一种制备氟掺杂羟基磷灰石/磷酸镁复合涂层的水热辅助溶胶凝胶方法转让专利

申请号 : CN201710081501.0

文献号 : CN106868474B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 蔡舒江洋洋凌瑞李玥花少帅

申请人 : 天津大学

摘要 :

本发明涉及一种制备氟掺杂羟基磷灰石/磷酸镁复合涂层的水热辅助溶胶凝胶方法。将钙磷氟体系的溶胶移至反应釜中,并放入碱处理后的镁合金,使镁合金完全浸没于溶胶中,移入烘箱中水热反应;反应结束后随烘箱冷却至室温,取出反应釜,开釜后取出镁合金,用洗涤剂清洗,干燥得到氟掺杂羟基磷灰石/磷酸镁复合涂层包覆的镁合金。本发明制备的氟掺杂羟基磷灰石/磷酸镁复合涂层显著提高了镁合金在模拟体液中的耐蚀性。电化学测试得出其交流阻抗为275.9KΩ·cm2,即制得的涂层具有显著地短期耐蚀性;涂层厚度为20μm且较致密,这保证了涂层的长期耐蚀性。本涂层制备工艺简单、经济、环镜友好。

权利要求 :

1.一种制备氟掺杂羟基磷灰石/磷酸镁复合涂层的水热辅助溶胶凝胶方法;其特征是步骤如下:

1)钙磷氟体系溶胶的制备:以钙的化合物、磷的化合物、氟的化合物为原料,分别配制溶液,搅拌30min~2h;将含氟溶液滴加到含磷溶液中搅拌30min~2h;将含氟、磷溶液滴入含钙溶液中,滴加碱液使pH维持在9~12,搅拌1~4h,静置12~24h,得到钙磷氟体系的溶胶,其中Ca2+的浓度为0.2mol/L,PO43-的浓度为0.120~0.132mol/L,F-的浓度为0.01~

0.04mol/L;

2)将钙磷氟体系的溶胶移至反应釜中,并放入碱处理后的镁合金,使镁合金完全浸没于溶胶中,移入烘箱中水热反应;反应结束后随烘箱冷却至室温,取出反应釜,开釜后取出镁合金,用洗涤剂清洗,干燥得到氟掺杂羟基磷灰石/磷酸镁复合涂层包覆的镁合金。

2.如权利要求1所述的方法,其特征是所述的镁合金进行表面碱处理:将镁合金表面打磨至1200~2000目,然后依次在丙酮、去离子水、乙醇中超声清洗3~10min,烘干;再将镁合金浸泡在NaOH溶液中于60~90℃保温,然后用去离子水润洗,烘干。

3.如权利要求1所述的方法,其特征是所述的步骤2)水热反应在120℃~150℃温度下,反应6~12h。

4.如权利要求1所述的方法,其特征是所述的钙的化合物是Ca(NO3)2或Ca(OH)2。

5.如权利要求1所述的方法,其特征是所述的磷的化合物是NH4H2PO4或(NH4)2HPO4。

6.如权利要求1所述的方法,其特征是所述的氟的化合物是NH4F或NaF。

7.如权利要求1所述的方法,其特征是所述的碱液是氨水或NaOH。

8.如权利要求1所述的方法,其特征是所述的洗涤剂选用去离子水或乙醇。

说明书 :

一种制备氟掺杂羟基磷灰石/磷酸镁复合涂层的水热辅助溶

胶凝胶方法

技术领域

[0001] 本发明属于生物医学材料技术领域,具体涉及一种制备氟掺杂羟基磷灰石/磷酸镁复合涂层的水热辅助溶胶凝胶方法。

背景技术

[0002] 镁及其合金已经成为骨植入生物材料研究的热点。一方面,镁合金具有良好的力学性能:镁合金的密度(1.74~2.0g/cm2)与人骨密度相近,镁合金的弹性模量(45GPa)远低于不锈钢、钴铬合金及钛合金,可以避免应力遮挡效应的发生;另一方面,镁合金具有良好的生物相容性及生物活性:镁是人体内的必要元素,参与了人体内的多项生物活动,随着时间的延长,镁会降解随体液排出,免除了二次手术为患者带来的痛苦。然而,镁合金的过快降解极大地限制了其在临床方面的应用。而镁合金的表面改性被认为是延缓镁合金腐蚀的有效方法。
[0003] 作为表面改性常用的无机材料之一,羟基磷灰石具有与天然骨相同的成分,具有良好的生物相容性和生物活性,植入人体后可以诱导周围骨组织的生长,与骨形成牢固的化学结合。早在1920年,羟基磷灰石已成功用于骨缺损修复,如今,羟基磷灰石已在骨损伤修复、骨组织取代等方面取得令人欣慰的结果。然而,羟基磷灰石涂层包覆镁合金的耐蚀性不能满足现实的应用。
[0004] 大量文献表明,氟离子对羟基磷灰石中氢氧根的取代使得其晶格参数变小,晶体结构变得更加致密。张超武等(专利号CN201410458025.6)采用溶胶凝胶法制备了氟硅钠掺杂羟基磷灰石粉末。张希华等(专利号CN201510354629.0)采用化学沉淀法制备了氟掺杂羟基磷灰石粉末,并与氧化铝粉末通过热压烧结制备了复合生物陶瓷。由此可见,若在镁合金表面制备氟掺杂羟基磷灰石涂层,将有益于提高涂层的结晶度以及致密度,进而可以提高镁合金在生理环境中的耐蚀性,延长镁合金在生理环境中的降解周期。
[0005] 磷酸镁及其水合物在水中具有优良的抗溶解性、高温稳定性及化学稳定性,常被用于涂覆于合金表面以延缓合金的腐蚀速率。周欢等(专利号CNIO4451631A)采用化学转化法在镁合金表面制备了焦磷酸镁涂层。萨梅库马尔·瓦桑特拉·帕特尔(专利号CNIO5683414A)采用化学转化法在金属表面制备磷酸镁的抗腐蚀涂层。若能在镁合金表面制备氟掺杂羟基磷灰石/磷酸镁复合涂层,则可在保证镁合金生物活性的前提下,进一步提高镁合金在生理环境中的耐蚀性。
[0006] 目前可以采用多种方法在镁合金表面制备氟掺杂羟基磷灰石涂层,如溶胶凝胶法、化学转化法、电泳沉积法、等离子喷涂法等。其中,张绍翔等(专利号2015102717772.3)采用电沉积法在镁合金表面制备了银氟羟基磷灰石涂层。蔡舒等(专利号201510956380.0)采用微波法在镁合金表面制备双层氟掺杂羟基磷灰石涂层。陆伟等(专利号200710042106.8)采用化学转化法在镁合金上制备了氟羟基磷灰石涂层。上述各种氟掺杂羟基磷灰石涂层均能改善镁合金的耐蚀性,但受到制备工艺的限制,尚有发展的空间。如:
采用电沉积技术制备的羟基磷灰石涂层的致密度不高,对镁合金基体的保护作用有限;采用微波法制备的涂层结合强度不高,对镁合金的保护作用不如人意;采用化学转化结合热处理的方法制备的涂层由于高温应力的作用易开裂,对镁合金的长期保护受到挑战。而在镁合金表面制备氟掺杂羟基磷灰石/磷酸镁复合涂层较少。仅有刘书跃等(专利号CNIO2824656A)采用固相反应法制备了氧化锆、羟基磷灰石和磷酸镁的层状复合材料。但该方法过程复杂,反应温度高,涂层由于表面应力有开裂脱落的风险,从而影响其在生理环境中的有效使用。朱沛志等(专利号CNIO5194732A)采用水热辅助溶胶凝胶法在镍钛合金表面制备了氟掺杂羟基磷灰石涂层。水热辅助溶胶凝胶法制备的涂层的结晶度、致密度、与基体的结合强度较高,目前尚未见采用水热辅助溶胶凝胶法制备氟掺杂羟基磷灰石/磷酸镁复合涂层。

发明内容

[0007] 为了解决现有技术存在的问题,本发明的目的是提供一种氟掺杂羟基磷灰石/磷酸镁复合涂层的水热辅助溶胶凝胶制备方法,且显著提高了镁合金在生理环境中的耐蚀性。
[0008] 本发明的技术方案如下:
[0009] 一种制备氟掺杂羟基磷灰石/磷酸镁复合涂层的水热辅助溶胶凝胶方法,具体步骤如下:
[0010] 1)钙磷氟体系溶胶的制备:以钙的化合物、磷的化合物、氟的化合物为原料,分别配置溶液,搅拌30min~2h;将含F溶液滴加到含P溶液中搅拌30min~2h;将含F、P溶液滴入含Ca溶液中,滴加氨水或NaOH使pH维持在9~12,搅拌1~4h,静置12~24h,得到钙磷氟体系的溶胶,其中Ca2+的浓度为0.2mol/L,PO43-的浓度为0.120~0.132mol/L,F-的浓度为0.01~0.04mol/L;
[0011] 2)将钙磷氟体系的溶胶移至反应釜中,并放入碱处理后的镁合金,使镁合金完全浸没于溶胶中,移入烘箱中水热反应;反应结束后随烘箱冷却至室温,取出反应釜,开釜后取出镁合金,用洗涤剂清洗,干燥得到氟掺杂羟基磷灰石/磷酸镁复合涂层包覆的镁合金。
[0012] 所述的镁合金优选进行表面碱处理:将镁合金表面打磨至1200~2000目,然后依次在丙酮、去离子水、乙醇中超声清洗3~10min,烘干;再将镁合金浸泡在NaOH溶液中于60~90℃保温,然后用去离子水润洗,烘干。
[0013] 所述的步骤(2)水热反应优选在120℃~150℃温度下,反应6~12h。
[0014] 所述的钙的化合物优选是Ca(NO3)2或Ca(OH)2。
[0015] 所述的磷的化合物优选是NH4H2PO4或(NH4)2HPO4。
[0016] 所述的氟的化合物优选是NH4F或NaF。
[0017] 所述的碱液优选是氨水或NaOH。
[0018] 所述的洗涤剂选用去离子水或乙醇。
[0019] 综上所述,本发明的核心在于配制含Ca、P和F的溶胶,再通过水热辅助溶胶凝胶法在镁合金基体表面生成氟掺杂羟基磷灰石/磷酸镁复合涂层。
[0020] 与现有技术相比,本发明的优点在于:
[0021] (1)本发明制备的涂层由大量氟掺杂羟基磷灰石的细小棒状晶体和磷酸镁的长棒状晶体堆积而成,结晶性、均匀性好,结构致密。
[0022] (2)本发明制备的氟掺杂羟基磷灰石/磷酸镁复合涂层显著提高了镁合金在模拟体液中的耐蚀性。电化学测试得出其交流阻抗为275.9KΩ·cm2,即制得的涂层具有显著地短期耐蚀性;涂层厚度约为20μm(涂层厚度不均一)且较致密,这保证了涂层的长期耐蚀性。
[0023] (3)本发明制备设备简单,工艺简便。
[0024] (4)本发明可靠性高。对于任何形状、尺寸的镁合金试样,均可以在其表面制备氟掺杂羟基磷灰石/磷酸镁复合涂层。

附图说明

[0025] 图1为本发明实施例1所制备的氟掺杂羟基磷灰石/磷酸镁复合涂层的XRD图谱。
[0026] 图2为本发明实施例1所制备的氟掺杂羟基磷灰石/磷酸镁复合涂层的表面形貌SEM照片
[0027] 图3为本发明实施例1所制备的氟掺杂羟基磷灰石/磷酸镁复合涂层包覆镁合金在模拟体液中的交流阻抗图谱。
[0028] 图4为本发明实施例1所制备的氟掺杂羟基磷灰石/磷酸镁复合涂层的截面SEM图。

具体实施方式

[0029] 实施例1
[0030] 将AZ31镁合金加工成10mm×10mm×2mm的块体,依次用240#、1200#、2000#的SiC砂纸打磨,然后依次在丙酮、去离子水、乙醇中超声清洗10min,热风烘干。配制0.1mol/L的NaOH去离子水溶液100mL。将打磨后的镁合金浸泡在NaOH溶液中于60℃保温1h,然后将镁合金试样用去离子水润洗,烘干,得到预处理的镁合金。以Ca(NO3)2、NH4H2PO4、NH4F为原料分别配置溶液,搅拌30min;将NH4F溶液滴加到NH4H2PO4溶液中搅拌30min;将含F、P溶液逐滴滴入Ca(NO3)2溶液中,滴加氨水使pH维持在9,搅拌1h,静置12h,得到钙磷氟体系的溶胶。其中Ca2+的浓度为0.2mol/L,PO43-的浓度为0.132mol/L,F-的浓度为0.01mol/L。将钙磷氟体系的溶胶移至反应釜中,并放入碱处理后的镁合金,使镁合金完全浸没于溶胶中,移入烘箱120℃下水热6h,反应结束后随烘箱冷却至室温取出反应釜,开釜后取出镁合金,用去离子水清洗,干燥备用,得到涂层包覆的镁合金。所制备的涂层XRD图谱如图1所示,合成的涂层为Mg2PO4OH、Mg(H2PO2)2·6H2O和FHA的复合涂层。涂层的形貌如图2所示,涂层由长棒状的结构紧密堆积而成。涂层的交流阻抗图谱如图3所示复合涂层包覆镁合金的交流阻抗为275.9KΩ·cm2。涂层的截面形貌如图4所示,制备的涂层包覆镁合金样品被嵌于树脂粉中压制抛光后进行截面测试,得到复合涂层的厚度约为20μm(涂层厚度不均一)。
[0031] 实施例2
[0032] 将AZ31镁合金加工成10mm×10mm×2mm的块体,依次用240#、1200#、2000#的SiC砂纸打磨,然后依次在丙酮、去离子水、乙醇中超声清洗10min,热风烘干。配制0.15mol/L的NaOH去离子水溶液100mL。将打磨后的镁合金浸泡在NaOH溶液中于70℃保温1h,然后将镁合金试样用去离子水润洗,烘干,得到预处理的镁合金。以Ca(NO3)2、NH4H2PO4、NH4F为原料分别配置溶液,搅拌1h;将NH4F溶液滴加到NH4H2PO4溶液中搅拌1h;将含F、P溶液逐滴滴入Ca(NO3)2溶液中,滴加氨水使pH维持在10,搅拌2h,静置15h,得到钙磷氟体系的溶胶。其中Ca2+的浓度为0.2mol/L,PO43-的浓度为0.128mol/L,F-的浓度为0.02mol/L。将钙磷氟体系的溶胶移至反应釜中,并放入碱处理后的镁合金,使镁合金完全浸没于溶胶中,移入烘箱130℃下水热8h,反应结束后随烘箱冷却至室温取出反应釜,开釜后取出镁合金,用去离子水清洗,干燥备用,得到涂层包覆的镁合金。所制备的复合涂层由大量长棒状晶体堆积而成。涂层包覆的镁合金交流阻抗为160.9KΩ·cm2。
[0033] 实施例3
[0034] 将AZ31镁合金加工成10mm×10mm×2mm的块体,依次用240#、1200#、2000#的SiC砂纸打磨,然后依次在丙酮、去离子水、乙醇中超声清洗10min,热风烘干。配制0.2mol/L的NaOH去离子水溶液100mL。将打磨后的镁合金浸泡在NaOH溶液中于80℃保温1h,然后将镁合金试样用去离子水润洗,烘干,得到预处理的镁合金。以Ca(NO3)2、NH4H2PO4、NH4F为原料分别配置溶液,搅拌1.5h;将NH4F溶液滴加到NH4H2PO4溶液中搅拌1.5h;将含F、P溶液逐滴滴入Ca2+
(NO3)2溶液中,滴加氨水使pH维持在10,搅拌3h,静置18h,得到钙磷氟体系的溶胶。其中Ca的浓度为0.2mol/L,PO43-的浓度为0.125mol/L,F-的浓度为0.03mol/L,。将钙磷氟体系的溶胶移至反应釜中,并放入碱处理后的镁合金,使镁合金完全浸没于溶胶中,移入烘箱130℃下水热10h,反应结束后随烘箱冷却至室温取出反应釜,开釜后取出镁合金,用去离子水清洗,干燥备用,得到涂层包覆的镁合金。所制备的复合涂层由大量长棒状晶体堆积而成。涂层包覆的镁合金交流阻抗为1694KΩ·cm2。
[0035] 实施例4
[0036] 将AZ31镁合金加工成10mm×10mm×2mm的块体,依次用240#、1200#、2000#的SiC砂纸打磨,然后依次在丙酮、去离子水、乙醇中超声清洗10min,热风烘干。配制0.25mol/L的NaOH去离子水溶液100mL。将打磨后镁合金浸泡在NaOH溶液中于90℃保温1h,然后将镁合金试样用去离子水润洗,烘干,得到预处理的镁合金。以Ca(NO3)2、NH4H2PO4、NH4F为原料分别配置溶液,搅拌2h;将NH4F溶液滴加到NH4H2PO4溶液中搅拌2h;将含F、P溶液逐滴滴入Ca(NO3)2溶液中,滴加碱液使pH维持在12,搅拌4h,静置24h,得到钙磷氟体系的溶胶。其中Ca2+的浓度为0.2mol/L,PO43-的浓度为0.120mol/L,F-的浓度为0.04mol/L;将钙磷氟体系的溶胶移至反应釜中,并放入碱处理后的镁合金,移入烘箱150℃下水热12h;反应结束后随烘箱冷却至室温取出反应釜,开釜后取出镁合金,用去离子水清洗,干燥备用,得到涂层包覆的镁合金。所制备的复合涂层由大量长棒状晶体堆积而成。涂层包覆的镁合金交流阻抗为270KΩ·cm2。