容量控制阀转让专利

申请号 : CN201580063934.2

文献号 : CN107002900B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 叶山真弘东堂园英树二口雅行福留康平

申请人 : 伊格尔工业股份有限公司

摘要 :

本发明显著提高侵入阀芯的外周面与主体的内周面之间的异物的排出功能以及阀芯的调心功能。容量控制阀(1)具备阀壳体(2)、安装于阀壳体(2)的导向通路(10)并对控制通路进行开闭的阀芯(15)以及用于对该阀芯(15)进行开闭驱动的螺线管(30),其特征在于,在阀芯(15)的外周面(15a)或导向通路(10)的导向面(10a)中的一方设有锥形部(13a)并且在另一方设有螺旋槽(22),锥形部(13a)设定为,阀芯(15)的外周面(15a)与导向通路(10)的导向面(10a)之间的间隙在低压侧比在高压侧大,锥形部(13a)及螺旋槽(22)设为,在从阀芯(15)的行程的起点至终点的整个范围内,锥形部(13a)的起点(14)位于螺旋槽(22)的区域内。

权利要求 :

1.一种容量控制阀,其具备:阀壳体;安装于上述阀壳体的导向通路并对控制通路进行开闭的阀芯;以及用于对该阀芯进行开闭驱动的螺线管,上述容量控制阀的特征在于,

上述控制通路至少设于上述阀壳体,并由作为排出侧通路的排出侧端口或者作为吸入侧通路的吸入侧端口构成,上述导向通路设置在上述排出侧端口和上述吸入侧端口之间,

上述阀芯具备位于一端侧的第一阀部和位于另一端侧的第二阀部,上述阀芯是对上述排出侧端口和上述吸入侧端口进行开闭的阀芯,在与上述导向通路对置的上述阀芯的外周面或者导向通路的导向面中的一方设有锥形部,并且在另一方设有螺旋槽,上述锥形部设定为,上述阀芯的外周面与导向通路的导向面之间的间隙在低压侧比在高压侧大,上述锥形部以及上述螺旋槽设为,在从上述阀芯的行程的起点至终点的整个范围内,上述锥形部的起点位于上述螺旋槽的区域内。

说明书 :

容量控制阀

技术领域

[0001] 本发明涉及对工作流体的流量或者压力进行可变控制的容量控制阀,例如,涉及根据压力负荷来对汽车等的空调系统所使用的容量可变型压缩机等的排出量进行控制的容量控制阀。

背景技术

[0002] 容量控制阀例如利用阀进行开闭来对在容量可变型压缩机内动作的控制流体和被供给的排出流体进行控制。在该排出流体,混入在容量可变型压缩机的内部动作时磨损而产生的铁粉、铝粉。由于该粉末的直径是10μm左右,所以在容量控制阀的滑动面间附着。若构成该滑动面的阀杆相对于轴线倾斜,则倾斜的一侧的缝隙变窄,而在较窄的部分嵌入粉末,从而存在阀杆不能如设定那样动作的问题,迫切希望改善。
[0003] 因此,例如,公知如下发明:如图3所示,一种电磁阀,其具备收纳于箱体51且卷绕有线圈52的线轴50、设于该线轴50中心部且构成磁路的铁心53、因对线圈52的通电而向铁心方向被吸引的可动铁心54、一体地组装于该可动铁心54的杆55、被该杆55按压的滑阀56、对该滑阀56进行引导的壳体57、以及由滑阀56和壳体57的阶梯差构成的反馈室58,该电磁阀中,在输入端口59与反馈室58之间,并且在反馈室58与铁心53之间,且在壳体57的内周分别设置调心槽59a以及59b,对滑阀56进行调心(以下,称作“现有技术1”。例如,参照专利文献1。)。
[0004] 并且,如图4所示,公知如下发明:一种容量控制阀,其具备对控制通路进行开闭的阀芯66、由对该阀芯66进行开闭驱动的固定铁心61、管件62、柱塞63及螺线管64等构成的驱动部60、遍及阀芯66侧和驱动部60侧延伸的杆导向孔67、以及能够自由滑动地插通于该杆导向孔67且将阀芯66和驱动部60以可动作的方式连结的杆68,该容量控制阀中,遍及杆长度方向上的一部分或者整个区域,使杆68的外周面与杆导向孔67的内周面之间的间隙形成为在低压侧比在高压侧大,从而能够容易地将侵入杆68与杆导向孔67之间的异物排出(以下,称作“现有技术2”。例如,参照专利文献2、图1。)。
[0005] 另外,如图5所示,公知如下发明:在与现有技术2相同的容量控制阀中,在杆68的外周面或者/以及杆导向孔67的内周面,设置遍及杆长边方向上的一部分或者整个区域延伸的螺旋槽69,从而能够容易地将侵入杆68与杆导向孔67之间的异物排出(以下,称作“现有技术3”。例如,参照专利文献2、图2。)。
[0006] 现有技术文献
[0007] 专利文献
[0008] 专利文献1:日本特开2001-263529号公报
[0009] 专利文献2:日本特开2003-301773号公报

发明内容

[0010] 发明所要解决的课题
[0011] 然而,上述现有技术1中,利用调心槽59a以及59b来提高滑阀56的调心性能,但存在侵入壳体57的内周与滑阀56外周之间的异物的排出功能较差的问题。
[0012] 并且,上述现有技术2中,由于杆68的外周面与杆导向孔67的内周面之间的间隙形成为在低压侧比在高压侧大,所以提高侵入杆68与杆导向孔67之间的异物的排出功能,但存在没有杆68的调心功能的问题。
[0013] 另外,上述现有技术3中,由于在杆68的外周面或杆导向孔67的内周面设有螺旋槽69,所以一定程度地提高侵入杆68与杆导向孔67之间的异物的排出功能以及杆68的调心功能,但仅设置螺旋槽69的话存在极限。
[0014] 本发明是为了解决上述现有技术所具有的问题点而完成的,其目的在于提供显著提高侵入容量控制阀的阀芯的外周面与主体的内周面之间的异物的排出功能以及阀芯的调心功能的容量控制阀。
[0015] 用于解决课题的方案
[0016] 为了实现上述目的,本发明的容量控制阀具备:阀壳体;安装于上述阀壳体的导向通路并对控制通路进行开闭的阀芯;以及用于对该阀芯进行开闭驱动的螺线管,[0017] 上述容量控制阀的特征在于,
[0018] 在上述阀芯的外周面或者导向通路的导向面中的一方设有锥形部,并且在另一方设有螺旋槽,上述锥形部设定为,上述阀芯的外周面与导向通路的导向面之间的间隙在低压侧比在高压侧大,上述锥形部以及上述螺旋槽设为,在从上述阀芯的行程的起点至终点的整个范围内,上述锥形部的起点位于上述螺旋槽的区域内。
[0019] 根据该特征,通过在阀芯的螺旋槽内流动流体,来提高阀芯相对于阀壳体的调心作用,从而能够提高阀芯的动作性,并且由于防止间隙较窄的部分的形成,所以能够防止细粉末嵌入。因此,能够较小地设定滑动部的间隙,从而能够减少泄漏量,进而能够有助于汽车空调等系统的效率提高。另外,由于响应性提高,所以能够提高汽车空调等系统的控制速度。
[0020] 另外,由于侵入阀芯的外周面与导向通路的导向面之间的间隙的细粉末通过螺旋槽而被不停地挤出,所以不会在中途滞留而可靠地向低压侧排出,从而能够防止阀芯的滑动阻力增大。其结果,容量控制阀的耐异物性提高,从而能够提供维持了稳定的动作性的容量控制阀。
[0021] 发明的效果如下。
[0022] 本发明起到如下那样的优异的效果。
[0023] (1)通过在阀芯的螺旋槽内流动流体,来提高阀芯相对于阀壳体的调心作用,从而能够提高阀芯的动作性,并且由于防止间隙较窄的部分的形成,所以能够防止细粉末嵌入。因此,能够较小地设定滑动部的间隙,从而能够减少泄漏量,进而能够有助于汽车空调等系统的效率提高。另外,由于响应性提高,所以能够提高汽车空调等系统的控制速度。
[0024] (2)由于侵入阀芯的外周面与导向通路的导向面之间的间隙的细粉末通过螺旋槽而被不停地挤出,所以不会在中途滞留而可靠地向低压侧排出,从而能够防止阀芯的滑动阻力增大。其结果,容量控制阀的耐异物性提高,从而能够提供维持了稳定的动作性的容量控制阀。

附图说明

[0025] 图1是表示本发明的实施例1的容量控制阀的整体的剖视图。
[0026] 图2表示图1的A部的详细结构的放大图,在未剖视阀芯的状态下进行表示。
[0027] 图3是说明现有技术1的图。
[0028] 图4是说明现有技术2的图。
[0029] 图5是说明现有技术3的图。

具体实施方式

[0030] 以下参照附图,基于实施例示例来对用于实施本发明的方式进行说明。其中,对于该实施例所记载的结构部件的尺寸、材质、形状、其相对的配置等而言,只要没有特别明确的记载,并不将本发明的范围仅限定于此。
[0031] 实施例1
[0032] 参照图1以及图2,对本发明的实施例1的容量控制阀进行说明。
[0033] 容量控制阀1具备:由金属材料或者树脂材料形成的阀壳体2;自由往复移动地配置在阀壳体2内的阀芯15;向一个方向对阀芯15进行施力的感压体25;以及与阀壳体2连接而作为对阀芯15施加电磁驱动力的驱动部的螺线管30等。
[0034] 螺线管30具备:与阀壳体2连结且由金属材料形成的外壳31;一端部封闭的套筒32;配置于外壳31和套筒32的内侧的圆筒状的固定铁芯33;在固定铁芯33的内侧自由往复移动且其前端与阀芯15连结的驱动杆34;固定于驱动杆34的另一端侧的可动铁芯35;向使阀芯15开阀的方向对可动铁芯35进行施力的螺旋弹簧36;经由线轴而卷绕于套筒32的外侧的励磁用的线圈37;以及设为对外壳31的上端开口部进行密封的端部部件38等。
[0035] 阀壳体2具备:作为排出侧通路发挥功能的端口3、4、5;与阀芯15的连通路19一起作为吸入侧通路发挥功能的端口6、5;形成于排出侧通路的中途的第一阀室7;形成于吸入侧通路的中途的第二阀室8;形成于排出侧通路以及吸入侧通路的第三阀室9;以及对阀芯15进行导向的导向通路10等。并且,在阀壳体2,压入有对第三阀室9进行划分的分隔调整部件11。
[0036] 本发明中,有时将排出侧通路以及/或者吸入侧通路称作“控制通路”。
[0037] 端口5以及第三阀室9形成为兼做排出侧通路以及吸入侧通路的一部分,端口4形成了使第一阀室7与第三阀室9连通并且使阀芯15插通的(确保流体流动的缝隙并且供阀芯15穿通)阀孔。
[0038] 而且,在第一阀室7中,在端口(阀孔)4的缘部,形成有供后述的阀芯15的第一阀部16落座的座面12,并且,在第二阀室8中,在固定铁芯33的端部,形成有供后述的阀芯15的第二阀部17落座的座面33a。
[0039] 此外,符号Ps表示作为控制对象的容量可变型压缩机的吸入压力,Pd表示排出压力,Pc表示控制室压力。
[0040] 阀芯15具备大致形成为圆筒状且位于一端侧的第一阀部16、位于另一端侧的第二阀部17、隔着第一阀部16而在与第二阀部17相反侧通过加装而连结的第三阀部18、以及在其轴线方向上从第二阀部17贯通至第三阀部18并作为吸入侧通路发挥功能的连通路19等。
[0041] 第三阀部18形成为从第一阀室7朝向第三阀室9缩径的状态之后扩径的形状,在扩径部形成有与接合器20对置的锥状的卡合面18a。
[0042] 感压体25配置在第三阀室9内,以利用其伸长(膨胀)在使第一阀部16开阀的方向上施加作用力、并且伴随周围的压力增加而收缩从而使施加于第一阀部16的作用力减弱的方式动作。
[0043] 如图2所示,阀芯15的外周面15a以自由滑动的方式与阀壳体2的导向通路10的导向面10a嵌合。
[0044] 该阀芯15的外周面15a与导向通路10的导向面10a之间的缝隙约是0.02至0.08mm的范围且是细粉末X能够通过的范围3。该间隙的尺寸是在阀芯15落座于阀座12而闭阀时、以彼此的面能够紧密地接合的方式相对于阀芯15赋予某程度的充裕的大小,并且设定于阀芯15的轴芯的倾斜不会变得过大的范围内。
[0045] 同时,该间隙根据第一阀室7的排出流体的排出压力Pd(高压侧)与第二阀室8的吸入压力Ps(低压侧)的压力差而设计为能够对它们之间进行密封的尺寸。
[0046] 具体而言,该间隙是排出压力Pd的排出流体限于微小的泄漏的范围内的尺寸,微小的泄漏在容量控制上基本没有问题。
[0047] 此外,为了减小阀芯15的动作时的滑动阻力,而成为在阀芯15与导向通路10之间的间隙不设置密封用的O型圈等的结构。
[0048] 而且,使阀芯15相对于阀座12离开、接近而进行开闭,而使高压的排出压力Pd的流体作为控制压力Pc的流体向图示省略的容量可变型压缩机的曲轴箱(控制室)流入,从而对曲轴箱内进行控制。
[0049] 图2中,在与导向通路10对置的阀芯15的外周面15a设有螺旋槽22。
[0050] 并且,在导向通路10的导向面10a设有锥形部13a。
[0051] 锥形部13a设定为,阀芯15的外周面15a与导向通路10的内周面之间的间隙随着朝向低压侧而比在高压侧大。
[0052] 锥形部13a以及螺旋槽22设为,在从阀芯15的行程的起点至终点的整个范围内,锥形部13a的轴向的起点14位于螺旋槽22的轴向的区域内。
[0053] 图2的情况下,在阀芯15的外周面15a设有螺旋槽22,并在导向通路10的导向面10a设有锥形部13a,但也可以相反地,在导向通路10的导向面10a设有螺旋槽,并在阀芯15的外周面15a设有锥形部。该情况下,设为在从阀芯15的行程的起点至终点的整个范围内,阀芯15的外周面15a的锥形部的轴向的起点位于导向通路10的导向面10a的螺旋槽的轴向的区域内。
[0054] 在如上述那样构成的容量控制阀1中,若阀芯15从阀座12离开而开阀,则流入第一阀室7的排出压力Pd的排出流体从端口4向第三阀室9流动。此时,由于排出压力Pd是较高的压力,所以微量的流体也向阀芯15的外周面15a与导向通路10的间隙的方向流动。但是,导向通路10的笔直部13b的长度是数毫米以内,并且在该间隙通过的流体的压力较高,从而能够防止流体中所含有的细粉末X附着并嵌入滑动面间。
[0055] 而且,由于在与导向通路10对置的阀芯15的外周面15a设有螺旋槽22,所以沿阀芯15的轴向从高压侧朝向低压侧侵入来的细粉末X必定在其中途的任一部位与螺旋槽22交叉,从而落入螺旋槽22内。落入螺旋槽22内的细粉末X利用在螺旋槽22内流动的流体流而向低压侧排出。同时,利用在螺旋槽22内流动的流体来对阀芯15进行调心。
[0056] 此时,由于在导向通路10的导向面10a,从螺旋槽22的轴向的中途起设有锥形部13a,所以更加可靠地流出细粉末X。
[0057] 即,由于在笔直部13b中间隙较小,而排出压力Pd在未减压的状态下作用,所以与该笔直部13b对应的螺旋槽22内的流体的压力比较高。与此相对,由于在锥形部13a中朝向低压侧而间隙逐渐变大,并且流体的压力也因损失而逐渐被减压,所以与该锥形部13a对应的螺旋槽22内的压力形成朝向低压侧而变低那样的压力梯度。因此,落入与笔直部13b对应的螺旋槽22内的细粉末X和高压流体一起朝向与具有负的压力梯度的锥形部13a对应的螺旋槽22内不滞留而被不停地挤出,向低压侧排出。因此,细粉末X不会在阀芯15的外周面15a与导向通路10的间隙的中途嵌入等而残留,从而可靠地排出。
[0058] 如上述那样,实施例1的容量控制阀中,在阀芯15的外周面设有螺旋槽22,并在导向通路10的导向面10a设有锥形部13a,锥形部13a设定为阀芯15的外周面15a与导向通路10的导向面10a之间的间隙在低压侧比在高压侧大,锥形部13a以及螺旋槽22设为,在从阀芯15的行程的起点至终点的整个范围内,锥形部13a的起点14位于螺旋槽22的区域内,由此起到以下那样优异的效果。
[0059] (1)通过在阀芯15的螺旋槽22内流动流体,来提高阀芯15相对于阀壳体2的调心作用,从而能够提高阀芯的动作性,并且由于防止间隙较窄的部分的形成,所以能够防止细粉末X嵌入。因此,能够较小地设定滑动部的间隙,从而能够减少泄漏量,进而能够有助于汽车空调等系统的效率提高。另外,由于响应性提高,所以能够提高汽车空调等系统的控制速度。
[0060] (2)由于侵入阀芯15的外周面15a与导向通路10的导向面10a之间的间隙的细粉末X通过螺旋槽而被不停地挤出,所以不会在中途滞留而可靠地向低压侧排出,从而能够防止阀芯15的滑动阻力增大。其结果,容量控制阀的耐异物性提高,从而能够提供维持了稳定的动作性的容量控制阀。
[0061] 以上,根据附图对本发明的实施例进行了说明,但具体的结构并不限定于这些实施例,本发明也包括在不脱离本发明的主旨的范围内的变更、追加。
[0062] 例如,上述实施例中,对在阀芯15的外周面15a设有螺旋槽22、并在导向通路10的导向面10a设有锥形部13a的情况进行了说明,但并不限定于此,也可以在导向通路10的导向面10a设有螺旋槽,并在阀芯15的外周面15a设有锥形部。该情况下,设为在从阀芯15的行程的起点至终点的整个范围内,阀芯15的外周面15a的锥形部的轴向的起点位于导向通路10的导向面10a的螺旋槽的轴向的区域内即可。
[0063] 符号的说明
[0064] 1—容量控制阀,2—阀壳体,3、4、5—端口,6—端口,7—第一阀室,8—第二阀室,9—第三阀室,10—导向通路,10a—导向面,11—分隔调整部件,12—座面,13a—锥形部,
13b—笔直部,14—锥形部的轴向的起点,15—阀芯,15a—外周面,16—第一阀部,17—第二阀部,18—第三阀部,18a—锥状的卡合面,19—连通路,20—接合器,22—螺旋槽,25—感压体,30—螺线管,31—外壳,32—套筒,33—固定铁芯,33a—座面,34—驱动杆,35—可动铁芯,36—螺旋弹簧,37—励磁用的线圈,38—端部部件,Pd—排出压力,Ps—吸入压力,Pc—控制室压力,X—细粉末。