一种以糖为胶粘剂制备3D打印钛酸锶钡粉体材料转让专利

申请号 : CN201710128234.8

文献号 : CN106966718B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李慧芝张培志郭方全

申请人 : 济南大学

摘要 :

本发明公开了一种以糖为胶粘剂制备3D打印钛酸锶钡粉体材料的方法,其特征在于,首先将纳米钛酸钡陶瓷粉体造粒,使其粒径在80~120µm范围内;然后在研磨机中,按质量百分浓度加入,造粒钛酸锶钡陶瓷粉体:85%~92%,研磨,温度升至120±2℃,加入硬脂酰胺:0.5%~2%,研磨30min,温度继续升高到190±2℃,白糖:5%~10%,三聚氰胺:0.5%~1.5%,异丙基三(二辛基磷酸酰氧基)钛酸酯:1%~3%,研磨,得到3D打印钛酸锶钡粉体材料,所得到3D打印钛酸锶钡粉体材料。该3D打印钛酸锶钡粉体材料用激光烧结可直接成型,球形度高,流动性好,成型精度高,而且具有工艺简单,生产成本低,易于工业化生产。

权利要求 :

1.一种以糖为胶粘剂制备3D打印钛酸锶钡粉体材料的方法,其特征在于,该方法具有以下工艺步骤:

(1)造粒钛酸锶钡陶瓷粉体制备:在反应器中,按质量百分比加入,水:52%~58%,水溶性淀粉:0.2%~1.0%,水性聚氨酯:0.5%~2.0%,聚乙二醇:0.2%~1.0%,搅拌溶解,再加入纳米钛酸钡陶瓷粉体:40%~45%,各组分之和为百分之百,强力搅拌、反应6~7h,然后喷雾干燥,得到造粒钛酸锶钡陶瓷粉体,其粒径在80~120μm范围内;

(2)3D打印钛酸锶钡粉体材料的制备:在研磨机中,按质量百分浓度加入,造粒钛酸锶钡陶瓷粉体:85%~92%,开启研磨机转速在500转/分钟,研磨,温度升至120±2℃,加入硬脂酰胺:0.5%~2%,研磨30min,温度继续升高到190±2℃,白糖:5%~10%,三聚氰胺:

0.5%~1.5%,异丙基三(二辛基磷酸酰氧基)钛酸酯:1%~3%,各组分之和为百分之百,恒温,在500转/分钟的转速下研磨40~50min,冷至室温,得到3D打印钛酸锶钡粉体材料,所得到3D打印钛酸锶钡粉体材料,其粒径为100~150μm的范围内。

2.根据权利要求1所述的一种以糖为胶粘剂制备3D打印钛酸锶钡粉体材料的方法,其特征在于,步骤(1)中所述的喷雾干燥,进风口温度控制在110℃,出风口温度控制在90℃,进风流量250m3/h。

3.根据权利要求1所述的一种以糖为胶粘剂制备3D打印钛酸锶钡粉体材料的方法,其特征在于,步骤(1)中所述的聚乙二醇为聚乙二醇200或聚乙二醇400。

4.根据权利要求1所述的一种以糖为胶粘剂制备3D打印钛酸锶钡粉体材料的方法所制备的3D打印钛酸锶钡粉体材料。

说明书 :

一种以糖为胶粘剂制备3D打印钛酸锶钡粉体材料

技术领域

[0001] 本发明涉及一种激光烧结3D打印快速成型粉体材料的制备方法,属于快速成型的材料领域,特别涉及一种以糖为胶粘剂制备3D打印钛酸锶钡粉体材料的方法及激光烧结3D打印成型。

背景技术

[0002] 糖是由甘蔗和甜菜榨出的糖蜜制成的精糖,是由葡萄糖及果糖各一个分子脱水缩合而成的非还原性的双糖,加热至160℃,便熔化成为浓稠透明的液体,冷却时又重新结晶。加热时间延长,蔗糖即分解为葡萄糖及脱水果糖。在190 220℃的较高温度下,蔗糖便脱水~
缩合成为焦糖。焦糖具有很强的粘结作用,可以使粉体粘结在一起,起到粘结剂的作用。采用糖作为胶粘剂代替化学胶粘剂,减少环境污染问题。
[0003] 钛酸锶钡(Bax Sr1 - x TiO3 ,简称BST)是BaTiO3 与Sr TiO3 形成的固溶体。它是一种优良的热敏材料、电容器材料和铁电压电材料,具有高介电常数、低介电损耗、居里温度(TC )随组成改变以及介电常数随电场的非线性变化等特点,在超大规模动态存储器、微波调谐器等领域具有广阔的应用前景,成为集成器件领域最广泛研究的材料之一。BST 材料的电学性能与材料的微观结构如气孔率和晶粒尺寸紧密相关,超细晶粒和高度致密的BST具有理想的介电特性,材料物化性能优异,在工业上有着广泛的应用价值, 随着微电子行业发展的日益成熟,BST 陶瓷材料将会受到越来越多的重视。
[0004] 激光烧结3D打印属于增材制造的一种方法。这种工艺也是以激光器为能量源,通过激光束使塑料、蜡、陶瓷、金属或其复合物的粉末均匀地烧结在加工平面上。在工作台上均匀铺上一层很薄的粉末作为原料,激光束在计算机的控制下,通过扫描器以一定的速度和能量密度按分层面的二维数据扫描。经过激光束扫描后,相应位置的粉末就烧结成一定厚度的实体片层,未扫描的地方仍然保持松散的粉末状。这一层扫描完毕后,随后需要对下一层进行扫描。先根据物体截层厚度即分层层厚而降低工作台,铺粉滚筒再一次将粉末铺平,可以开始新一层的扫描。如此反复,直至扫描完所有层面。去掉多余粉末,并经过后处理,即可获得产品。
[0005] 在现有的成型材料领域中,由于SLS快速成型技术具有原料来源多样和零件的构建时间较短等优点,故在快速成型领域有着较广泛的应用。但大部分是有机材料和复合材料,中国发明专利CN1379061A中公开了一种用于激光烧结成型制品的尼龙粉末材料,通过化学合成和工艺的改进,对尼龙粉末材料的表面进行处理,得到了烧结性能优良,成型制品强度高,韧性好的产品,简化了激光烧结尼龙材料的制备工艺,降低了成本;中国发明专利CN103881371 中公开了一种激光烧结3D制造技术用石塑复合粉末及其制备方法。
[0006] 本申请将以糖胶粘剂热涂层到到造粒后钛酸锶钡表面,得到3D打印钛酸锶钡粉体材料可以直接采用激光烧结3D打印成型。成型过程中不需要喷洒胶粘剂。优点是胶粘剂用量大大减少,所用的胶粘剂是使用糖,减少环境污染,产品的品质高。本申请的工艺制备的3D打印钛酸锶钡粉体材料胶粘剂涂层均匀,表面光滑,流动性好,适合激光烧结3D打印成型。此外,本申请提供的制备方法简单,成本低。

发明内容

[0007] 本发明的目是提供一种以糖为胶粘剂制备3D打印钛酸锶钡粉体材料的方法,快速成型钛酸锶钡粉体材料不需要喷洒粘结剂可直接激光扫描成型;
[0008] 本发明的目的通过以下技术方案实现。
[0009] 一种以糖为胶粘剂制备3D打印钛酸锶钡粉体材料的方法,其特征在于,该方法具有以下工艺步骤:
[0010] (1)造粒钛酸锶钡陶瓷粉体制备:在反应器中,按质量百分比加入,水:52% 58%,水~溶性淀粉:0.2% 1.0%,水性聚氨酯:0.5% 2.0%,聚乙二醇:0.2% 1.0%,搅拌溶解,再加入纳~ ~ ~
米钛酸钡陶瓷粉体:40% 45%,各组分之和为百分之百,强力搅拌、反应6 7h,然后喷雾干燥,~ ~
得到造粒钛酸锶钡陶瓷粉体,其粒径在80 120µm范围内;
~
[0011] (2)3D打印钛酸锶钡粉体材料的制备:在研磨机中,按质量百分浓度加入,造粒钛酸锶钡陶瓷粉体:85% 92%,开启研磨机转速在500转/分钟,研磨,温度升至120±2℃,加入~硬脂酰胺:0.5% 2%,研磨30min,温度继续升高到190±2℃,白糖:5% 10%,三聚氰胺:0.5%~ ~ ~
1.5%,异丙基三(二辛基磷酸酰氧基)钛酸酯:1% 3%,各组分之和为百分之百,恒温,在500~
转/分钟的转速下研磨40 50 min,冷至室温,得到3D打印钛酸锶钡粉体材料,所得到3D打印~
钛酸锶钡粉体材料,其粒径为100 150μm的范围内。
~
[0012] 在步骤(1)中所述的喷雾干燥,进风口温度控制在110℃,出风口温度控制在90℃,进风流量250m3/h。
[0013] 在步骤(1)中所述的聚乙二醇为聚乙二醇200或聚乙二醇400。
[0014] 在步骤(2)中所述的白糖为食用的绵白糖或白砂糖。
[0015] 本发明所述的颗粒度测试方法是采用激光粒度仪测得的粒度当量直径尺寸。
[0016] 本发明与现有技术比较,具有如下优点及有益效果:
[0017] (1)本发明获得的3D打印钛酸锶钡粉体材料,采用糖作为胶粘剂涂层在造粒钛酸锶钡表面,绿色环保,不需要喷洒粘结剂在激光烧结条件下可直接成型。
[0018] (2)本发明获得的3D打印钛酸锶钡粉体材料,颗粒的粒径均匀,球形度高,流动性好的特点,性质稳定;由这种快速成型粉末材料可以制造薄壁模型或微小零部件,制造出产品具有表面光泽度高,强度好,精度高等特点。
[0019] (3)本发明获得的3D打印钛酸锶钡粉体材料,具有制备工艺简单,条件易于控制,生产成本低,易于工业化生产,易于储存,无污染等优点。

具体实施方式

[0020] 实施例1
[0021] (1)造粒钛酸锶钡陶瓷粉体制备:在反应器中,分别加入水:540mL,水溶性淀粉:5g,水性聚氨酯:10g,聚乙二醇:5g,搅拌溶解,再加入纳米钛酸钡陶瓷粉体:400g,强力搅拌、反应6.5h,然后喷雾干燥,得到造粒钛酸锶钡陶瓷粉体,其粒径在80 120µm范围内;
~
[0022] (2)3D打印钛酸锶钡粉体材料的制备:在研磨机中,分别加入,造粒钛酸锶钡陶瓷粉体:88g,开启研磨机转速在500转/分钟,研磨,温度升至120±2℃,加入硬脂酰胺:1g,研磨30min,温度继续升高到190±2℃,白糖:8g,三聚氰胺:1g,异丙基三(二辛基磷酸酰氧基)钛酸酯:2g,恒温,在500转/分钟的转速下研磨45 min,,冷至室温,得到3D打印钛酸锶钡粉体材料,所得到3D打印钛酸锶钡粉体材料,其粒径为100 150μm的范围内。~
[0023] 实施例2
[0024] (1)造粒钛酸锶钡陶瓷粉体制备:在反应器中,分别加入水:1040mL,水溶性淀粉:4g,水性聚氨酯:36g,聚乙二醇:20g,搅拌溶解,再加入纳米钛酸钡陶瓷粉体:900g,强力搅拌、反应6h,然后喷雾干燥,得到造粒钛酸锶钡陶瓷粉体,其粒径在80 120µm范围内;
~
[0025] (2)3D打印钛酸锶钡粉体材料的制备:在研磨机中,分别加入,造粒钛酸锶钡陶瓷粉体:920g,开启研磨机转速在500转/分钟,研磨,温度升至120±2℃,加入硬脂酰胺:5g,研磨30min,温度继续升高到190±2℃,白糖:50g,三聚氰胺:15g,异丙基三(二辛基磷酸酰氧基)钛酸酯:10g,恒温,在500转/分钟的转速下研磨40 min,,冷至室温,得到3D打印钛酸锶钡粉体材料,所得到3D打印钛酸锶钡粉体材料,其粒径为100 150μm的范围内。~
[0026] 实施例3
[0027] (1)造粒钛酸锶钡陶瓷粉体制备:在反应器中,分别加入水:1160mL,水溶性淀粉:20g,水性聚氨酯:16g,聚乙二醇:4g,搅拌溶解,再加入纳米钛酸钡陶瓷粉体:800g,强力搅拌、反应7h,然后喷雾干燥,得到造粒钛酸锶钡陶瓷粉体,其粒径在80 120µm范围内;
~
[0028] (2)3D打印钛酸锶钡粉体材料的制备:在研磨机中,分别加入,造粒钛酸锶钡陶瓷粉体:850g,开启研磨机转速在500转/分钟,研磨,温度升至120±2℃,加入硬脂酰胺:20g,研磨30min,温度继续升高到190±2℃,白糖:100g,三聚氰胺:12g,异丙基三(二辛基磷酸酰氧基)钛酸酯:18g,恒温,在500转/分钟的转速下研磨50min,,冷至室温,得到3D打印钛酸锶钡粉体材料,所得到3D打印钛酸锶钡粉体材料,其粒径为100 150μm的范围内。~
[0029] 实施例4
[0030] (1)造粒钛酸锶钡陶瓷粉体制备:在反应器中,分别加入水:1100mL,水溶性淀粉:14g,水性聚氨酯:20g,聚乙二醇:16g,搅拌溶解,再加入纳米钛酸钡陶瓷粉体:840g,强力搅拌、反应6.5h,然后喷雾干燥,得到造粒钛酸锶钡陶瓷粉体,其粒径在80 120µm范围内;
~
[0031] (2)3D打印钛酸锶钡粉体材料的制备:在研磨机中,分别加入,造粒钛酸锶钡陶瓷粉体:880g,开启研磨机转速在500转/分钟,研磨,温度升至120±2℃,加入硬脂酰胺:15g,研磨30min,温度继续升高到190±2℃,白糖:70g,三聚氰胺:5g,异丙基三(二辛基磷酸酰氧基)钛酸酯:30g,恒温,在500转/分钟的转速下研磨45 min,,冷至室温,得到3D打印钛酸锶钡粉体材料,所得到3D打印钛酸锶钡粉体材料,其粒径为100 150μm的范围内。~
[0032] 实施例5
[0033] (1)造粒钛酸锶钡陶瓷粉体制备:在反应器中,分别加入水:1120mL,水溶性淀粉:20g,水性聚氨酯:10g,聚乙二醇:10g,搅拌溶解,再加入纳米钛酸钡陶瓷粉体:860g,强力搅拌、反应6.5h,然后喷雾干燥,得到造粒钛酸锶钡陶瓷粉体,其粒径在80 120µm范围内;
~
[0034] (2)3D打印钛酸锶钡粉体材料的制备:在研磨机中,分别加入,造粒钛酸锶钡陶瓷粉体:900g,开启研磨机转速在500转/分钟,研磨,温度升至120±2℃,加入硬脂酰胺:10g,研磨30min,温度继续升高到190±2℃,白糖:60g,三聚氰胺:10g,异丙基三(二辛基磷酸酰氧基)钛酸酯:20g,恒温,在500转/分钟的转速下研磨45 min,,冷至室温,得到3D打印钛酸锶钡粉体材料,所得到3D打印钛酸锶钡粉体材料,其粒径为100 150μm的范围内。~
[0035] 使用方法:将3D打印钛酸锶钡粉体材料加入到选择性激光烧结成型机的供粉缸中,铺粉滚轮将粉末材料均匀地铺在加工平面上并被加热至加工温度,激光器发出激光,计算机控制激光器的开关及扫描器的角度,使得激光束在加工平面上根据对应的二维片层形状进行扫描,激光束扫过之后,工作台下移一个层厚,再铺粉,激光束扫描,如此反复,得到激光烧结件;其中激光束在加工平面上扫描的方式为分区域扫描,激光功率为80 100W,扫~描速度为1500mm/s,扫描间距为0.1 0.15mm,分层厚度为0.10 0.2mm,预热温度:100℃,加~ ~
工温度为200 210℃。
~