微波复相陶瓷AWO4-TiO2及其制备方法转让专利

申请号 : CN201710050120.6

文献号 : CN106866143B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 石锋

申请人 : 山东科技大学

摘要 :

本发明提供一种微波复相陶瓷AWO4‑TiO2及其制备方法,该微波复相陶瓷AWO4‑TiO2的化学表达式为(1‑z)AWO4‑zTiO2,A=Ba,Sr,Ca,采用BaCO3、CaCO3、SrCO3中的一种或几种原料与WO3和TiO2按照ACO3:WO3:TiO2=(1‑z):(1‑z):z摩尔比配比的原料制成,其中z=0.05~0.25摩尔比含量。本发明的陶瓷具有较低的烧结温度,介电常数较小,品质因数较高,谐振频率温度系数小且连续可调的优点,可以用于微波基板材料和微波封装陶瓷。

权利要求 :

1.一种低温烧结微波复相陶瓷AWO4-TiO2的制备方法,其特征在于,该低温烧结微波复相陶瓷AWO4-TiO2的化学表达式为(1-z)AWO4-zTiO2,A=Ba,采用BaCO3与WO3和TiO2按照ACO3:WO3:TiO2=(1-z):(1-z):z摩尔比配比的原料制成,其中z=0.25摩尔比含量,所述的制备方法按如下步骤进行:步骤1,按照原料配比称取原料;

步骤2,将步骤1的原料放入球磨机中,加入去离子水和氧化锆球,球磨16小时,再将球磨后的原料在电热鼓风式干燥箱里于100℃条件下烘干,烘干后的粉料过40目筛,得颗粒均匀的粉料;

步骤3,将经过步骤2处理的粉料升温至950℃,保温8小时,得预烧料;

步骤4,将经过步骤3处理的预烧料放入球磨机中,在聚氨酯球磨机中加入去离子水和氧化锆球,球磨16小时,最后将球磨后的原料于100℃下烘干;

步骤5,取步骤4经烘干后的预烧料加入聚乙烯醇PVA溶液,造粒,烘干后过80目筛,获得颗粒均匀的粉料,再用粉末压片机压制成坯体,压制成一定尺寸的圆柱形坯体;

步骤6,将坯体在空气中于1300℃下经过16小时烧制,得产品;

随炉冷却之后经测试,制备的所述微波复相陶瓷AWO4-TiO2的介电常数εr=11,品质因数Qf=55000,谐振频率温度系数τf=-20ppm/℃。

说明书 :

微波复相陶瓷AWO4-TiO2及其制备方法

技术领域

[0001] 本发明涉及电子材料领域,特别是涉及到一种低温烧结微波复相陶瓷AWO4-TiO2及其制备方法。

背景技术

[0002] 微波介质陶瓷指适用于微波频段(300MHz~3000GHz)的低损耗、温度稳定的信息功能陶瓷材料,广泛应用于谐振器、滤波器、电容器、振荡器、双工器、介质波导、基板和天线等,是移动通信、卫星通信、全球卫星定位系统(GPS)、军事雷达、无线局域网(WLAN)以及物联网(IOT)等现代微波通信技术的关键材料,对微波元器件的小型化和提高器件的选择性具有重要的意义。近年来随着微波通讯技术的迅猛发展,微波介质陶瓷成为国内外研究的热点,日益受到各国的高度重视。微波介质陶瓷的介电性能主要包括三个参数:介电常数εr、介电损耗tanδ(品质因数Q=1/tanδ)以及谐振频率温度系数τf。高性能的微波介质陶瓷不同于一般的功能陶瓷,它需要满足相对介电常数大、品质因数高、谐振频率温度系数近0且可调等要求。
[0003] 为了降低成本,必须制备具有较低烧结温度的陶瓷。然而,大多数介质陶瓷材料的烧结温度都相对较高,为此我们发明了一种新的低温烧结微波复合陶瓷AWO4-TiO2及其制备方法,具有优异的介电性能。

发明内容

[0004] 本发明的目的之一是提供一种适于低温烧结的、具有优良介电性能的微波复合陶瓷,可以作为微波封装和微波基板材料应用在毫米波领域的低温烧结微波复相陶瓷AWO4-TiO2;目的之二是提供低温烧结微波复相陶瓷AWO4-TiO2制备方法。
[0005] 本发明的目的之一可通过如下技术措施来实现:
[0006] 该低温烧结微波复相陶瓷AWO4-TiO2的化学表达式为(1-z)AWO4-zTiO2,A=Ba,Sr,Ca,采用BaCO3、CaCO3、SrCO3中的一种或几种原料与WO3和TiO2按照ACO3:WO3:TiO2=(1-z):(1-z):z摩尔比配比的原料制成,其中z=0.05~0.25摩尔比含量。
[0007] 本发明的目的之一还可通过如下技术措施来实现:
[0008] 进一步,所述的原料为BaCO3、CaCO3、SrCO3中的一种或几种原料、WO3和TiO2按照ACO3:WO3:TiO2=(1-(0.1~0.2)):(1-(0.1~0.2)):0.1~0.2摩尔比配比混合而成。
[0009] 更进一步,所述的原料为BaCO3、CaCO3、SrCO3中的一种或几种原料、WO3和TiO2按照ACO3:WO3:TiO2=0.85:0.85:0.15摩尔比配比混合而成。
[0010] 进一步,所述的原料为SrCO3:CaCO3:WO3:TiO2=x(1-z):(1-x)(1-z):(1-z):z摩尔比配比混合而成,其中,0<x<1。
[0011] 更进一步,所述的原料为BaCO3:SrCO3:WO3:TiO2=y(1-z):(1-y)(1-z):(1-z):z摩尔比配比混合而成,其中,0<y<1。
[0012] 进一步,所述的原料为CaCO3:BaCO3:WO3:TiO2=m(1-z):(1-m)(1-z):(1-z):z摩尔比配比混合而成,其中,0<m<1。
[0013] 更进一步,所述的原料为SrCO3:BaCO3:CaCO3:WO3:TiO2=x(1-z):y(1-z):m(1-z):(1-z):z摩尔比配比混合而成,其中,0<x<1,0<y<10<m<1,x+y+m=1。
[0014] 本发明的目的之二可通过如下技术措施来实现:
[0015] 用上述的原制备低温烧结微波复相陶瓷AWO4-TiO2的方法,该方法按如下步骤进行:
[0016] 步骤1,按照原料配比称取原料;
[0017] 步骤2,将步骤1的原料放入球磨机中,加入去离子水和氧化锆球,球磨2~16小时,再将球磨后的原料烘干,过筛,得颗粒均匀的粉料;
[0018] 步骤3,将经过步骤2处理的粉料升温至950℃-1050℃,保温2~8小时,得预烧料;
[0019] 步骤4,将经过步骤3处理的预烧料放入球磨机中,加入去离子水和氧化锆球,球磨2~16小时,最后将球磨后的原料烘干;
[0020] 步骤5,取步骤4经烘干后的预烧料加入聚乙烯醇PVA溶液,造粒,再用粉末压片机压制成坯体;
[0021] 步骤6,将坯体在空气中于1100~1300℃下经过2~16小时烧制,得产品。
[0022] 本发明的目的之二还可通过如下技术措施来实现:
[0023] 进一步,步骤2中所述的球磨时间为12小时;步骤3中所述的升温为1000℃,保温4小时;步骤4中所述的球磨时间为8小时;步骤6中所述的坯体于1200℃下烧制12小时。
[0024] 该低温烧结微波复相陶瓷AWO4-TiO2的制备方法还包括,在步骤6之后,通过网络分析仪测试制品的微波介电性能,测试的微波介电性能包括介电常数εr、品质因数Qf以及谐振频率温度系数τf。
[0025] 本发明中的低温烧结微波复相陶瓷AWO4-TiO2及其制备方法,属于电子材料技术领域,该陶瓷以AWO4(A=Ba,Sr,Ca)为主晶相材料,而以TiO2调节温度系数,最大添加量不超过30%。以高纯度的BaCO3、CaCO3、SrCO3、WO3和TiO2为原料经球磨、干燥、过筛、聚乙烯醇PVA造粒、成型和排胶处理后在空气中于1100~1300℃下经过2~16小时烧成。本发明制备的低温烧结微波陶瓷材料,具有小的介电常数εr(11~16)和高的Q值(Qf介于35000~55000),频率温度系数近零可调(-20ppm/℃≤τf≤+30ppm/℃)。

附图说明

[0026] 图1为本发明的低温烧结微波复相陶瓷AWO4-TiO2制备方法的一具体实施例的流程图。

具体实施方式

[0027] 为使本发明的上述和其他目的、特征和优点能更明显易懂,下面结合具体实施例对本发明作进一步详细说明。以下实施例所涉及的配方是非限定性实施方式,只是用于具体说明本发明,本领域的技术人员完全可以根据本发明的思路和选料配比筛选出的配方均为本发明的保护范围。
[0028] 参照图1:
[0029] 在步骤101,将高纯度BaCO3、CaCO3、SrCO3中的一种或几种原料与WO3和TiO2按照ACO3:WO3:TiO2=(1-z):(1-z):z摩尔比配配比称取原料
[0030] 在步骤102,将步骤101的原料放入球磨机中,加入去离子水和氧化锆球,球磨2~16小时;再将球磨后的原料于100℃烘干,过40目筛,获得颗粒均匀的粉料。
[0031] 在步骤103,将步骤102的过筛后的粉料于950℃-1050℃预烧,并在此温度下保温2~8小时。
[0032] 在步骤104,将步骤103的预烧料放入球磨机中,加入去离子水和氧化锆球,球磨2~16小时;再将球磨后的原料于100℃烘干。
[0033] 在步骤105,烘干后外加聚乙烯醇PVA溶液作为粘合剂造粒,烘干后过80目筛,获得颗粒均匀的粉料,用粉末压片机压制成坯体。
[0034] 在步骤106,将上述坯体在空气中于1100~1300℃下经过2~16小时烧成,制成低温烧结小介电常数微波复合陶瓷。
[0035] 在步骤107,通过网络分析仪测试制品的微波介电性能。测试的微波介电性能包括介电常数εr、介电损耗tanδ(品质因数Q=1/tanδ)以及谐振频率温度系数τf。
[0036] 本发明的陶瓷具有较低的烧结温度,介电常数较小,品质因数较高,谐振频率温度系数小且连续可调的优点,可以用于微波基板材料和微波封装陶瓷。本发明工艺简单,过程无污染,是一种有前途的小介电常数微波介质材料。以下为应用本发明的几个具体实施例。
[0037] 实施例1:
[0038] 该低温烧结微波复相陶瓷AWO4-TiO2的化学表达式为(BaWO4)0.75-(TiO2)0.25,其制备方法为:
[0039] 步骤1,将高纯度的BaCO3、WO3和TiO2按照BaCO3:WO3:TiO2=0.75:0.75:0.25摩尔比进行准确称量配料;
[0040] 步骤2,将步骤1的原料放入行星式球磨机里,加入去离子水和氧化锆球,球磨16小时,再将球磨后的原料在电热鼓风式干燥箱里于100℃条件下烘干,烘干后的粉料过40目筛,得颗粒均匀的粉料;
[0041] 步骤3,将经过步骤2处理的粉料升温至950℃,保温8小时,得预烧料;
[0042] 步骤4,将经过步骤3处理的预烧料放入球磨机中,在聚氨酯球磨机中加入去离子水和氧化锆球,球磨16小时,最后将球磨后的原料于100℃下烘干;
[0043] 步骤5,取步骤4经烘干后的预烧料加入聚乙烯醇PVA溶液,造粒,烘干后过80目筛,获得颗粒均匀的粉料,再用粉末压片机压制成坯体,压制成一定尺寸的圆柱形坯体;
[0044] 步骤6,将坯体在空气中于1300℃下经过16小时烧制,得产品。随炉冷却之后经测试,介电性能为εr=11;Qf=55000,τf=-20ppm/℃。
[0045] 实施例2:
[0046] 该低温烧结微波复相陶瓷AWO4-TiO2的化学表达式为(CaWO4)0.95-(TiO2)0.05,其制备方法为:
[0047] 步骤1,将高纯度的CaCO3、WO3和TiO2按照CaCO3:WO3:TiO2=0.95:0.95:0.05摩尔比进行准确称量配料;
[0048] 步骤2,将步骤1的原料放入行星式球磨机里,加入去离子水和氧化锆球,球磨2小时,再将球磨后的原料在电热鼓风式干燥箱里于100℃条件下烘干,烘干后的粉料过40目筛,得颗粒均匀的粉料;
[0049] 步骤3,将经过步骤2处理的粉料升温至1050℃,保温2小时,得预烧料;
[0050] 步骤4,将经过步骤3处理的预烧料放入球磨机中,在聚氨酯球磨机中加入去离子水和氧化锆球,球磨16小时,最后将球磨后的原料于100℃下烘干;
[0051] 步骤5,取步骤4经烘干后的预烧料加入聚乙烯醇PVA溶液,造粒,烘干后过80目筛,获得颗粒均匀的粉料,再用粉末压片机压制成坯体,压制成一定尺寸的圆柱形坯体;
[0052] 步骤6,将坯体在空气中于1100℃下经过2小时烧制,得产品。随炉冷却之后经测试,介电性能为εr=16;Qf=35000,τf=30ppm/℃。
[0053] 实施例3:
[0054] 该低温烧结微波复相陶瓷AWO4-TiO2的化学表达式为(SrWO4)0.9-(TiO2)0.1,其制备方法为:
[0055] 步骤1,将高纯度的SrCO3、WO3和TiO2按照SrCO3:WO3:TiO2=0.9:0.9:0.1摩尔比进行准确称量配料;
[0056] 步骤2,将步骤1的原料放入行星式球磨机里,加入去离子水和氧化锆球,球磨12小时,再将球磨后的原料在电热鼓风式干燥箱里于100℃条件下烘干,烘干后的粉料过40目筛,得颗粒均匀的粉料;
[0057] 步骤3,将经过步骤2处理的粉料升温至1000℃,保温4小时,得预烧料;
[0058] 步骤4,将经过步骤3处理的预烧料放入球磨机中,在聚氨酯球磨机中加入去离子水和氧化锆球,球磨8小时,最后将球磨后的原料于100℃下烘干;
[0059] 步骤5,取步骤4经烘干后的预烧料加入聚乙烯醇PVA溶液,造粒,烘干后过80目筛,获得颗粒均匀的粉料,再用粉末压片机压制成坯体,压制成一定尺寸的圆柱形坯体;
[0060] 步骤6,将坯体在空气中于1200℃下经过12小时烧制,得产品。随炉冷却之后经测试,介电性能为εr=12.4;Qf=44654,τf=-1.4ppm/℃。
[0061] 实施例4:
[0062] 该低温烧结微波复相陶瓷AWO4-TiO2的化学表达式为(Sr0.5Ca0.5WO4)0.8-(TiO2)0.2,其制备方法为:
[0063] 步骤1,将高纯度的SrCO3、CaCO3、WO3和TiO2按照SrCO3:CaCO3:WO3:TiO2=0.4:0.4:0.8:0.2的摩尔比关系进行准确称量配料;
[0064] 步骤2,将步骤1的原料放入行星式球磨机里,加入去离子水和氧化锆球,球磨2小时,再将球磨后的原料在电热鼓风式干燥箱里于100℃条件下烘干,烘干后的粉料过40目筛,得颗粒均匀的粉料;
[0065] 步骤3,将经过步骤2处理的粉料升温至1050℃,保温6小时,得预烧料;
[0066] 步骤4,将经过步骤3处理的预烧料放入球磨机中,在聚氨酯球磨机中加入去离子水和氧化锆球,球磨8小时,最后将球磨后的原料于100℃下烘干;
[0067] 步骤5,取步骤4经烘干后的预烧料加入聚乙烯醇PVA溶液,造粒,烘干后过80目筛,获得颗粒均匀的粉料,再用粉末压片机压制成坯体,压制成一定尺寸的圆柱形坯体;
[0068] 步骤6,将坯体在空气中于1250℃下经过4小时烧制,得产品。随炉冷却之后经测试,介电性能为εr=11.4;Qf=52894,τf=-17.4ppm/℃。
[0069] 实施例5:
[0070] 该低温烧结微波复相陶瓷AWO4-TiO2的化学表达式为(Ba0.8Sr0.2WO4)0.85-(TiO2)0.15,其制备方法为:
[0071] 步骤1,将高纯度的BaCO3、SrCO3、WO3和TiO2按照BaCO3:SrCO3:WO3:TiO2=0.68:0.17:0.85:0.15的摩尔比关系进行准确称量配料;
[0072] 步骤2,将步骤1的原料放入行星式球磨机里,加入去离子水和氧化锆球,球磨5小时,再将球磨后的原料在电热鼓风式干燥箱里于100℃条件下烘干,烘干后的粉料过40目筛,得颗粒均匀的粉料;
[0073] 步骤3,将经过步骤2处理的粉料升温至980℃,保温6小时,得预烧料;
[0074] 步骤4,将经过步骤3处理的预烧料放入球磨机中,在聚氨酯球磨机中加入去离子水和氧化锆球,球磨10小时,最后将球磨后的原料于100℃下烘干;
[0075] 步骤5,取步骤4经烘干后的预烧料加入聚乙烯醇PVA溶液,造粒,烘干后过80目筛,获得颗粒均匀的粉料,再用粉末压片机压制成坯体,压制成一定尺寸的圆柱形坯体;
[0076] 步骤6,将坯体在空气中于1200℃下经过4小时烧制,得产品。随炉冷却之后经测试,介电性能为εr=14.2;Qf=45750,τf=3.4ppm/℃。
[0077] 实施例6:
[0078] 该低温烧结微波复相陶瓷AWO4-TiO2的化学表达式为(Ca0.6Ba0.2WO4)0.8-(TiO2)0.2,其制备方法为:
[0079] 步骤1,将高纯度的CaCO3、BaCO3、WO3和TiO2按照CaCO3:BaCO3:WO3:TiO2=0.48:0.12:0.8:0.2的摩尔比关系进行准确称量配料;
[0080] 步骤2,将步骤1的原料放入行星式球磨机里,加入去离子水和氧化锆球,球磨4小时,再将球磨后的原料在电热鼓风式干燥箱里于100℃条件下烘干,烘干后的粉料过40目筛,得颗粒均匀的粉料;
[0081] 步骤3,将经过步骤2处理的粉料升温至980℃,保温6小时,得预烧料;
[0082] 步骤4,将经过步骤3处理的预烧料放入球磨机中,在聚氨酯球磨机中加入去离子水和氧化锆球,球磨10小时,最后将球磨后的原料于100℃下烘干;
[0083] 步骤5,取步骤4经烘干后的预烧料加入聚乙烯醇PVA溶液,造粒,烘干后过80目筛,获得颗粒均匀的粉料,再用粉末压片机压制成坯体,压制成一定尺寸的圆柱形坯体;
[0084] 步骤6,将坯体在空气中于1250℃下经过8小时烧制,得产品。随炉冷却之后经测试,介电性能为εr=12.2;Qf=46850,τf=-10.2ppm/℃。
[0085] 实施例7:
[0086] 该低温烧结微波复相陶瓷AWO4-TiO2的化学表达式为(Sr0.4Ba0.4Ca0.2WO4)0.8-(TiO2)0.2,其制备方法为:
[0087] 步骤1,将高纯度的SrCO3、BaCO3、CaCO3、WO3和TiO2按照SrCO3:BaCO3:CaCO3:WO3:TiO2=0.32:0.32:0.16:0.8:0.2的摩尔比关系进行准确称量配料;
[0088] 步骤2,将步骤1的原料放入行星式球磨机里,加入去离子水和氧化锆球,球磨6小时,再将球磨后的原料在电热鼓风式干燥箱里于100℃条件下烘干,烘干后的粉料过40目筛,得颗粒均匀的粉料;
[0089] 步骤3,将经过步骤2处理的粉料升温至980℃,保温6小时,得预烧料;
[0090] 步骤4,将经过步骤3处理的预烧料放入球磨机中,在聚氨酯球磨机中加入去离子水和氧化锆球,球磨8小时,最后将球磨后的原料于100℃下烘干;
[0091] 步骤5,取步骤4经烘干后的预烧料加入聚乙烯醇PVA溶液,造粒,烘干后过80目筛,获得颗粒均匀的粉料,再用粉末压片机压制成坯体,压制成一定尺寸的圆柱形坯体;
[0092] 步骤6,将坯体在空气中于1180℃下经过8小时烧制,得产品。随炉冷却之后经测试,介电性能为εr=15.2;Qf=36800,τf=23.6ppm/℃。
[0093] 以上所述,仅为本发明其中的具体实施方式,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明专利的保护范围之内。