紫外光敏感性不足。现有的感光变色材料的恢复时间过长,即在不照射紫外光后亦无法快速转变回透明态。此外,现有的感光变色材料熔点高且溶解性不佳,不易加工且需添加至其他材料(如液晶、溶剂或高分子)中以改善其加工问题。综上所述,目前亟需新的感光变色材料以克服上述缺点。

发明内容

[0004] 本发明一实施例提供的光感测材料,其结构为:其中A1是
2 3
其中A 与A
分别各自选自
其中X是卤素;R是H、C1-12的烷基或C1-12的
烷氧基;以及R’是C1-12的烷基。
[0005] 本发明一实施例提供的光学装置,包括:第一透明基板;第二透明基板;以及液晶材料夹设于第一透明基板与第二透明基板之间,且液晶材料包括光感测材料,其结构为:其中A1是
其中A2与A3
分别各自选自
其中X是卤素;R是H、C1-12的烷基或C1-12的
烷氧基;以及R’是C1-12的烷基。

附图说明

[0006] 图1是本发明一实施例中,光学装置的示意图。
[0007] 【附图标记说明】
[0008] 1  液晶材料;
[0009] 3、5  透明基板;
[0010] 10   光学装置。

具体实施方式

[0011] 为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
[0012] 本 发 明 一 实 施 例 提 供 的 光 感 测 材 料 ,其 结 构 如 式 1 所 示 :
[0013] 在式1中,A1是其中A2与A3分别各自选自
上述X是卤素;R是H、C1-12的烷基或C1-12的烷氧基;以及R’是C1-12的烷基。
[0014] 在一实施例中,光感测材料的合成方式如下。值得注意的是,下述合成方式仅用以举例,本技术领域中具有通常知识者自可依其设备与药材选用其他合成路径以制备光感测材料。
[0015] 首先,取卤化醛、二酸二酯与碱加热反应,如式2所示。在式2中,X为卤素,而R’为C1-12的烷基。
[0016]
[0017] 接着取式2的产物、醋酸钠与醋酸酐加热回流反应,如式3所示。
[0018]
[0019] 接着取式3的产物与碳酸钾加热回流反应,如式4所示。
[0020]
[0021] 接着取式4的产物、炔类化合物、原甲酸三甲酯与对甲苯磺酸吡啶盐(PPTS)反应,如式5所示。在式5中,A2与A3的定义如所前述。
[0022]
[0023] 接着取式5的产物、1,3,2-二氧杂硼烷类化合物、碳酸钠与四(三苯基膦)钯进行Suzuki coupling,即得光感测材料如式6所示。在式6中,A1与R的定义同前所述。
[0024]
[0025] 在一实施例中,光感测材料的结构如式7或式8所示。在式7与式8中,R的定义同前所述。
[0026]
[0027] 在一实施例中,可先将多种液晶材料混合形成液晶主体材料后,将上述光感测材料添加至液晶主体材料中以形成液晶材料1。接着将上述液晶材料1置于透明基板3与5之间,即得光学装置10,如图1所示。在一实施例中,透明基板3与5可为相同或不同材料,其可为刚性基板如玻璃或石英,亦可为可挠性基板如塑料。此光学装置10在未照射紫外线时呈透明,但在照射紫外线后将迅速转变为深色而不透光。当颜色变深的光学装置10不再照射紫外线后,会在一段时间后转变回透明无色。上述变色过程为可逆现象,因此光学装置10可用于变色镜片、智能窗、隔热贴或其他感光变色装置。
[0028] 为了让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举数实施例配合附图,作详细说明如下:
[0029] 实施例
[0030] 实施例1
[0031] 将0.33摩尔的叔丁醇钾与500mL的叔丁醇加入1L双颈瓶中搅拌至全溶。混合0.3摩尔的三叔丁醇溴苯甲醛、0.3摩尔的琥珀酸二乙酯、与100mL的叔丁醇后,慢慢滴入反应瓶中。将上述混合物加热至100℃后在100℃下反应4小时。接着将反应结果冷却至室温,以乙酸乙酯与水萃取数次,收集乙酸乙酯层并以无水硫酸镁除水。过滤后取滤液浓缩,即得淡黄色液体产物(106g,产率96%)。上述反应如式9所示:
[0032]
[0033] 接着取0.288摩尔式9的产物、0.316摩尔的醋酸钠与0.5摩尔的醋酸酐加入500mL的双颈瓶中搅拌至全溶,再加热至140℃并回流反应6小时。接着将反应结果冷却至室温,抽干醋酸酐后,以乙酸乙酯与水萃取数次。收集乙酸乙酯层并以无水硫酸镁除水、过滤后取滤液浓缩。即得棕色液体产物(77g,产率75%)。上述反应如式10所示:
[0034]
[0035] 接着取0.216摩尔式10的产物、0.324摩尔的碳酸钾与150mL的乙醇加入250mL的双颈瓶中搅拌至全溶,加热至80℃并回流反应4小时。接着将反应结果冷却至室温,抽干乙醇后,以乙酸乙酯与水萃取数次。收集乙酸乙酯层并以无水硫酸镁除水、过滤后取滤液浓缩。即得淡黄色液体(106g,产率95%)。上述反应如式11所示:
[0036]
[0037] 接着取0.194摩尔式11的产物、0.194摩尔的1-苯基-1-[4-(1-哌啶基)苯基]-2-丙炔-1-醇、0.388摩尔的原甲酸三甲酯与150mL的二氯甲烷加入250mL的双颈瓶中搅拌至全溶后,加入0.097摩尔的对甲苯磺酸吡啶盐(PPTS)并加热至回流反应隔夜。接着将反应结果冷却至室温,以二氯甲烷与水萃取数次。收集二氯甲烷层并以无水硫酸镁除水、过滤后取滤液浓缩。即得棕色液体产物(5.76g,产率52.5%)。上述反应如式12所示:
[0038]
[0039] 将1摩尔的4-(4-己基苯基)苯甲酸溶于100mL的甲苯与100mL的异辛烷中。接着将1.5摩尔的1,3-丙二硫醇滴入上述溶液,并加热至50℃。接着将1.5摩尔的三氟甲磺酸滴入上述溶液后,加热至110℃并反应约4-6小时。反应结束后降至室温,静置后析出黄色固体(9.7g,产率约86%)。上述反应如式13所示。
[0040]
[0041] 将1摩尔式13的产物溶于150mL的二氯甲烷中,再降温至-68℃。将1.2摩尔的4-溴酚与1.2摩尔的三乙胺溶于二氯甲烷后,将其慢慢滴入式13的产物溶液,并于-68℃下反应1小时,且溶液颜色由黄转变至透明。接着在-68℃下再反应1小时,其由白色悬浮液析出黄色固体。之后以1M NaOH调整反应后的液体的pH值至5-8。接着以300mL的二氯甲烷与300mL的食盐水萃取,取二氯甲烷层并以无水硫酸镁除水。过滤后取滤液浓缩,以二氯甲烷/己烷(1/20)再结晶后,在室温下抽真空三小时以得白色固体(6.8g,产率78%)。上述反应如式14所示。
[0042]
[0043] 取1摩尔式14的产物、2摩尔的双戊酰二硼、3.4摩尔的醋酸钾溶于甲苯,持续搅拌反应30分钟。之后将0.02摩尔的四(三苯基膦)钯加入上述溶液后继续搅拌30分钟,之后加热至120℃并反应隔夜。反应完成后冷却至室温,以300mL的乙酸乙酯与300mL的食盐水萃取反应结果,取乙酸乙酯层并以无水硫酸镁除水,过滤后取滤液浓缩。以二氯甲烷/甲醇(1/20)再结晶后,在室温下抽真空三小时以得白色固体(6.8g,产率90.6%)。上述反应如式15所示。
[0044]
[0045] 接着取0.102摩尔式12的产物、0.102摩尔的式15的产物、0.4摩尔的碳酸钠与300mL的甲苯加入500mL的双颈瓶中搅拌至全溶后,加入0.01摩尔的四(三苯基膦)钯并加热至100℃并在100℃下反应6小时。接着将反应结果冷却至室温,以乙酸乙酯与水萃取数次。
收集乙酸乙酯层并以无水硫酸镁除水、过滤后取滤液浓缩。即得棕色粗产物。接着以二氯甲烷/甲醇(v/v=1/2)再结晶上述粗产物即得淡紫色固体。上述固体在室温下抽真空8小时以去除溶剂,得淡紫色固体产物(6.75g,产率85.8%)。上述反应如式16所示。
[0046]
[0047] 式16产物的光谱数据如下:1H NMR(400MHz,Acetone-d6):δ8.50(d,1H),8.23(d,1H),8.19(s,1H),8.00(t,1H),7.89(t,4H),7.83(d,2H),7.67(s,1H),7.64(d,2H),7.59(d,
2H),7.57(s,2H),7.48(d,2H),7.40(s,2H),7.37(d,2H),7.33(t,1H),6.86(d,2H),6.43(d,
1H),6.39(d,2H),3.10(t,4H),2.67(t,2H),1.63(d,3H),1.63(d,3H),1.59(s,2H),1.58(s,
2H),1.40(t,2H),1.33(m,4H),1.28(m,4H),0.87(t,3H).ESI-Mass:分子式:C58H55F2N1O4,理论值:868.06,测量值:868.4715。
[0048] 取0.00868g的式16产物溶于二氯甲烷,形成10mL的透明溶液,抽取1mL再以二氯甲烷稀释成10mL,重复上述稀释步骤3次后,配置成摩尔浓度1×10-6M的测量溶液,并将其置入槽内宽度为1cm的透明石英槽中,并以UV/可见光光谱仪(SLM-468)测量其UV-Vis吸收光谱,求得最大吸收波长强度(absorption spectrum intensity)后以beer’s law(A=εb c)换算,得知其吸收系数(ε)为1.02×106。
[0049] 依表1的组成与比例调配液晶的主体材料,添加式16产物后加热至85℃使其完全溶解后冷却至室温。接着以虹吸方法将上述液晶材料灌入液晶测试盒(TN-Mode 22μm test cell)中,密封后测试样品。接着将测试样品放置在应答时间测量仪器(DMS-803c)上,先定义未曝照紫外光前的透光率为基线。之后以手持式UV灯(波长365nm)曝照液晶材料2分钟,其外观由透明色转变成深紫色。接着迅速移除UV灯,并以DMS-803c评估测试样品透光率变化,计算测试样品透光率回复至100%所需时间(液晶材料的光应答时间)。式16产物的添加量、恢复时间、与最大添加量(超过则析出而不溶解)如表2所示。
[0050] 表1(主体材料组成)
[0051]
[0052] 实施例2
[0053] 将1摩尔的4-(4-戊基环己基)苯甲酸溶于100mL的甲苯与100mL的异辛烷中。接着将1.5摩尔的1,3-丙二硫醇滴入上述溶液,并加热至50℃。接着将1.5摩尔的三氟甲磺酸滴入上述溶液后,加热至110℃并反应约4-6小时。反应结束后降至室温,静置后析出黄色固体(9.7g,产率约86%)。上述反应如式17所示。
[0054]
[0055]
[0056] 将1摩尔式17的产物溶于150mL的二氯甲烷中,再降温至-68℃。将1.2摩尔的4-溴酚与1.2摩尔的三乙胺溶于二氯甲烷后,将其慢慢滴入式17的产物溶液,并在-68℃下反应1小时,且溶液颜色由黄转变至透明。接着在-68℃下再反应1小时,其由白色悬浮液析出黄色固体。之后以1M NaOH调整反应后的液体的pH值至5-8。接着以300mL的二氯甲烷与300mL的食盐水萃取,取二氯甲烷层并以无水硫酸镁除水。过滤后取滤液浓缩,以二氯甲烷/己烷(1/20)再结晶后,在室温下抽真空三小时以得白色固体(6.8g,产率78%)。上述反应如式18所示。
[0057]
[0058] 取1摩尔式18的产物、2摩尔的双戊酰二硼、3.4摩尔的醋酸钾溶于甲苯,持续搅拌反应30分钟。之后将0.02摩尔的四(三苯基膦)钯加入上述溶液后继续搅拌30分钟,之后加热至120℃并反应隔夜。反应完成后冷却至室温,以300mL的乙酸乙酯与300mL的食盐水萃取反应结果,取乙酸乙酯层并以无水硫酸镁除水,过滤后取滤液浓缩。以二氯甲烷/甲醇(1/20)再结晶后,在室温下抽真空三小时以得白色固体(6.8g,产率90.6%)。上述反应如式19所示。
[0059]
[0060] 取0.102摩尔式12的产物、0.102摩尔式19的产物、0.4摩尔的碳酸钠与300mL的甲苯加入500mL的双颈瓶中搅拌至全溶后,加入0.01摩尔的四(三苯基膦)钯并加热至100℃并在100℃下反应6小时。接着将反应结果冷却至室温,以乙酸乙酯与水萃取数次。收集乙酸乙酯层并以无水硫酸镁除水、过滤后取滤液浓缩。即得棕色粗产物。上述反应如式20所示。接着以二氯甲烷/甲醇(v/v=1/2)再结晶上述粗产物即得淡紫色固体。上述固体在室温下抽真空8小时以去除溶剂,得淡紫色固体产物(6.52g,产率84.5%)。
[0061]
[0062] 式20的产物光谱数据如下:1H NMR(400MHz,Acetone-d6):δ8.50(d,1H),8.23(d,1H),8.19(s,1H),8.00(t,1H),7.89(dd,2H),7.69(dd,2H),7.59(d,1H),7.57(d,2H),7.43(dd,4H),7.35(q,4H),7.25(t,1H),6.87(d,2H),6.44(d,2H),6.39(dd,2H),3.11(t,4H),
2.78(t,1H),1.88(d,4H),1.59(t,4H),1.53(dd,4H),1.40(t,3H),1.31(m,9H),1.28(dd,
2H),0.89(t,3H).ESI-Mass:分子式:C57H59F2N1O4,理论值:860.08,测量值:860.4502。
[0063] 以实施例1的方法测量式20产物的吸收系数(ε)为1.06×106。
[0064] 此外,以实施例1的方法测量式20产物于液晶材料中的添加量、恢复时间与最大添加量,如表2所示。
[0065] 比较例1
[0066] 依美国专利US 8697890揭露的方式合成式21的化合物。
[0067]
[0068] 以实施例1的方法测量式21的化合物,其吸收系数(ε)为8.21×105。
[0069] 此外,以实施例1的方法测量式21的化合物在液晶材料中的添加量、恢复时间与最大添加量,如表2所示。
[0070] 比较例2
[0071] 依美国专利US 8697890揭露的方式合成式22的化合物。
[0072]
[0073] 以实施例1的方法测量式22的化合物,其吸收系数(ε)为8.23×105。
[0074] 此外,以实施例1的方法测量式22的化合物在液晶材料中的添加量、恢复时间与最大添加量,如表2所示。
[0075] 表2
[0076]
[0077] 由表2的比较可知,含有-CF2O-的光感测材料具有较高的吸收系数、较快的恢复时间与较高的添加量(即较好溶解度),可有效提升应用其的光学装置的效能,让感光变色的光学装置更为敏感、变色机制更为快速,并且与主体液晶材料结合应用更为容易。
[0078] 以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则的内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围的内。