一种p-i-n型硒化锑太阳电池转让专利

申请号 : CN201710140918.X

文献号 : CN106898662B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李志强郭玉婷麦耀华朱红兵陈静伟

申请人 : 河北大学

摘要 :

本发明公开了一种p‑i‑n型硒化锑薄膜太阳电池,该太阳电池从上到下主要的结构依次为:顶电极层、p型硒化锑半导体层、本征半导体i型层、n型硒化锑半导体层以及底电极层。本发明提供的太阳电池的结构可以减少pn界面的晶格失配度,减少因界面缺陷密度高带来的高复合率;同时在同质硒化锑pn结中插入本征半导体i型层,能够使内建场在本征半导体i型层扩展,利于实现光生载流子电荷的分离,增大了光生载流子的收集效率,从而提高了太阳电池的性能,其制备工艺简单,适于工业化生产及应用。

权利要求 :

1.一种p-i-n型硒化锑太阳电池,其特征在于,该太阳电池从上到下的主要结构依次为顶电极层、p型硒化锑半导体层、本征半导体i型层、n型硒化锑半导体层以及底电极层。

2.根据权利要求1所述的p-i-n型硒化锑太阳电池,其特征在于,所述本征半导体i型层是由完全不含杂质且无晶格缺陷的纯净半导体材料制备而成的材料层。

3.根据权利要求1或2所述的p-i-n型硒化锑太阳电池,其特征在于,所述p型硒化锑半导体层为硒化锑或掺杂了硫元素的硒化锑制备而成的材料层;当掺杂了硫元素时,所述硒元素和硫元素的摩尔比为0.1:0.9 0.7:0.3。

~

4.根据权利要求1或2所述的p-i-n型硒化锑太阳电池,其特征在于,所述n型硒化锑半导体层为硒化锑或掺杂了Cu、Ag、Bi金属或碲非金属的硒化锑制备而成的材料层。

5.根据权利要求1或2所述的p-i-n型硒化锑太阳电池,其特征在于,所述顶电极层是由透明导电氧化物薄膜、透明导电金属薄膜、非氧化物类透明导电化合物薄膜、导电性粒子分散介电体薄膜或导电碳材料薄膜中的任意一种。

6.根据权利要求1或2所述的p-i-n型硒化锑太阳电池,其特征在于,所述底电极层是由透明导电氧化物薄膜、金属薄膜、非氧化物类透明导电化合物薄膜、导电性粒子分散介电体薄膜或导电碳材料薄膜中的任意一种。

7.根据权利要求1所述的p-i-n型硒化锑太阳电池,其特征在于,该太阳电池的结构中还包括由玻璃、不锈钢或塑料制备而成的衬底,所述衬底设置在所述顶电极层上或底电极层下;当设置在顶电极层上时,所述衬底由透光材料制备而成。

8.根据权利要求1所述的p-i-n型硒化锑太阳电池,其特征在于,在顶电极层和p型硒化锑半导体层之间还设有空穴传输层,所述空穴传输层是由无机化合物或P3HT、PCBM有机空穴传输材料中的至少一种制备而成。

9.根据权利要求1所述的p-i-n型硒化锑太阳电池,其特征在于,在n型硒化锑半导体层和底电极层之间设置有电子传输层;所述电子传输层为ZnO、TiO2、石墨烯无机化合物或PCBM、全氟代聚对苯撑类有机电子传输材料中的至少一种制备而成。

说明书 :

一种p-i-n型硒化锑太阳电池

技术领域

[0001] 本发明涉及太阳电池领域,具体地说是一种p-i-n型硒化锑太阳电池。

背景技术

[0002] 硒化锑(Sb2Se3)是一种二元化合物,物相单一稳定,原料储量大,毒性低,价格便5 -1
宜,同时禁带宽度合适(1.0eV-1.35eV),吸光系数大(>10cm ),是一种理想的光伏材料,其理论光电转换效率可达30%以上。关于硒化锑薄膜太阳电池器件的研究最早开始于2014年,短短两年时间内,转换效率就已达到6%,可见,硒化锑是属于非常有研究意义的光伏材料。
[0003] 目前文献报道的以硒化锑材料为光吸收层的太阳电池结构主要有敏化太阳电池和平面结构太阳电池两种结构。在平面结构中,硒化锑常作为p型半导体层,与n型的硫化镉(CdS)、二氧化钛(TiO2)或有机物等构成异质结。但是,由于硒化锑材料的晶格常数为11.7A,常规的n型半导体材料如硫化镉等的晶格常数为4.13Å,晶格失配度高达185%。这样的pn结构造成严重的界面缺陷(晶格失配、pn结质量差),不利于实现光生载流子电荷的分离,使得硒化锑太阳电池光电转化性能低下。

发明内容

[0004] 本发明的目的是提供一种p-i-n型硒化锑太阳电池,以解决目前pn结界面结构容易出现严重的界面缺陷导致硒化锑太阳电池性能低下的问题。
[0005] 本发明的目的是通过以下技术方案实现的:一种p-i-n型硒化锑太阳电池,该太阳电池从上到下的主要结构依次为顶电极层、p型硒化锑半导体层、本征半导体i型层、n型硒化锑半导体层以及底电极层。
[0006] 本发明中所述本征半导体i型层是由完全不含杂质且无晶格缺陷的纯净半导体材料制备而成的材料层;优选单晶硒化锑、氧化锌、非晶硅、非晶碳化硅等中任意一种制备的材料层;其厚度为50-100nm。
[0007] 所述p型硒化锑半导体层为硒化锑或掺杂了硫元素的硒化锑制备而成的材料层;可以为非晶、单晶或多晶薄膜层或单晶或多晶膜层;当掺杂了硫元素时,所述硒元素和硫元素比为0.1:0.9 0.7:0.3;所述p型硒化锑半导体层的厚度为500nm-100μm。当制备薄膜结构~
太阳电池,所述p型硒化锑半导体层的厚度优选500-600nm;当制备块体结构太阳电池,所述p型硒化锑半导体层的厚度优选1-100μm。
[0008] 所述n型硒化锑半导体层为硒化锑或掺杂了Cu、Ag、Bi金属或碲(Te)非金属的硒化锑制备而成的材料层;可以为单晶或多晶膜层或非晶、单晶或多晶薄膜层。所述n型硒化锑半导体层的厚度优选为300nm-100μm;当制备薄膜结构太阳电池,n型硒化锑半导体层的厚度优选为300-400nm;当制备块体结构太阳电池,所述n型硒化锑半导体层的厚度优选为1-100μm。
[0009] 所述顶电极层是由透明导电氧化物薄膜、透明导电金属薄膜、非氧化物类透明导电化合物薄膜、导电性粒子分散介电体薄膜或导电碳材料薄膜中的任意一种。所述透明导电金属氧化物(TCO)为掺杂有硼、镓或铝的氧化锌(AZO、BZO、GZO)、铟锡氧化物(ITO)、氟掺杂氧化锡(FTO)等,所述金属为金、铂、银、铜等,非氧化物类透明导电化合物包括CdS、TiC、TiO2/TiN等,导电性粒子分散介电体包括SnO2:Ag、SnO2:Cu、SnO2:ZnO等,导电碳材料包括导电碳浆、导电碳纤维、导电碳油墨等。
[0010] 所述底电极层是由透明导电氧化物薄膜、金属薄膜、非氧化物类透明导电化合物薄膜、导电性粒子分散介电体薄膜或导电碳材料薄膜中的任意一种。所述透明导电金属氧化物(TCO)为掺杂有硼、镓或铝的氧化锌(AZO、BZO、GZO)、铟锡氧化物(ITO)、氟掺杂氧化锡(FTO)等,所述金属为金、铂、银、铜等,非氧化物类透明导电化合物包括CdS、TiC、TiO2/TiN等,导电性粒子分散介电体包括SnO2:Ag、SnO2:Cu、SnO2:ZnO等,导电碳材料包括导电碳浆、导电碳纤维、导电碳油墨等。
[0011] 本发明的电池结构中还可在顶电极层和p型硒化锑半导体层之间还设有空穴传输层,所述空穴传输层是由无机化合物或P3HT、PCBM等有机空穴传输材料中的至少一种制备而成。
[0012] 本发明的电池结构中还可在在n型硒化锑半导体层和底电极层之间设置有电子传输层;所述电子传输层为ZnO、TiO2、石墨烯等无机化合物或PCBM、全氟代聚对苯撑类等有机电子传输材料中的至少一种制备而成。
[0013] 当制备的太阳电池为薄膜结构时,除如上所述的顶电极层、p型硒化锑半导体层、本征半导体i型层、n型硒化锑半导体层以及底电极层之外,还包括由玻璃、不锈钢或塑料等制备而成的刚性或柔性衬底,所述衬底设置在所述顶电极层上或底电极层下,当设置在顶电极层上时,所述衬底由透光材料制备而成。
[0014] 当制备的太阳电池为块体结构时,所述n型硒化锑半导体层为n型硒化锑单晶或多晶膜层 或p型硒化锑半导体层为p型硒化锑单晶或多晶膜层,所述n型硒化锑半导体层和p型硒化锑半导体层的厚度优选为1-100μm。
[0015] 本发明所述的p-i-n型太阳电池可以是添加衬底制备成的薄膜结构,其中衬底为玻璃、不锈钢或塑料等刚性或柔性衬底;也可以是基于硒化锑单晶体制备的块体结构的太阳电池。
[0016] 本发明首次提出了一种结构为顶电极层、p型硒化锑半导体层、本征半导体i型层、n型硒化锑半导体层以及底电极层的太阳电池结构,其中p型和n型半导体层全部采用硒化锑材料;特别地采用金属掺杂的硒化锑材料作为n型层,与p型硒化锑半导体层(未掺杂或掺杂S元素)构成同质结,一方面减少pn界面的晶格失配度,减少因界面缺陷密度高带来的高复合率;另一方面,在同质硒化锑pn结中插入本征半导体i型层,内建场在本征半导体i型层扩展,利于实现光生载流子电荷的分离,增大了光生载流子的收集效率,提高了太阳电池的性能。本发明提供的太阳电池结构简单,制备方法易行,适于工业化生产,具有广阔的应用前景。

附图说明

[0017] 图1为实施例1制备的太阳电池的结构示意图。
[0018] 图2为实施例2制备的太阳电池的结构示意图。
[0019] 图3为实施例3制备的太阳电池的结构示意图。

具体实施方式

[0020] 下面实施例用于进一步详细说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。但不以任何形式限制本发明。
[0021] 实施例1
[0022] 如图1所示,本实施例提供的p-i-n型太阳电池从上到下的结构依次为(沿着光照方向)玻璃衬底11、ITO透明导电顶电极层12、p型硒化锑半导体层13、本征ZnO半导体i型层14、n型掺Ag硒化锑半导体层15和Au底电极层16。
[0023] 具体制备步骤如下:
[0024] (1)清洗衬底
[0025] 使用钠钙玻璃作为衬底,首先将玻璃在电子清洗剂溶液中浸泡15 min,然后将其取出,用大量去离子水冲洗干净,最后用氮气吹干。
[0026] (2)沉积ITO透明导电顶电极层
[0027] 采用磁控溅射技术沉积ITO透明导电顶电极层(铟锡氧化物半导体透明导电膜):-4
将清洗干净的玻璃衬底固定在样品架上,放入真空腔室中,腔体真空度达到5×10  Pa后,利用纯度为4N的ITO(氧化铟锡)靶材,在0.1-10 Pa压强下进行溅射,在玻璃衬底上得到厚度为300-400 nm的ITO透明导电顶电极层。
[0028] (3)沉积p型硒化锑半导体层
[0029] 采用热蒸发技术沉积p型硒化锑半导体层:将上述玻璃衬底/ITO透明导电顶电极层的样品固定在样品架上,放入真空腔室中,腔体真空度达到5×10-4 Pa后,利用纯度为4N的硒化锑颗粒,在10-4-10-2 Pa压强下进行蒸发,在ITO透明导电顶电极层上沉积了500-600 nm的p型硒化锑半导体层。
[0030] (4)沉积本征ZnO半导体i型层
[0031] 采用磁控溅射技术沉积本征ZnO半导体i型层:将上述玻璃衬底/ITO透明导电顶电极层/p型硒化锑半导体层的样品固定在样品架上,放入真空腔室中,腔体真空度达到5×10-4 Pa后,利用纯度为4N的本征ZnO靶材,在0.1-10 Pa压强下进行溅射,在p型硒化锑半导体层上沉积了厚度为80-100 nm的本征ZnO半导体i型层。
[0032] (5)沉积n型掺Ag硒化锑半导体层
[0033] 采用热蒸发技术沉积n型硒化锑半导体薄膜:将上述玻璃衬底/ITO透明导电顶电极层/p型硒化锑半导体层/本征ZnO半导体i型层的样品固定在样品架上,放入真空腔室中,腔体真空度达到5×10-4 Pa后,利用纯度为4N的硒化锑颗粒和纯度为4N的银丝,在10-4-10-2 Pa压强下同时蒸发,在本征ZnO半导体i型层上沉积了厚度为300-400 nm的n型掺Ag硒化锑半导体层;其中Ag掺杂的原子比为0.1%-1%。
[0034] (6)沉积Au底电极层
[0035] 采用热蒸发技术沉积Au底电极层:将步骤(5)得到的样品固定在样品架上,放入真-4 -4 -2空腔室中,腔体真空达到5×10  Pa后,利用纯度为4N的金丝,在10 -10  Pa压强下进行蒸发,在n型掺Ag硒化锑半导体层上沉积了厚度60 nm的Au底电极层,由此制的了p-i-n型硒化锑太阳电池。
[0036] 实施例2
[0037] 如图2所示,本实施例所提供的p-i-n型太阳电池从上到下的结构依次为(沿着光照方向BZO顶电极层21、p型硒化锑半导体层22、本征硒化锑半导体i型层23、n型掺Cu硒化锑半导体层24、Mo底电极层25以及不锈钢衬底26。
[0038] 具体制备步骤如下:
[0039] (1)清洗衬底
[0040] 使用不锈钢作为衬底,首先将不锈钢衬底在电子清洗剂溶液中浸泡15 min,然后将其取出,用大量去离子水冲洗干净,并用氮气吹干。
[0041] (2)沉积Mo底电极层
[0042] 采用磁控溅射技术沉积Mo(钼)底电极层:将清洗干净的不锈钢衬底固定在支架上,放入真空室中,腔体真空度达到5×10-4 Pa后,利用纯度为4N的钼靶材,在真空度为0.1-10 Pa的压强下进行溅射,在不锈钢衬底上沉积了厚度为900-1000 nm的Mo底电极层。
[0043] (3)沉积n型掺Cu硒化锑半导体层
[0044] 采用旋涂热分解工艺沉积n型掺Cu硒化锑半导体层:将含有硒单质的肼溶液、含有锑单质的肼溶液和含有铜元素(硫化铜)的二甲基亚砜溶液混合,混匀,旋涂于上述不锈钢衬底/Mo底电极层的样品上,并在400-500 ℃高温下退火20-30 min,在Mo底电极层上沉积了厚度为300-400 nm的n型掺Cu硒化锑半导体层;所述硒、锑和铜元素的摩尔比为3:2:0.001-0.01。
[0045] (4)沉积本征硒化锑半导体i型层
[0046] 采用水热法制备硒化锑单晶作为本征半导体i型层:以含有硒、锑元素(硒、锑的单质)的溶液肼溶液为反应物,按硒、锑元素摩尔比为3:2混合,按1-5%(物质的量的比例)比例加入OP乳化剂等低泡表面活性剂,在150-200℃条件下反应,得到单晶硒化锑;将制得的单晶硒化锑喷涂在n型掺Cu硒化锑半导体层上,得到厚度为80-100 nm的本征硒化锑半导体i型层。
[0047] (5)沉积p型硒化锑半导体层
[0048] 采用旋涂热分解工艺沉积p型硒化锑半导体层:将含有硒、锑单质的肼溶液按硒、锑元素的摩尔比为3:2组成的混合液旋涂于本征硒化锑半导体i型层上,高温下退火(温度为400-500℃,时间为20-30 min),在本征硒化锑半导体i型层沉积了厚度为500-600 nm的p型硒化锑半导体层。
[0049] (6)沉积BZO顶电极层
[0050] 采用低压化学气相沉积法沉积BZO顶电极层,将不锈钢衬底/Mo底电极层/n型掺Cu硒化锑半导体层/本征硒化锑半导体i型层/p型硒化锑半导体层的样品置于真空室中,腔体真空度达到0.5 Pa后,利用水、二乙基锌、硼烷(水、二乙基锌、硼烷的摩尔比为20:5:3)在10-100 Pa压强、150-200℃样品温度条件下反应,生成厚度为1500-1700 nm的BZO顶电极层,由此制的了p-i-n型硒化锑太阳电池。
[0051] 实施例3
[0052] 如图3所示,本实施例所提供的p-i-n型太阳电池从上到下的结构依次为(沿着光照方向)Ag顶电极层31、p型掺硫硒化锑半导体层32、本征非晶硅半导体i型层33、n型掺Ag硒化锑单晶体层34以及Ag底电极层35。
[0053] 具体制备步骤如下:
[0054] (1)制备n型掺Ag硒化锑单晶体层
[0055] 采用直拉法、区熔法或定向凝固法制备了厚度为1-100μm的 n型掺Ag硒化锑单晶体层,也可以采用外延方法生长制备。其中硒、锑、Ag的摩尔比为3:2: 0.001-0.01。
[0056] (2)沉积本征非晶硅半导体i型层
[0057] 采用等离子化学气相沉积工艺制备本征非晶硅半导体i型层:将上述n型掺Ag硒化锑单晶体层的样品固定在样品架上,置于真空室中,腔体真空度达到1×10-4 Pa后,利用氢气稀释的硅烷气体的热分解,生成硅原子,沉积在上述样品表面,形成厚度400-500 nm的本征非晶硅半导体i型层。
[0058] (3)沉积p型掺硫硒化锑半导体层
[0059] 采用热蒸发工艺沉积p型掺硫硒化锑半导体层:将上述n型掺Ag硒化锑单晶体层/-4本征非晶硅半导体i型层固定在样品架上,置于真空室中,腔体真空度达到5×10  Pa后,利用纯度为4N的硒化锑颗粒和纯度为4N的硫粉进行热蒸发,在本征非晶硅半导体i型层上沉积了厚度为50-80 nm的p型掺硫硒化锑半导体层;所述硒元素和硫元素比为0.1:0.9 0.7:
~
0.3。
[0060] (4)沉积顶电极和底电极
[0061] 采用热蒸发技术沉积Ag顶电极和Ag底电极:将上述n型掺Ag硒化锑单晶体层/本征非晶硅半导体i型层/p型掺硫硒化锑半导体层样品固定在样品架上,放入真空腔室中,腔体真空达到5×10-4 Pa后,利用纯度为4N的银丝,在10-4-10-2 Pa压强下进行蒸发,分别在其正反两面沉积Ag顶电极和Ag底电极;其中Ag顶电极和Ag底电极的厚度分别是80-100 nm和150-200 nm;由此得到了p-i-n型硒化锑太阳电池。
[0062] 此外,为进一步提高太阳电池的性能,本发明的电池结构中还可在顶电极层和p型硒化锑半导体层之间还设有空穴传输层,所述空穴传输层是由无机化合物或P3HT、PCBM有机空穴传输材料中的至少一种制备而成;还可在n型硒化锑半导体层和底电极层之间设置有电子传输层;所述电子传输层为ZnO、TiO2、石墨烯无机化合物或PCBM、全氟代聚对苯撑类有机电子传输材料中的至少一种制备而成。
[0063] 上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。