铁氧体烧结磁铁转让专利

申请号 : CN201710026060.4

文献号 : CN106977191B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 森田启之

申请人 : TDK株式会社

摘要 :

本发明提供一种铁氧体烧结磁铁,其特征在于,具有以下式(1)表示的组成,Ca1‑w‑xLawAxFezComMnaO19……(1)上述式(1)中,w、x、z、m及a满足下式(2)、(3)、(4)、(5)和(6),0.21≤w≤0.62(2),0.02≤x≤0.46(3),7.43≤z≤11.03(4),0.18≤m≤0.41(5),0.046≤a≤0.188(6);A为选自Sr和Ba中的至少一种元素。

权利要求 :

1.一种铁氧体烧结磁铁,其特征在于,具有以下式(1)表示的组成,Ca1-w-xLawAxFezComMnaO19……(1)所述式(1)中,w、x、z、m及a满足下式(2)、(3)、(4)、(5)及(6),

0.21≤w≤0.62   (2)

0.02≤x≤0.46   (3)

7.43≤z≤11.03   (4)

0.18≤m≤0.41   (5)

0.054≤a≤0.114   (6)A为选自Sr和Ba中的至少一种元素。

2.根据权利要求1所述的铁氧体烧结磁铁,其中,w/m为0.84~2.48。

3.根据权利要求1或2所述的铁氧体烧结磁铁,其中,还含有以SiO2换算为0.52质量%~1.18质量%的Si。

4.根据权利要求1或2所述的铁氧体烧结磁铁,其中,还含有以Cr2O3换算为0.98质量%以下的Cr。

5.根据权利要求3所述的铁氧体烧结磁铁,其中,还含有以Cr2O3换算为0.98质量%以下的Cr。

说明书 :

铁氧体烧结磁铁

技术领域

[0001] 本发明涉及铁氧体烧结磁铁。

背景技术

[0002] 作为由氧化物构成的永久磁铁的材料,已知有六方晶系的M型(磁铅石型)Sr铁氧体或Ba铁氧体。由这些铁氧体构成的磁性材料是以铁氧体烧结磁铁或粘结磁铁的形式作为永久磁铁来供给。
[0003] 近年来,随着电子部件的小型化、高性能化,对永久磁铁也要求具有较高的磁特性。
[0004] 作为永久磁铁的磁特性的指标,通常使用剩余磁通密度(Br)及矫顽力(HcJ),这些指标越高,则评价为具有越高的磁特性。
[0005] 例如,专利文献1中公开有一种铁氧体磁性材料,其通过含有规定量的Si成分,不仅具有较高的Br及HcJ,还具有较高的Hk/HcJ。
[0006] 另外,专利文献2中公开有一种铁氧体磁性材料,通过含有规定量的Si成分,并且进一步含有规定量的Al成分和Cr成分,从而具有较高的Br及HcJ。
[0007] 如上所述,为了良好地得到Br和HcJ两者,尝试将添加到主要组成中的元素的组合进行各种改变,但是尚不知哪种添加元素的组合能赋予较高的磁特性。
[0008] 另外,优选永久磁铁中具有较高的Br和HcJ,而且磁化为Br的90%时的磁场的值(Hk)相对于HcJ的比率,即,所谓的矩形比(Hk/HcJ)也较高。
[0009] 另外,工业上为了以稳定的质量制造大量产品,需要成型性良好。
[0010] 但是,目前都是如果任一磁特性或成型性提高,则另一磁特性或成型性就会降低等,决不容易得到具有良好的磁特性及良好的成型性的永久磁铁。
[0011] 专利文献1:国际公开第2011/004791号
[0012] 专利文献2:国际公开第2014/021426号

发明内容

[0013] 因此,本发明是鉴于这种情况而完成的,其目的在于,提供一种维持较高的Br及HcJ,而且成型性良好的铁氧体烧结磁铁。
[0014] 用于解决技术问题的手段
[0015] 为了达成上述目的,本发明提供一种铁氧体烧结磁铁,如下所述。
[0016] [1]一种铁氧体烧结磁铁,其特征在于,
[0017] 具有以下式(1)所表示的组成,
[0018] Ca1-w-xLawAxFezComMnaO19……(1)
[0019] 上述式(1)中,w、x、z、m及a满足下式(2)、(3)、(4)、(5)及(6),
[0020] 0.21≤w≤0.62  (2)
[0021] 0.02≤x≤0.46  (3)
[0022] 7.43≤z≤11.03  (4)
[0023] 0.18≤m≤0.41  (5)
[0024] 0.046≤a≤0.188  (6)
[0025] A为选自Sr和Ba中的至少一种元素。
[0026] 根据本发明,可以提供一种良好地维持Br及HcJ,并且具有较高的成型性的铁氧体烧结磁铁。
[0027] 作为上述[1]的具体的方式,示例下述方式。
[0028] [2]如上述[1]所记载的铁氧体烧结磁铁,其中,
[0029] w/m为0.84~2.48。
[0030] [3]如上述[1]或[2]所记载的铁氧体烧结磁铁,其中,
[0031] 还含有以SiO2换算为0.52质量%~1.18质量%的Si。
[0032] [4]如上述[1]~[3]中任一项所记载的铁氧体烧结磁铁,其中,
[0033] 还含有以Cr2O3换算为0.98质量%以下的Cr。

附图说明

[0034] 图1是示意性地表示本发明的一个实施方式的铁氧体烧结磁铁的立体图;
[0035] 图2A是表示Mn的原子比率(a)和Br的关系的图表;
[0036] 图2B是表示Mn的原子比率(a)和HcJ的关系的图表;
[0037] 图2C是表示Mn的原子比率(a)和Hk/HcJ的关系的图表;
[0038] 图3A是表示Co的原子比率(m)和Br的关系的图表;
[0039] 图3B是表示Co的原子比率(m)和HcJ的关系的图表;
[0040] 图3C是表示Co的原子比率(m)和Hk/HcJ的关系的图表;
[0041] 图4A是表示La的原子比率(w)和Br的关系的图表;
[0042] 图4B是表示La的原子比率(w)和HcJ的关系的图表;
[0043] 图4C是表示La的原子比率(w)和Hk/HcJ的关系的图表;
[0044] 图5A是表示A的原子比率(x)和Br的关系的图表;
[0045] 图5B是表示A的原子比率(x)和HcJ的关系的图表;
[0046] 图5C是表示A的原子比率(x)和Hk/HcJ的关系的图表;
[0047] 图6A是表示Fe的原子比率(z)和Br的关系的图表;
[0048] 图6B是表示Fe的原子比率(z)和HcJ的关系的图表;
[0049] 图6C是表示Fe的原子比率(z)和Hk/HcJ的关系的图表;
[0050] 图7A是表示SiO2的含量和Br的关系的图表;
[0051] 图7B是表示SiO2的含量和HcJ的关系的图表;
[0052] 图7C是表示SiO2的含量和Hk/HcJ的关系的图表。
[0053] 符号说明
[0054] 10……铁氧体烧结磁铁

具体实施方式

[0055] 基于本实施方式,参照附图详细地说明本发明,但本发明不仅限定于以下说明的实施方式。
[0056] 另外,以下所记载的构成要素包含本领域技术人员可容易想到的要素、实际上相同的要素。进一步,以下所记载的构成要素可以适宜组合。
[0057] 铁氧体烧结磁铁
[0058] 对本实施方式的铁氧体烧结磁铁的整体结构进行说明。
[0059] 图1是示意性地表示本实施方式的铁氧体烧结磁铁的立体图。铁氧体烧结磁铁10是以端面成为圆弧状的方式弯曲的形状,一般而言,是被称为圆弧段形状、C形形状、瓦形形状或弓形形状的形状。铁氧体烧结磁铁10适合用作例如电动机用的磁铁。
[0060] 本发明一个实施方式的铁氧体烧结磁铁10由铁氧体构成,并且该铁氧体具有由具有六方晶结构的铁氧体相构成的主相。
[0061] 作为上述铁氧体相,优选为磁铅石型(M型)铁氧体(以下,称为“M型铁氧体”。)。此外,特别地,将由磁铅石型(M型)铁氧体构成的主相称为“M相”。在此,“由铁氧体相构成的主相”通常是指,铁氧体烧结磁铁由“主相(结晶颗粒)”和“晶界”构成,其“主相”为铁氧体相。作为主相占据烧结体的比例,优选为95体积%以上。
[0062] 铁氧体烧结磁铁是烧结体的形式,具有含有结晶颗粒(主相)和晶界的结构。该烧结体中的结晶颗粒的平均晶体粒径优选为2μm以下,更优选为0.5μm~1.6μm。通过具有这种平均晶体粒径,易于得到较高的HcJ。此外,这里所说的平均晶体粒径是M型铁氧体的烧结体中的结晶颗粒的、难磁化轴(a轴)方向的粒径的相加平均值。铁氧体磁性材料的烧结体的晶体粒径可以利用扫描电子显微镜来进行测定。
[0063] 本实施方式的铁氧体烧结磁铁具有例如以下式(1)表示的组成。
[0064] Ca1-w-xLawAxFezComMnaO19……(1)
[0065] 在此,式(1)中,A是选自Sr和Ba中的至少一种元素。
[0066] 式(1)中,w、x、z、m及a分别表示La、A、Fe、Co及Mn的原子比率,且满足下述式(2)、(3)、(4)、(5)及(6)的全部。
[0067] 0.21≤w≤0.62  (2)
[0068] 0.02≤x≤0.46  (3)
[0069] 7.43≤z≤11.03  (4)
[0070] 0.18≤m≤0.41  (5)
[0071] 0.046≤a≤0.188  (6)
[0072] 此外,氧的组成比以不影响各金属元素的组成比、各元素(离子)的价数,且在晶体内维持电中性的方式增减。另外,在后述的烧结工序时,如果将烧结气氛设为还原性气氛,有时也会产生氧缺陷。
[0073] 以下,更详细地说明上述的铁氧体烧结磁铁的组成。
[0074] 本实施方式的铁氧体烧结磁铁也可以如后面所述含有SiO2或Cr2O3作为副成分,也可以还含有其它副成分。例如,作为副成分,也可以含有Ca成分。
[0075] 但是,本实施方式的铁氧体烧结磁铁如上所述含有Ca作为构成作为主相的铁氧体相的成分。因此,在含有Ca作为副成分的情况下,例如根据烧结体分析得到的Ca的量成为主相及副成分的总量。即,在使用Ca成分作为副成分的情况下,通式(1)中的Ca的原子比率(1-w-x)成为也包含副成分的值。原子比率(1-w-x)的范围是基于烧结后分析的组成所特定的范围,因此,可适用于含有Ca成分作为副成分的情况和不含有Ca成分的情况两种情况。
[0076] La的原子比率(w)为0.21≤w≤0.62,通过该范围,可得到较高的Br及HcJ,并且成型性良好。另外,可提高各向异性磁场。从上述观点出发,La的原子比率优选为0.24~0.56,更优选为0.31~0.51。
[0077] 由A表示的元素是选自Sr和Ba中的至少一种元素,但A更优选为单独的Sr或单独的Ba。由此,可以减少元素的种类,并可以减少制造的工作负荷。此外,也可以含有Sr和Ba两者。
[0078] 构成上述铁氧体烧结磁铁的金属元素的组成中的A的原子比率(x)为0.02≤x≤0.46,通过为该范围,可得到较高的Br以及HcJ,并且成型性良好。从上述观点出发,A的原子比率(x)优选为0.04~0.32,更优选为0.07~0.23。
[0079] 此外,在含有Sr和Ba两者的情况下,优选其合计量成为上述的A的原子比率(x)的范围。
[0080] Fe的原子比率(z)为7.43≤z≤11.03,通过为该范围,可得到较高的Br及HcJ,并且成型性良好。从上述观点出发,Fe的原子比率(z)优选为8.02~10.65,更优选为8.51~10.23,进一步优选为8.72~9.52。
[0081] Co的原子比率(m)为0.18≤m≤0.41,通过为该范围,可得到较高的Br以及HcJ,并且成型性良好。另外,可提高各向异性磁场。从上述观点出发,Co的原子比率优选为0.18~0.36,更优选为0.21~0.28。
[0082] Mn的原子比率(a)为0.046≤a≤0.188,通过为该范围,可得到较高的Br以及HcJ,并且成型性良好。从上述观点出发,Mn的原子比率优选为0.046~0.137,更优选为0.049~0.114,进一步优选为0.054~0.079。
[0083] 此外,铁氧体烧结磁铁的Cr或Si等的副成分也可以含有于铁氧体烧结磁铁的主相和晶界中的任一者。在铁氧体烧结磁铁中,整体中的副成分以外为主相。
[0084] 就La的原子比率(w)和Co的原子比率(m)而言,w/m优选为0.84~2.48。由此,可得到较高的Br及HcJ,并且成型性良好。从上述观点出发,w/m更优选为1.24~2.04。
[0085] 本实施方式的铁氧体烧结磁铁也可以含有Si作为副成分。以SiO2换算,Si的含量优选为铁氧体烧结磁铁整体的0.52质量%~1.18质量%。由此,成为烧结性良好,且烧结体的晶体粒径被适当调整,并良好地控制了磁特性的铁氧体烧结磁铁。其结果,铁氧体烧结磁铁可以得到较高的Br及HcJ,并且得到较高的Hk/HcJ及良好的成型性。从上述观点出发,SiO2的含量更优选为铁氧体烧结磁铁整体的0.59质量%~1.01质量%,进一步优选为0.64质量%~0.92质量%。
[0086] 本实施方式的铁氧体烧结磁铁也可以含有Cr作为副成分。以Cr2O3换算,Cr的含量优选为铁氧体烧结磁铁整体的0.98质量%以下,更优选为0.30质量%以下,进一步优选为0.08质量%以下。由此,成型性良好。
[0087] 铁氧体烧结磁铁含有上述的金属元素的组成以及SiO2等副成分,但铁氧体烧结磁铁的组成可以通过荧光X射线定量分析来进行测定。另外,主相的存在可以通过X射线衍射或电子束衍射来进行确认。
[0088] 另外,作为副成分,也可以例如以B2O3来含有硼B,B的含量为,优选为相对于铁氧体烧结磁铁整体,以B2O3计为0.5质量%以下。这样,可以降低得到铁氧体烧结磁铁时的煅烧温度及烧结温度,可以生产性良好地得到铁氧体烧结磁铁,并抑制铁氧体烧结磁铁的饱和磁化的降低。
[0089] 另外,本实施方式的铁氧体烧结磁铁也可以以氧化物的形式含有Ga、Mg、Cu、Ni、Zn、In、Li、Ti、Zr、Ge、Sn、V、Nb、Ta、Sb、As、W、Mo等作为副成分。它们在铁氧体烧结磁铁整体中的含量换算成各原子的化学计量组成的氧化物优选为,氧化镓5质量%以下、氧化镁5质量%以下、氧化铜5质量%以下、氧化镍5质量%以下、氧化锌5质量%以下、氧化铟3质量%以下、氧化锂1质量%以下、氧化钛3质量%以下、氧化锆3质量%以下、氧化锗3质量%以下、氧化锡3质量%以下、氧化钒3质量%以下、氧化铌3质量%以下、氧化钽3质量%以下、氧化锑3质量%以下、氧化砷3质量%以下、氧化钨3质量%以下、氧化钼3质量%以下。但是,在组合多个种类而含有这些氧化物的情况下,能够避免磁特性的降低,因此,优选其合计成为5质量%以下。
[0090] 碱金属元素(Na、K、Rb等)有时也包含于铁氧体烧结磁铁的原料中,如果是这样不可避免地含有的程度,则也可以包含于铁氧体烧结磁铁中。不大幅影响磁特性的碱金属元素的含量为3质量%以下。
[0091] 铁氧体烧结磁铁的制造方法
[0092] 接下来,具体地说明作为本发明一个实施方式的铁氧体烧结磁铁的制造方法。
[0093] 以下的实施方式中,示出铁氧体烧结磁铁的制造方法的一个例子。本实施方式中,铁氧体烧结磁铁可以经由配合工序、煅烧工序、粉碎工序、成型工序及烧结工序来进行制造。另外,有时在粉碎工序和成型工序之间包含微粉碎浆料的干燥工序、混炼工序,有时在成型工序和烧结工序之间含有脱脂工序。以下,对各工序进行说明。
[0094] <配合工序>
[0095] 配合工序中,配合铁氧体烧结磁铁的原料,得到原料混合物。首先,作为铁氧体烧结磁铁的原料,可举出含有构成铁氧体烧结磁铁的元素中的1种或2种以上的化合物(原料化合物)。原料化合物优选为例如粉末状的化合物。
[0096] 作为原料化合物,可举出各元素的氧化物或通过烧结制成氧化物的化合物(碳酸盐、氢氧化物、硝酸盐等)。例如可示例CaCO3、La2O3、SrCO3、Fe2O3、Co3O4、MnO、Cr2O3及SiO2等。从例如可以均质地配合的观点来看,原料化合物的粉末的平均粒径优选做成0.1μm~2.0μm左右。
[0097] 配合可以通过如下进行,例如,称量并混合各原料以得到所期望的铁氧体磁性材料的组成,之后,可以使用湿式磨碎机、球磨机等进行混合、粉碎处理0.1小时~20小时左右。
[0098] 此外,该配合工序中,不需要混合所有的原料,也可以在后述的煅烧后添加一部分原料。例如,可以在后述的煅烧后、粉碎(特别是微粉碎)工序中添加作为副成分的Si的原料(例如SiO2)、Cr的原料(例如Cr2O3)或作为金属元素的组成的构成元素即Mn的原料(例如MnO)、Ca的原料(例如CaCO3),也可以在配合工序及粉碎工序中添加。添加的时期可以以易于得到所期望的组成或磁特性的方式进行调整。
[0099] <煅烧工序>
[0100] 煅烧工序中,对配合工序中得到的原料粉末进行煅烧。煅烧优选在例如空气中等氧化性气氛中进行。煅烧的温度优选设为1100℃~1400℃的温度范围,更优选为1100℃~1300℃,进一步优选为1150℃~1300℃。煅烧的时间可以设为1秒钟~10小时,优选为1秒钟~5小时。
[0101] 通过煅烧得到的煅烧体含有70%以上的如上所述的主相(M相)。煅烧体的一次粒径优选为10μm以下,更优选为5μm以下,进一步优选为2μm以下。
[0102] <粉碎工序>
[0103] 粉碎工序中,将煅烧工序中成为颗粒状或块状的煅烧体粉碎,再次做成粉末状。由此,后述的成型工序中的成型变得容易。该粉碎工序中,如上所述,也可以添加配合工序中未配合的原料(原料的后添加)。粉碎工序也可以在两步工序中进行,例如以使煅烧体变成粗粉末的方式进行粉碎(粗粉碎)后,将这些粗粉末进一步微细地粉碎(微粉碎)。
[0104] 粗粉碎使用例如振动球磨机等进行到平均粒径成为0.5μm~5.0μm。微粉碎中,进一步利用湿式磨碎机、球磨机、气流粉碎机等粉碎在粗粉碎中得到的粗粉碎材料。
[0105] 微粉碎中,以得到的微粉碎材料的平均粒径优选成为0.08μm~2.0μm,更优选成为0.1μm~1.0μm,进一步优选成为0.1μm~0.5μm左右的方式,进行微粉碎。微粉碎材料的比表面积(例如通过BET法求得。)优选做成4m2/g~12m2/g左右。优选的粉碎时间根据粉碎方法不同而各异,在例如湿式磨碎机的情况下,优选为30分钟~20小时左右,在通过球磨机进行的湿式粉碎中,优选为1小时~50小时左右。
[0106] 在粉碎工序中添加原料的一部分的情况下,例如,添加可以在微粉碎时进行。本实施方式中,可以在微粉碎时添加作为Si成分的SiO2或作为Ca成分的CaCO3,但也可以在配合工序或粗粉碎工序中添加这些成分。
[0107] 微粉碎工序中,在湿式法的情况下,作为分散介质,除了水等水系溶剂以外,可以使用甲苯、二甲苯等非水系溶剂。使用非水系溶剂更倾向于在后述的湿式成型时得到高取向性。另一方面,在使用水等水系溶剂的情况下,在生产性的观点上是有利的。
[0108] 另外,微粉碎工序中,为了提高烧结后得到的烧结体的取向度,也可以添加例如公知的多元醇或分散剂。
[0109] <成型/烧结工序>
[0110] 成型/烧结工序中,在成型粉碎工序后得到的粉碎材料(优选为微粉碎材料)而得到成型体后,烧结该成型体而得到烧结体。成型也可以通过干式成型、湿式成型或CIM成型(Ceramic Injection Molding(陶瓷注射成型))的任一方法进行,优选为CIM成型或湿式成型,特别优选为CIM成型。
[0111] 干式成型法中,例如对干燥的磁性粉末进行加压成型并施加磁场,从而形成成型体,然后,烧结成型体。通常在干式成型法中,将干燥的磁性粉末在模具内进行加压成型,因此,具有成型工序所需要的时间较短的优点。
[0112] 湿式成型法中,例如,一边将含有磁性粉末的浆料在磁场施加中进行加压成型,一边除去液体成分而形成成型体,然后,烧结成型体。湿式成型法中,具有磁性粉末通过成型时的磁场而易于取向,且烧结磁铁的磁特性良好的优点。
[0113] 另外,CIM成型法是如下方法,将干燥后的磁性粉末与粘合剂树脂一起加热混炼,将形成的颗粒在施加有磁场的模具内进行注塑成型,得到预成型体,将该预成型体进行脱粘合剂处理后,进行烧结。
[0114] 以下,详细地说明CIM成型和湿式成型。
[0115] (CIM成型/烧结)
[0116] 在通过CIM成型法得到铁氧体烧结磁铁的情况下,湿式粉碎后,使包含磁性粉末的微粉碎浆料进行干燥。干燥温度优选为80℃~500℃,进一步优选为100℃~400℃。另外,干燥时间优选为1秒钟~100小时,进一步优选为1秒钟~50小时。干燥后的磁性粉末的水分量优选为1.0质量%以下,进一步优选为0.5质量%以下。干燥后的磁性粉末的一次颗粒的平均粒径优选为0.08μm~2.0μm的范围内,进一步优选为0.1μm~1.0μm的范围内。
[0117] 将该干燥后的磁性粉末与粘合剂树脂、蜡类、润滑剂、增塑剂、升华性化合物等(以下,将这些化合物称为“有机成分”。)一起进行混炼,利用造粒机等成型成颗粒。上述有机成分在成型体中优选含有35体积%~60体积%,更优选含有40体积%~55体积%。混炼可以利用例如捏合机等进行。作为造粒机,例如可使用双轴单轴挤出机。另外,混炼及颗粒成型也可以根据所使用的有机成分的熔融温度,一边进行加热,一边实施成型。
[0118] 作为粘合剂树脂,可使用热塑性树脂等的高分子化合物,作为热塑性树脂,例如可使用:聚乙烯、聚丙烯、乙烯乙酸乙烯酯共聚物、无规聚丙烯、丙烯酸聚合物、聚苯乙烯、聚缩醛(polyacetal)等。
[0119] 作为蜡类,除了巴西棕榈蜡、褐煤蜡、蜜蜡等天然蜡以外,可使用石蜡、聚氨酯化蜡、聚乙二醇等合成蜡。
[0120] 作为润滑剂,例如可使用脂肪酸酯等,作为增塑剂,例如可使用邻苯二甲酸酯。
[0121] 粘合剂树脂的添加量优选相对于磁性粉末100质量%为3质量%~20质量%,蜡类的添加量优选为3质量%~20质量%,润滑剂的添加量优选为0.1质量%~5质量%。增塑剂的添加量相对于粘合剂树脂100质量%,优选为0.1质量%~5质量%。
[0122] 本实施方式中,例如使用磁场注塑成型装置,将上述颗粒在模具内进行注塑成型。在向模具的注射前,关闭模具,在内部形成模腔,并对模具施加磁场。
[0123] 此外,颗粒在挤出机的内部以例如160℃~230℃进行加热熔融,并利用螺杆向模具的模腔内进行注射。模具的温度为20℃~80℃。对模具的施加磁场可设为80kA/m~2000kA/m左右。
[0124] 接着,将通过CIM成型得到的预成型体在大气中或氮气中以100℃~600℃的温度进行热处理,并进行脱粘合剂处理,从而得到成型体。
[0125] 优选根据进行脱粘合剂处理的有机成分,将挥发或分解的温度区域的升温速度适宜调整成例如0.01℃/分钟~1℃/分钟左右的缓慢的升温速度,并进行脱粘合剂处理。由此,可以防止成型体或烧结体的破裂或裂缝,并提高成型体的保形力。另外,在使用多种有机成分的情况下,也可以将脱粘合剂处理分成多次来实施。
[0126] 接下来,在烧结工序中,将进行了脱粘合剂处理的成型体,在例如大气中优选以1100℃~1250℃,更优选以1160℃~1230℃的温度烧结0.2小时~3小时左右,从而得到本发明的铁氧体烧结磁铁。通过设为上述的烧结温度及烧结温度保持时间,可以得到充分的烧结体密度,添加的元素的反应变得充分,并可得到期望的磁特性。
[0127] 此外,烧结工序也可以与上述的脱粘合剂工序连续地实施,也可以在一次脱粘合剂处理后,冷却至室温,之后实施烧结。
[0128] (湿式成型/烧结)
[0129] 在通过湿式成型法得到铁氧体烧结磁铁的情况下,优选例如通过以湿式进行上述的微粉碎工序而得到浆料后,将该浆料浓缩成规定的浓度,从而得到湿式成型用浆料,并使用该浆料进行成型。
[0130] 浆料的浓缩可以通过离心分离或压滤机等进行。湿式成型用浆料的总量中,优选微粉碎材料占据30质量%~80质量%左右。
[0131] 浆料中,作为分散微粉碎材料的分散介质,优选为水。在该情况下,也可以向浆料中添加葡糖酸、葡糖酸盐、山梨糖醇等表面活性剂。另外,作为分散介质,也可以使用非水系溶剂。作为非水系溶剂,可以使用甲苯或二甲苯等有机溶剂。在该情况下,优选添加油酸等表面活性剂。
[0132] 此外,湿式成型用浆料也可以通过向微粉碎后的干燥状态的微粉碎材料中添加分散介质等来调制。
[0133] 湿式成型中,接下来,对该湿式成型用浆料进行磁场中成型。在该情况下,成型压2 2
力优选为9.8MPa~98MPa(0.1ton/cm ~1.0ton/cm)左右,施加磁场可设为400kA/m~
1600kA/m左右。另外,成型时的加压方向和磁场施加方向可以是在同一方向上也可以是正交方向。
[0134] 通过湿式成型得到的成型体的烧结可以在大气中等的氧化性气氛中进行。烧结温度优选为1050℃~1270℃,更优选为1080℃~1240℃。另外,烧结时间(保持烧结温度的时间)优选为0.5小时~3小时左右。
[0135] 此外,在通过上述那样的湿式成型得到成型体的情况下,优选在到达上述烧结温度之前,例如,以0.5℃/分钟左右的缓慢的升温速度从室温加热至100℃左右,充分干燥成型体,由此,抑制裂缝的产生。
[0136] 进一步,在添加表面活性剂(分散剂)等的情况下,优选在例如100℃~500℃左右的温度范围内,以2.5℃/分钟左右的升温速度加热,由此,充分除去这些表面活性剂(脱脂处理)。此外,这些表面活性剂的处理也可以在烧结工序的最初进行,也可以在烧结工序之前另外进行。
[0137] 以上,说明了铁氧体烧结磁铁的优选的制造方法,但制造方法不限定于上述,可以适宜变更制造条件等。
[0138] 由本发明得到的铁氧体烧结磁铁只要具有本发明的铁氧体的组成,其形式没有限定。例如,铁氧体烧结磁铁可以具有有各向异性的圆弧段形状、平板状、圆柱状等、筒状、各种形状。根据本发明的铁氧体烧结磁铁,不管磁铁的形状,均维持较高的Br及HcJ,并得到较高的Hk/HcJ,特别是即使是圆弧段形状的磁铁,也能维持较高的Br及HcJ,并得到较高的Hk/HcJ。
[0139] 本实施方式的铁氧体烧结磁铁可以用于通常的电动机、旋转机、传感器等。
[0140] 本实施方式中的铁氧体烧结磁铁例如可以作为燃油泵用、电动窗用、ABS(防抱死制动系统)用、风扇用、刮水器用、动力转向装置用、主动悬挂系统用、起动器用、门锁用、电动反光镜用等的汽车用电动机的部件来使用。
[0141] 另外,可以作为FDD主轴用、VTR主导轴用、VTR旋转头用、VTR卷盘用、VTR加载用、VTR摄像机主导轴用、VTR摄像机旋转头用、VTR摄像机变焦距用、VTR摄像机聚焦用、收录机等主导轴用、CD/DVD/MD主轴用、CD/DVD/MD加载用、CD/DVD光拾波器用等的OA/AV设备用电动机的部件来使用。
[0142] 还可以作为空调压缩机用、冷冻库压缩机用、电动工具驱动用、电吹风风扇用、电动剃须刀驱动用、电动牙刷用等家用电器用电动机的部件来使用。另外,还可以作为机器人轴、关节驱动用、机器人主驱动用、工作机器工作台驱动用、工作机器皮带驱动用等的FA机器用电动机的部件来使用。
[0143] 作为其它用途,可举出:摩托车用发电器、扬声器·耳机用磁铁、磁控管、MRI用磁场发生装置、CD-ROM用夹持器、配电盘用传感器、ABS用传感器、燃料·燃油液位传感器、磁锁、隔离器、发电机等部件。或者也可以作为通过蒸镀法或溅射法等形成磁记录介质的磁性层时的靶材(颗粒)来使用。
[0144] 实施例
[0145] 以下,基于更详细的实施例说明本发明,但本发明不限定于这些实施例。
[0146] 实施例1
[0147] <配合工序>
[0148] 作为初始原料,准备CaCO3、La2O3、SrCO3、Fe2O3、Co3O4、MnO,并称量以成为表1~表4所记载的各试样的组成。另外,作为Si成分,称量相对于上述初始原料100质量%为0.35质量%的SiO2。
[0149] 此外,表1中,制作了改变了Mn的原子比率(a)的试样。表2中,制作了改变了Co的原子比率(m)的试样。表3中,制作了改变了La的原子比率(w)的试样。表4中,制作了改变了A的元素种类及A的原子比率(x)的试样。
[0150] 将上述初始原料及SiO2、各个粉末用湿式磨碎机进行混合并粉碎,得到了浆料状的原料混合物。
[0151] <煅烧工序>
[0152] 将该原料混合物干燥后,在大气中,进行以1200℃保持2小时的煅烧处理,并得到了煅烧体。
[0153] <粉碎工序>
[0154] 将得到的煅烧体利用棒磨机进行粗粉碎,得到了粗粉碎材料。以构成烧结后的铁氧体烧结磁铁的金属元素的比率成为表1~表4所记载的各试样所示的值的方式,对得到的粗粉碎材料分别适当添加了CaCO3、La2O3、SrCO3、Fe2O3、Co3O4、MnO及SiO2。
[0155] 接下来,用湿式球磨机进行微粉碎28小时,得到了浆料。以固形成分浓度成为70~75质量%的方式调节所得到的浆料,从而制成湿式成型用浆料。
[0156] <成型/烧结工序>
[0157] 接下来,使用湿式磁场成型机得到预成型体。成型压力设为50MPa,施加磁场设为800kA/m。另外,成型时的加压方向和磁场施加方向设定成同一方向。通过湿式成型得到的预成型体为圆板状,直径为30mm,高度为15mm。
[0158] 在大气中,将预成型体进行以1190℃~1230℃保持1小时的烧结,并得到作为烧结体的铁氧体烧结磁铁。
[0159] 实施例2
[0160] 实施例2中,如表5所示,使用Sr和Ba作为A元素种类,将Sr的原子比率设为0.08,将Ba的原子比率设为0.07,将“A的原子比率x”设为0.15(=0.08+0.07),除此以外,与实施例1一样,得到了铁氧体烧结磁铁。
[0161] 实施例3
[0162] 实施例3中,如表6所示,除了制作了改变了Fe的原子比率(z)的试样的以外,其它都与实施例1同样,得到了铁氧体烧结磁铁。
[0163] 实施例4
[0164] 实施例4中,在配合工序中,除了初始原料以外,还准备了SiO2,称量SiO2以成为表7所记载的各试样的组成,在煅烧工序中,除了初始原料以外,还将SiO2的粉末用湿式磨碎机进行混合等,与实施例1一样,得到了煅烧体。另外,在实施例4中,在粉碎工序中以成为表7所记载的各试样所示的值的方式,对得到的粗粉碎材料适当添加CaCO3、La2O3、SrCO3、Fe2O3、Co3O4、MnO及SiO2等,与实施例1同样,得到了铁氧体材料粉末。实施例4中,除了上述的工序以外,其它与实施例1同样,得到了铁氧体烧结磁铁。
[0165] 实施例5
[0166] 实施例5中,在配合工序中除了初始原料以外,还准备了Cr2O3,并称量Cr2O3以成为表8所记载的各试样的组成,在煅烧工序中除了初始原料以外,还用湿式磨碎机将Cr2O3的粉末进行混合等,与实施例1同样得到了煅烧体。另外,在实施例5中,在粉碎工序中以成为表8所记载的各试样所示的值的方式,对得到的粗粉碎材料适当添加CaCO3、La2O3、SrCO3、Fe2O3、Co3O4、MnO及Cr2O3等,与实施例1同样,得到了铁氧体材料粉末。实施例5中,除了上述的工序以外,与实施例1同样,得到了铁氧体烧结磁铁。
[0167] 对实施例1~实施例5的各铁氧体烧结磁铁进行荧光X射线定量分析,可确认到各铁氧体烧结磁铁分别成为表1~表8所示的组成。
[0168] 此外,表1~表8的各铁氧体烧结磁铁的组成为Ca1-w-xLawAxFezComMnaO19。
[0169] 表1的各铁氧体烧结磁铁恒定为A=Sr,w=0.39,x=0.14,z=9.05,m=0.25,w/m=1.6,SiO2=0.81质量%。
[0170] 表2的各铁氧体烧结磁铁恒定为A=Sr,w=0.39,x=0.14,z=9.05,a=0.061,SiO2=0.81质量%。
[0171] 表3的各铁氧体烧结磁铁恒定为A=Sr,x=0.14,z=9.05,m=0.25,a=0.061,SiO2=0.81质量%。
[0172] 表4的各铁氧体烧结磁铁恒定为w=0.39,z=8.95,m=0.25,w/m=1.6,a=0.061,SiO2=0.81质量%。
[0173] 表5的各铁氧体烧结磁铁恒定为w=0.39,x=0.15,z=8.95,m=0.25,w/m=1.6,a=0.061,SiO2=0.81质量%。
[0174] 表6的各铁氧体烧结磁铁恒定为A=Sr,w=0.39,x=0.14,m=0.25,w/m=1.6,a=0.061,SiO2=0.81质量%。
[0175] 表7的各铁氧体烧结磁铁恒定为A=Sr,w=0.39,x=0.14,z=8.95,m=0.25,w/m=1.6,a=0.061。
[0176] 表8的各铁氧体烧结磁铁恒定为A=Sr,w=0.39,x=0.14,z=9.05,m=0.25,w/m=1.6,a=0.061,SiO2=0.81质量%。
[0177] 另外,通过X射线衍射测定,确认到表1~表8的各铁氧体烧结磁铁的主相是具有六方晶结构的铁氧体相。
[0178] <磁特性(Br、HcJ、Hk)的测定>
[0179] 对实施例1~实施例5的各铁氧体烧结磁铁的上下表面进行了加工后,在25℃的大气气氛中,使用最大施加磁场1989kA/m的B-H示踪仪测定磁特性(剩余磁通密度Br,矫顽力HcJ,矩形比Hk/HcJ)。将实施例1~实施例4的结果表示于表1~表7中,并对实施例5的结果进行后述。在此,Hk是磁滞回线的第二象限中,磁通密度成为剩余磁通密度的90%时的外部磁场强度。
[0180] <成型性>
[0181] 通过下述的方法评价了成型性。
[0182] 观察100个实施例1~实施例5的各铁氧体烧结磁铁,将具有0~5个破裂、缺口或裂缝的情况评价为最佳情况,并记为A;将具有5~10个的情况评价为非常良好的情况,并记为B;将具有11~15个的情况评价为良好的情况,并记为C;将16个以上的情况评价为差的情况,并记为D。将结果记载于表1及表8中,表1或表8以外的试样的结果在后面叙述。
[0183] 将实施例1~实施例4的各试样的组成及磁特性的评价结果示于表1~表7中。
[0184] 将实施例5的各试样的组成及成型性的评价结果示于表8中。
[0185] 另外,将实施例1~实施例4的各试样的组成及磁特性示于图2(图2A、图2B及图2C)~图7(图7A、图7B及图7C)中。
[0186] 表1
[0187]
[0188] 组成:Ca1-w-xLawAxFezComMnaO19
[0189] 恒定为A=Sr,w=0.39,x=0.14,z=9.05,m=0.25,w/m=1.6,SiO2=0.81质量%[0190] A……最佳,B……非常优良,C……优良,D……差
[0191] 表2
[0192]
[0193] 组成:Ca1-w-xLawAxFezComMnaO19
[0194] 恒定为A=Sr,w=0.39,x=0.14,z=9.05,a=0.061,SiO2=0.81质量%[0195] 表3
[0196]
[0197] 组成:Ca1-w-xLawAxFezComMnaO19
[0198] 恒定为A=Sr,x=0.14,z=9.05,m=0.25,a=0.061,SiO2=0.81质量%[0199] 表4
[0200]
[0201]
[0202] 组成:Ca1-w-xLawAxFezComMnaO19
[0203] 恒定为w=0.39,z=8.95,m=0.25,w/m=1.6,a=0.061,SiO2=0.81质量%[0204] 表5
[0205]
[0206] 组成:Ca1-w-xLawAxFezComMnaO19
[0207] w=0.39,x=0.15,z=8.95,m=0.25,w/m=1.6,a=0.061,SiO2=0.81质量%[0208] 表6
[0209]
[0210] 组成:Ca1-w-xLawAxFezComMnaO19
[0211] 恒定为A=Sr,w=0.39,x=0.14,m=0.25,w/m=1.6,a=0.061,SiO2=0.81质量%
[0212] 表7
[0213]
[0214] 组成:Ca1-w-xLawAxFezComMn a O19
[0215] 恒定为A=Sr,w=0.39,x=0.14,z=8.95,m=0.25,a=0.061
[0216] 表8
[0217]
[0218] 组成:Ca1-w-xLawAxFezComMnaO19
[0219] 恒定为A=Sr,w=0.39,x=0.14,z=9.05,m=0.25,a=0.061,SiO2=0.81质量%[0220] A……最佳,B……非常优良,C……优良,D……差
[0221] 根据表1及图2(图2A、图2B及图2C)可确认到Mn的原子比率(a)的范围优选为0.046≤a≤0.188。
[0222] 根据表2及图3(图3A、图3B及图3C),可确认到Co的原子比率(m)的范围优选为0.18≤m≤0.41。此外,表2的各试样的成型性为A~C的任一项。
[0223] 根据表3及图4(图4A、图4B及图4C),可确认到La的原子比率(w)的范围优选为0.21≤w≤0.62。此外,表3的各试样的成型性为A~C的任一项。
[0224] 根据表2及表3,可确认到La/Co(w/m)的范围优选为0.84~2.48。
[0225] 根据表4、表5及图5(图5A、图5B及图5C),可确认到在A元素种类为选自Sr和Ba中的至少一种元素的情况下,A的原子比率(x)的范围优选为0.02≤x≤0.46。此外,表4及表5的各试样的成型性为A~C的任一项。
[0226] 根据表6及图6(图6A、图6B及图6C)可确认到,Fe的原子比率(z)优选为7.43≤z≤11.03的范围。此外,表6的各试样的成型性为A~C的任一项。
[0227] 根据表7及图7(图7A、图7B及图7C),可确认到SiO2的含量的范围优选为0.52质量%~1.18质量%。此外,表7的各试样的成型性为A~C的任一项。
[0228] 根据表8可确认到,Cr2O3的含量的范围优选为0.98质量%以下。此外,表8的各铁氧体烧结磁铁的磁特性中,Br为439mT以上,HcJ为352kA/m以上。