超顺磁性核壳结构介孔分子印迹聚合物的制备及作为固相萃取剂的应用转让专利

申请号 : CN201710178794.4

文献号 : CN106883411B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王雪梅黄鹏飞王欢马晓敏王娟杜彤彤

申请人 : 西北师范大学

摘要 :

本发明提供了一种超顺磁性介孔分子印迹聚合物MMIPs‑TBBPS的制备方法,是以正硅酸四乙酯作交联剂,3‑氨丙基三乙氧基硅烷作功能单体,四溴双酚S作模板分子,通过一锅法制得聚合物包覆Fe3O4纳米粒子的磁性分子印迹聚合物,最后用索氏提取法洗脱模板剂,得超顺磁性介孔分子印迹聚合物MMIPs‑TBBPS。该印迹聚合物具有均匀的核壳结构,大的比表面积,高度有序的介孔结构和较高的饱和磁化强度,具有快速的结合能力,优异的磁响应和特异选择性吸附能力,对常见的溴代阻燃剂具有较高的去除效率和平衡吸附量,尤其是对TBBPS的吸附量高达1626.8µgg‑1。因此可用于有效除去复杂废水中的溴代阻燃剂。

权利要求 :

1.一种超顺磁性核壳结构介孔分子印迹聚合物的制备方法,包括以下工艺步骤:(1)将模板分子TBBPS和功能单体APTES溶解到无水甲醇溶液中,室温保持1 3h,得到溶~液 ;模板分子TBBPS和功能单体APTES的摩尔比1:16 1:18;

~

(2)将Fe3O4纳米粒子超声溶解于甲醇和蒸馏水的混合液中,再加入交联剂TEOS,搅拌5~

10min,用氨水调pH =8 9,得溶液 ;Fe3O4纳米粒子与功能单体APTES的摩尔比为1:9 1:11;

~ ~

交联剂TEOS与功能单体APTES的摩尔比为1:0.4 1:0.6;

~

(3)将溶液 加入到上述得溶液 中,室温下机械搅拌0.5 1.5h;反应产物用乙醇和去离~子水洗涤,烘干,得磁性分子印迹聚合物;

(4)将所得磁性分子印迹聚合物置于索氏提取器中,于117 120℃下用甲醇-乙酸混合~溶液洗脱24 48h;洗脱后的产物在50 60℃真空干燥,即得磁性分子印迹聚合物MMIPs-~ ~TBBPS。

2.如权利要求1所述超顺磁性核壳结构介孔分子印迹聚合物的制备方法,其特征在于:步骤(2)中,甲醇和蒸馏水的混合液中,甲醇和蒸馏水的体积比为5:1 7:1。

~

3.如权利要求1所述超顺磁性核壳结构介孔分子印迹聚合物的制备方法,其特征在于:步骤(4)的甲醇-乙酸混合溶液中,甲醇与乙酸的体积比为4:1 9:1。

~

4.如权利要求1所述方法制备的超顺磁性核壳结构介孔分子印迹聚合物作为固相萃取剂应用于溴化阻燃剂废水的处理中。

说明书 :

超顺磁性核壳结构介孔分子印迹聚合物的制备及作为固相萃

取剂的应用

技术领域

[0001] 本发明涉及一种新型超顺磁性核壳结构介孔分子印迹聚合物的制备;本发明同时还涉及该复合材料作为固相萃取剂应用于复杂废水样品的处理,属于复合材料领域和废水处理领域。

背景技术

[0002] 溴化阻燃剂(BFRs)是一类广泛用于印刷电路板,生产塑料等的添加剂和反应性物质以及技术混合物。由于BFRs的广泛使用,引起了潜在的环境和健康风险。四溴双酚S(TBBPS)作为一种新型的BFRs已被广泛用于制备各种耐热产品。TBBPS和其商业类似物,例如四溴双酚A(TBBPA),四溴双酚A双(烯丙基醚)(TBBPA-ae),四溴双酚A双(2,3-二溴丙基)醚(TBBPA-dbpe)和四溴双酚S双(2,3-二溴丙基醚)(TBBPS-dbpe)等,已经在土壤、灰尘、污水污泥和鸡蛋中被检出,干重检出的最高浓度为9960ngg-1。研究表明,微量TBBPS就可以导致肝中毒、内分泌系统破坏甚至致癌。因此,测定TBBPS及其衍生物在环境中的含量,减小健康风险是非常重要的。
[0003] 目前,已经报道了用于检测复杂样品中TBBPS的荧光光谱、高效液相色谱(HPLC)和气相色谱(GC)方法。对于这些方法,由于相对低的浓度和复杂的基质,液-液萃取,固相萃取(SPE)或固相微萃取(SPME)是分析前必需的样品前处理过程。然而,这些前处理过程较复杂,选择性差且成本高。因此,研究高效高选择性的,方便的样品前处理、分离和富集方法对于分析和去除痕量TBBPS是至关重要的。
[0004] 分子印迹技术是具有高灵敏度和高选择性的分子识别技术。该技术已广泛应用于仿生传感器,固相萃取,色谱分析,分离和富集等领域。在分子印迹聚合物(MIPs)的合成过程中形成的三维空腔在形状识别、尺寸识别、氢键作用以及功能基团识别目标分子方面与模板剂互补。因此,MIPs是样品前处理过程中用于分离富集和化学分析的非常有前景的吸附材料。然而,MIPs从样品基质中分离需要一系列的后处理,包括破碎,筛分和高速离心。考虑到结合位点分布在不同的相中,目标分子从溶液到空腔的质量传递受到模板在MIPs表面上的吸附的阻碍,这导致了结合力的降低,时间和劳动的浪费。为了克服这些问题,磁性分子印迹聚合物(MMIPs)已被应用于样品前处理,它的结合位点多数被暴露在聚合物表面上,大大促进了模板的识别和去除。此外,除了具有MIPs的高亲和力和特异性识别的优点之外,还可以使用外部磁场快速高效低成本地分离MMIPs。

发明内容

[0005] 本发明的目的是提供一种新型超顺磁性核壳结构介孔分子印迹聚合物(MMIPs-TBBPS)的制备方法。
[0006] 本发明的另一目的是提供上述新型超顺磁性核壳结构介孔分子印迹聚合物(MMIPs-TBBPS)作为固相萃取剂在废水处理中的应用。
[0007] 一、磁性分子印迹聚合物(MMIPs-TBBPS)的制备
[0008] 本发明新型超顺磁性核壳结构介孔分子印迹聚合物(MMIPs-TBBPS)的制备,是先通过水热法合成Fe3O4磁性纳米粒子,再以正硅酸四乙酯(TEOS)作交联剂,3-氨丙基三乙氧基硅烷(APTES)作功能单体,四溴双酚S(TBBPS)作模板分子,通过一锅法制得聚合物包覆Fe3O4纳米粒子的磁性分子印迹聚合物,最后用索氏提取法洗脱模板剂,得到超顺磁性介孔分子印迹聚合物MMIPs-TBBPS。再然后通过一锅法完成的合成,最后用索氏提取方法洗脱模板剂。具体制备工艺如下:
[0009] (1)将模板分子TBBPS和功能单体APTES溶解到无水甲醇溶液中,室温保持1 3h,得~到溶液 ;模板分子TBBPS和功能单体APTES的摩尔比1:16 1:18;
~
[0010] (2)将Fe3O4纳米粒子超声溶解于甲醇和蒸馏水的混合液中,再加入交联剂TEOS,搅拌5 10min,用氨水调pH =8 9,得溶液 ;~ ~
[0011] 甲醇和蒸馏水的混合液中,甲醇和蒸馏水的体积比为5:1~7:1;Fe3O4纳米粒子与功能单体APTES的摩尔比为1:9 1:11;交联剂TEOS与功能单体APTES的摩尔比为1:0.4 1:0.6;~ ~
[0012] (3)将溶液 加入到上述得溶液 中,室温下机械搅拌0.5 1.5h;反应产物用乙醇~和去离子水洗涤,烘干,得磁性分子印迹聚合物;
[0013] (4)将所得磁性分子印迹聚合物置于索氏提取器中,于117 120℃下用甲醇-乙酸~混合溶液洗脱24 48h;洗脱后的产物在50 60℃真空干燥,即得磁性分子印迹聚合物MMIPs-~ ~
TBBPS。甲醇-乙酸混合溶液中,甲醇与乙酸的体积比为4:1 9:1。
~
[0014] 本发明超顺磁性核壳结构介孔分子印迹聚合物(MMIPs-TBBPS)的合成原理图见图1。如图1所示,将预合成的Fe3O4纳米粒子超声溶解于甲醇和蒸馏水的混合液中,再加入TEOS、氨水,搅拌均匀后加入含有模板分子TBBPS和功能单体APTES的预聚合溶液,加热搅拌使聚合反应进行,在Fe3O4纳米粒子表面形成一层聚合物包覆层,此时模板分子TBBPS就嵌在次聚合物层中。然后再通过索氏提取将模板剂洗脱,就会在聚合物层中形成TBBPS的空腔,之后便可用于选择性吸附TBBPS及其结构类似物。
[0015] 二、分子印迹聚合物(MMIPs-TBBPS)的结构和性能测试
[0016] 1、SEM分析
[0017] 图2为超顺磁性核壳结构介孔分子印迹聚合物的扫描电镜图。从图2可以看出,磁性复合材料具有均匀的球状结构,平均粒径约为600nm,表面粗糙多孔。
[0018] 2、TEM分析
[0019] 图3为超顺磁性核壳结构介孔分子印迹聚合物的透射电镜图。从图3可以看出,此磁性分子印迹聚合物具有明显的核壳结构:在Fe3O4核上均匀包覆着厚度约为100nm的中孔聚合物层,结合位点均位于聚合物层上。
[0020] 3、FT-IR分析
[0021] 图4为超顺磁性核壳结构介孔分子印迹聚合物与磁性非印迹聚合物的FT-IR光谱图。在594cm-1处是Fe3O4的Fe-O-Fe的伸缩振动峰,说明Fe3O4纳米粒子成功的被包覆在聚合-1物层中。Si-O-Si的伸缩振动峰出现在1071和794cm 附近,表明形成了介孔二氧化硅的骨架。3425cm-1是水分子中-OH的弯曲和伸缩振动。
[0022] 4、磁性分析
[0023] 采用振动样品磁强计(VSM)对四氧化三铁和本发明制备的超顺磁性核壳结构介孔分子印迹聚合物的磁性进行表征,其磁滞回线如图5所示。曲线中未见滞后环的出现,呈现S形,矫顽力为0,这说明即使经过多次修饰后的磁性材料仍具有超顺磁性。这对于该材料在污水吸附应用中十分有利:具有超顺磁性可以快速响应外磁场作用而聚集,在外磁场消失后,剩磁为零,从而又分散于水体中,便于吸附剂的回收再利用。Fe3O4的磁力饱和度为82.1emu/g,超顺磁性核壳结构介孔分子印迹聚合物的磁力饱和度为48.5emu/g。磁力饱和度的减小进一步说明成功的制备了磁性复合材料。
[0024] 5、N2吸附-脱附分析
[0025] 超顺磁性核壳结构介孔分子印迹聚合物的N2吸附-脱附等温线如图6所示。本发明制备的材料的N2吸附-脱附等温线属于第IV类型等温线,在约0.4P/P0时有H1型滞后环和一个明显的毛细管冷凝过程,这是介孔具有非常均匀孔径的特性。从图6可以看出四氧化三铁颗粒没有堵塞介孔硅的孔隙。插图为该材料的孔径分布曲线。使用BJH方法分析表明材料孔2 3
径小于10纳米,比表面积和孔体积分别为66.8m/g和0.08cm/g。MMIPs-TBBPS表面的有序介孔结构有利于增大吸附活性和结合位点,这与SEM和TEM的结果一致。
[0026] 6、吸附性能测试
[0027] 选择7种常见溴代阻燃剂污染物:四溴双酚S(TBBPS)、双酚A(BPA)、四溴双酚A(TBBPA),四溴双酚A双(烯丙基醚)(TBBPA-ae)、四溴双酚A双(2-羟乙基醚)(TBBPA-hee)、四溴双酚A双(2,3-二溴丙基)醚(TBBPA-dbpe)、和四溴双酚S双(2,3-二溴丙基醚)(TBBPS-dbpe),对本发明制备的磁性纳米复合材料作为固体萃取剂对溴代阻燃剂的吸附性能进行了测试。测试的操作步骤如下:
[0028] 为比较MMIPs-TBBPS与MNIPs(磁性非印迹聚合物MMIPs的合成步骤与印迹聚合物MMIPs-TBBPS相似,只是在制备时不加入印迹分子四溴双酚S。)对TBBPS的吸附性能,进行以下实验。分别配置不同浓度的TBBPS标准溶液(0.1mg/L、1mg/L、2mg/L、3mg/L、4mg/L、5mg/L、6mg/L),各取两份15mL于50mL离心管中,在第一组每支离心管中加入8mgMMIPs-TBBPS,在第二组每支离心管中加入8mgMNIPs,放入振荡器中,30℃,50r/min下振荡30min,用磁铁将吸附剂从溶液中分离,将上清液过滤膜后直接进样,测定其吸附后的浓度。通过比较两种材料对TBBPS的吸附量,来比较其吸附性能。吸附量通过下述公式1进行计算:
[0029] (1)
[0030] 其中C0和Ce分别表示TBBPS的初始和平衡浓度(μgmL-1),V(mL)是溶液体积,W(g)是聚合物质量。
[0031] 图7为MMIP-TBBPS与磁性非印迹聚合物MNIPs对TBBPS的吸附对比图。图7的结果说明MMIPs-TBBPS对TBBPS具有优异的吸附能力,而且明显优于MNIPs对TBBPS的吸附。
[0032] 图8为超顺磁性核壳结构介孔分子印迹聚合物固相萃取剂的吸附条件优化选择图。图8的结果说明:当萃取剂的用量为7 9mg,萃取时间为25 35min,萃取温度为25 35℃,~ ~ ~震荡速度为40 60rmp时,MMIP-TBBPS对于TBBPS的吸附能力达到最佳:MMIP-TBBPS对TBBPS~
回收率为97.8 98.8%,最高吸附容量高达1626.8μgg-1。
~
[0033] 为了评价MMIPs-TBBPS对TBBPS的特异性识别能力,选用BPA,TBBPA,TBBPA-ae,TBBPA-dbpe,TBBPA-hee,TBBPS和TBBPS-dbpe作为结构类似物进行选择性实验。分别配置浓度为5mg/L七种物质的标准溶液,各取两份15mL于50mL离心管中,在第一组每支离心管中加入8mgMMIPs-TBBPS,在第二组每支离心管中加入8mgMNIPs,放入振荡器中,30℃,50r/min下振荡30min,用磁铁将吸附剂从溶液中分离,将上清液过滤膜后直接进样,测定其吸附后的浓度。通过比较印记因子(α)来评价MMIPs-TBBPS的识别能力,印记因子(α)通过下述公式2进行计算:
[0034] (2)
[0035] 其中QMIPs和QNIP(sμgg-1)分别是模板剂或类似物在MMIPs-TBBPS和MNIPs上的吸附量。
[0036] 图9为MMIPs-TBBPS和MNIPs对TBBPS及其结构类似物的吸附对比图。图9的结果表明,磁性分子印记聚合物MMIPs-TBBPS对TBBPS及其六种结构类似物的吸附能力显著高于磁性非印迹聚合物(MNIPs)。同时,此MMIP-TBBPS对TBBPS具有特异选择性吸附能力。
[0037] 图10为MMIP-TBBPS吸附TBBPS的Scatchard模型图。采用Scatchard模型来评价MMIP-TBBPS及MNIPs的结合能力。Scatchard方程表示如下:
[0038] (3)
[0039] 其中Q(μgg-1)是吸附量,Qma(xμgg-1)是表观最大吸附量,C(eμgmL-1)是平衡时上清液的浓度,Kd(gmL-1)是平衡解离常数。
[0040] 如图10所示,MMIP-TBBPS的Scatchard模型是两条具有良好线性关系的直线,这表明MMIP-TBBPS具有两种不同的结合位点,原因是在反应物中局部反应和各种相互作用不均一导致模板剂和功能单体等之间的比例不同,形成了特异性吸附和非特异性吸附两种结合位点。根据Scatchard方程,计算得特异性吸附Qmax和Kd分别为1020μgg-1和2.22 gmL-1,特异性吸附Qmax和Kd分别为606.8μgg-1和0.5236 gmL-1,这些都证明了MMIP-TBBPS具有极高的表观最大吸附量。而MNIPs的Scatchard模型,则是非线性相关的,证明MNIPs表面仅存在较少的均一结合位点。
[0041] 将MMIPs-TBBPS应用于磁性固相萃取(MSPE)结合高效液相色谱(HPLC)对加标实际水样中的TBBPS进行测定。结果见图11,其中a为TBBPS原始样品直接进样的色谱图,b为萃取后的上清液进样的色谱图,c为洗脱富集后进样的色谱图。由图11可知,MMIPs-TBBPS对TBBPS回收率为97.8 98.8%,最高吸附容量高达1626.8μgg-1。因此,MMIPs-TBBPS是一种能从~复杂的环境样品中选择性分离和快速富集痕量TBBPS的吸附材料。
[0042] 综上所述,本发明制备的复合材料MMIPs-TBBPS具有均匀的核壳结构,大的比表面积,高度有序的介孔结构和较高的饱和磁化强度,具有快速的结合能力,优异的磁响应和特异选择性吸附能力,对常见的溴代阻燃剂具有较高的去除效率和平衡吸附量,因此可用于有效除去复杂废水中的溴代阻燃剂。

附图说明

[0043] 图1为MMIPs-TBBPS的合成路线示意图。
[0044] 图2为MMIPs-TBBPS的扫描电镜图。
[0045] 图3为MMIPs-TBBPS的透射电镜图。
[0046] 图4为MMIPs-TBBPS的FT-IR谱图。
[0047] 图5为MMIPs-TBBPS与Fe3O4的磁滞回线。
[0048] 图6为MMIPs-TBBPS的的N2吸附-脱附等温线。
[0049] 图7为MMIPs-TBBPS的与磁性非印迹聚合物MMIPs对TBBPS的吸附对比图。
[0050] 图8为MMIPs-TBBPS的的吸附条件优化选择。
[0051] 图9为MMIPs-TBBPS对TBBPS及其结构类似物的吸附对比图。
[0052] 图10为磁性分子印迹聚合物与磁性非印迹聚合物吸附TBBPS的Scatchard模型图。
[0053] 图11为超顺磁性核壳结构介孔分子印迹聚合物固相萃取剂吸附实际水样中TBBPS的色谱图。

具体实施方式

[0054] 下面通过具体实施例对本发明超顺磁性核壳结构介孔分子印迹聚合物的制备及性能作进一步说明。
[0055] 实施例1
[0056] (1)Fe3O4磁性纳米粒子的制备
[0057] 在30mL乙二醇中加入0.86gFeCl3·6H2O和2.16g乙酸钠,磁力搅拌至均匀的黄色溶液,转移至反应釜,置于烘箱中200℃下恒温反应12小时,取出冷却至室温后,用乙醇和二次水分别洗涤三次,制得的Fe3O4磁性纳米粒子,置于烘箱内60℃烘干,研磨后备用。
[0058] (2)磁性印迹聚合物MMIPs-TBBPS的制备
[0059] 将0.5mmol(0.283g)四溴双酚S和2mLAPTES(3-氨丙基三乙氧基硅烷)溶解到10mL无水甲醇溶液中,室温保持2h,得溶液 ;
[0060] 准确称取0.2gFe3O4纳米粒子分散于60mL甲醇和10mL蒸馏水中,超声至完全溶解;再加入4mLTEOS、1mL氨水(28%),搅拌5min,得溶液 ;
[0061] 将溶液 加入到上述溶液 中,室温机械搅拌1h;反应产物取出后用乙醇和去离子水分别洗涤5次,60℃烘干,得磁性分子印迹聚合物;
[0062] 将磁性分子印迹聚合物的置于索氏提取器中,在117℃下用甲醇/乙酸(9:1,V/V)混合溶液洗脱48h;洗脱后的产物转移至表面皿中,60℃真空干燥过夜,得磁性印迹聚合物纳米球MMIPs-TBBPS。
[0063] MMIPs-TBBPS对溴代阻燃剂的吸附性能:对5mgL-1的溴代阻燃剂TBBPS、BPA、TBBPA,TBBPA-ae、TBBPA-hee、TBBPA-dbpe、TBBPS-dbpe的吸附量分别为:689.8、54.2、62.1、319.9、337.6、188.9、456.9µgg-1。
[0064] 实施例2
[0065] (1)Fe3O4磁性纳米粒子的制备:同实施例1;
[0066] (2)磁性印迹聚合物MMIPs-TBBPS的制备
[0067] 将0.5mmol(0.283g)四溴双酚S和1.9mLAPTES(3-氨丙基三乙氧基硅烷)溶解到10mL无水甲醇溶液中,室温保持2h,得溶液 ;
[0068] 准确称取0.17gFe3O4纳米粒子分散于60mL甲醇和10mL蒸馏水中,超声至完全溶解;再加入3mLTEOS、1mL氨水(28%),搅拌5min,得溶液 ;
[0069] 将溶液 加入到上述溶液 中,室温机械搅拌1h;反应产物取出后用乙醇和去离子水分别洗涤5次,60℃烘干,得磁性分子印迹聚合物;
[0070] 将磁性分子印迹聚合物的置于索氏提取器中,在117℃下用甲醇/乙酸(9:1,V/V)混合溶液洗脱48h;洗脱后的产物转移至表面皿中,60℃真空干燥过夜,得磁性印迹聚合物纳米球MMIPs-TBBPS。
[0071] MMIPs-TBBPS对溴代阻燃剂的吸附性能:对5mgL-1的溴代阻燃剂TBBPS、BPA、TBBPA,TBBPA-ae、TBBPA-hee、TBBPA-dbpe、TBBPS-dbpe的吸附量分别为:677.5、49.3、60.7、299.9、307.2、168.9、445.8µgg-1。
[0072] 实施例3
[0073] (1)Fe3O4磁性纳米粒子的制备:同实施例1;
[0074] (2)磁性印迹聚合物MMIPs-TBBPS的制备
[0075] 将0.5mmol(0.283g)四溴双酚S和2.1mLAPTES(3-氨丙基三乙氧基硅烷)溶解到10mL甲醇溶液中,室温保持2h,得溶液 ;
[0076] 准确称取0.23gFe3O4纳米粒子分散于60mL甲醇和10mL蒸馏水中,超声至完全溶解;再加入5mLTEOS、1mL氨水(28%),搅拌5min,得溶液 ;
[0077] 将溶液 加入到上述溶液 中,室温机械搅拌1h;反应产物取出后用乙醇和去离子水分别洗涤5次,60℃烘干,得磁性分子印迹聚合物;
[0078] 将磁性分子印迹聚合物的置于索氏提取器中,在117℃下用甲醇/乙酸(9:1,V/V)混合溶液洗脱48h;洗脱后的产物转移至表面皿中,60℃真空干燥过夜,得磁性印迹聚合物纳米球MMIPs-TBBPS。
[0079] MMIPs-TBBPS对溴代阻燃剂的吸附性能:对5mgL-1的溴代阻燃剂TBBPS、BPA、TBBPA,TBBPA-ae、TBBPA-hee、TBBPA-dbpe、TBBPS-dbpe的吸附量分别为:655.1、51.3、58.1、301.7、317.5、190.9、421.7µgg-1。