一种无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层及其制备技术转让专利

申请号 : CN201610070931.8

文献号 : CN107022299B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 辛忠张雯斐陆馨周长路

申请人 : 华东理工大学

摘要 :

本发明涉及材料表面改性技术领域,具体是一种无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层及其制备技术。本发明的可逆转换复合涂层材料的组成为:长链苯并噁嗪1重量份,无机粒子0.001~30重量份,溶剂1~100重量份;其制备工艺为:将无机粒子加入苯并噁嗪溶液中,混合分散均匀;通过旋涂或浸涂方法和进一步热固化法在玻璃表面、金属表面、陶瓷表面和聚合物纤维滤布表面制备了粘附性可逆转换复合涂层。本发明提供一种原料价廉、无氟、工艺简单、适于连续工业化生产的具有粘附性可逆转换特性的复合涂层,该涂层具有耐溶剂、耐腐蚀液、耐强酸强碱及耐高温的特性。

权利要求 :

1.一种无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层,其特征在于,所述的无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层由以下重量份的原料形成共混物制成:长链苯并噁嗪单体           1

无机粒子                   0.001~30溶剂                       1~100

其中,所述的无机粒子选自:二氧化钛、二氧化硅、氧化锌、磷酸银、碳纳米管、粘土、石墨烯或聚苯乙烯中的一种或两种以上,所述的无机粒子的粒径为5nm~500nm;

所述的溶剂选自:氯仿、甲苯、二氯甲烷、乙醇、二甲苯、四氢呋喃或二噁烷中的一种或两种以上;

所述长链苯并噁嗪单体选自:式I-1、I-2、I-3、I-4、I-5、I-6、I-7或I-8所示化合物中的一种或两种混合物:

2.根据权利要求1所述的粘附性可逆转换复合涂层,其特征在于,其中,长链苯并噁嗪单体、无机粒子和溶剂的重量比为1:(0.1~7):(5~50)。

3.一种制备如权利要求1或2所述的粘附性可逆转换复合涂层的方法,其特征在于,所述方法包括如下步骤:A、将权利要求1中所述的长链苯并噁嗪单体溶解于溶剂中,得到长链苯并噁嗪单体溶液,将无机粒子加入所得的长链苯并噁嗪单体溶液中,超声混合分散均匀后得到长链苯并噁嗪和无机粒子共混物;

B、将由步骤A得到的长链苯并噁嗪和无机粒子共混物置于干净的玻璃、金属或陶瓷的表面上,以900r/min~5,000r/min的速度旋涂10秒~300秒,再在150℃~300℃下交联反应

0.1h~12h;或,

将干净的聚合物纤维滤布浸入由步骤A得到的长链苯并噁嗪和无机粒子共混物中5秒~300秒,以40mm/min~120mm/min的速度提拉后将其干燥,再置于150℃~300℃下交联反应0.1h~12h;

其中,所述的金属为低碳钢,铜,铁,铝或不锈钢;所述的聚合物纤维滤布为100目~8,

000目的涤纶、锦纶、维纶、丙纶或聚偏氟乙烯的纤维滤布。

4.如权利要求3所述的方法,其特征在于,其中所用干净的玻璃、金属、陶瓷或聚合物纤维滤布:是将玻璃、金属、陶瓷或聚合物纤维滤布经水、乙醇和/或丙酮超声清洗、并于氮气氛围下吹干获得。

5.如权利要求3所述的方法,其特征在于,步骤B是:将由步骤A得到的长链苯并噁嗪和无机粒子共混物置于干净的玻璃、金属或陶瓷的表面上,以3,000r/min的速度旋涂120秒,再在160℃下交联反应0.1h~12h;或,将干净的聚合物纤维滤布浸入由步骤A得到的长链苯并噁嗪和无机粒子共混物中5秒~300秒,以60mm/min的速度提拉后将其干燥,再置于160℃下交联反应0.1h~12h。

说明书 :

一种无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层及其制

备技术

技术领域

[0001] 本发明涉及材料表面改性技术领域,具体地说,是一种对水滴具有可控粘附性的聚合物膜层表面,具体是无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层及其制备技术。

背景技术

[0002] 20世纪90年代以来,基于“荷叶效应”构筑的超疏水低粘附涂层发展迅速,在日常生活和工业生产领域都具有十分重要的意义,其表面水接触角大于150°,滚动角小于10°,当表面倾斜,通过水滴的滚动以带走表面的颗粒污染物达到自清洁作用。相反,基于“玫瑰花瓣效应”构筑的表面具有高粘附特性,当表面倾斜、甚至倒置时,微量水滴在其表面都无法自由滚动。具有粘附性可逆转换特性的表面在微量液滴的无损运输应用领域十分重要。通常,采用诸如刻蚀法、模板法、纳米压印等复杂过程来构建粗糙表面,再用含氟化合物如全氟碳化物、全氟硅氧烷作为低表面能材料修饰粗糙表面以制备疏水涂层,并通过控制其表面粗糙结构来实现低粘附和高粘附超疏水表面。
[0003] 公开号为CN101962514A(发明名称为“一种长耐久性的超疏水自清洁涂层材料及其制备方法”,申请号为201010294025.9)和CN103409028A(发明名称为“一种光催化型自修复超疏水涂料及其制备方法”,申请号为201310321370.0)的中国专利分别公开了一种由光催化无机粒子、氟化聚硅氧烷(或氟硅烷改性无机粒子)和交联剂制备的超疏水自清洁涂层。公开号为CN101982490A(发明名称为“一种超疏水自清洁材料的制备方法”,申请号为201010525919.4)的中国专利则公开了一种用聚丙烯和氟化石墨等通过共混挤出、高温压板的方法制备超疏水自清洁材料的方法。虽然这三种技术所制备的材料都具有超疏水的特性,但在制备过程中都使用了含氟试剂,增加了生产成本。而且,公开号为CN101982490A的中国专利所公布的超疏水自清洁材料的制备过程繁琐,涉及双螺杆挤出加工、造粒机造粒和高温压板等复杂过程。另外,公开号为CN102641830A(发明名称为“利用喷涂技术制备自修复超疏水涂层的方法”,申请号为201210140516.7)和CN102795786A(发明名称为“超疏水自清洁涂层及其制备方法”,申请号为201110135173.0)的中国专利分别公开了采用喷涂技术制备超疏水自清洁涂层的方法。前者所公布的方法中涉及五种以上原料组分,且使用了含氟表面活性剂进行改性处理;后者虽采用无氟化合物制备了自清洁涂层,但该涂层表面与水的接触角仅在140°~155°之间。更为重要的是,以上专利虽然涉及了低粘附超疏水表面,但均未能实现高粘附和低粘附特性可逆转换。目前,仅有一篇中国专利(发明名称为“一种仿生可控粘附性疏水表面的制备方法”,申请号为CN 101942638 A)公开了以自然界生物材料为模板,通过软印章技术法和表面化学修饰法制备出的具有可控粘附性的疏水金表面,其可控粘附疏水特性可实现作为“机械手”的无损运输、液体携带材料和生物微量溶液移液管等应用。但该发明制造过程需要用到贵金属金,且制造耗时长、成本高。
[0004] 基于材料表面粘附性可逆转换特性进行微量液体的无损运输是生物、医药和微反应等领域的研究热点,如何保证该类涂层可逆的粘附性转换特性和良好的超疏水特性,且制备原料中不含氟、降低制造成本和制造工艺难度一直是相关领域待解决的技术问题。

发明内容

[0005] 本发明的目的在于减小功能性涂层的生产成本,提供一种无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层;本发明的另一目的在于克服现有技术的不足,提供一种无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层的制备技术。
[0006] 本发明的主要技术方案如下:一种无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层的制备技术,其原料组成为:长链苯并噁嗪1重量份,无机粒子0.001~30重量份,溶剂1~100重量份。具体制备工艺:将无机粒子加入苯并噁嗪溶液,混合分散均匀;将玻璃、金属、陶瓷或聚合物纤维滤布表面处理干净后,通过旋涂(或浸涂)方法和进一步热固化处理制备聚苯并噁嗪粘附性可逆转换复合涂层涂层。所述苯并噁嗪单体和聚苯并噁嗪中的胺源和酚源的主要取代基团为C8~C18烷基、H、C1~C4烷基和取代的芳环基。
[0007] 本发明的第一方面,提供一种无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层,所述的无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层由以下重量份的原料制成:
[0008] 长链苯并噁嗪单体   1
[0009] 无机粒子           0.001~30
[0010] 溶剂              1~100;
[0011] 所述的长链苯并噁嗪单体的化学结构式如式I所示:
[0012]
[0013] 式I中,X选自H、C1~C4烷基或取代的芳环基中的一种;Y选自H或C8~C18烷基中的一种;
[0014] 所述的长链苯并噁嗪单体,当X选自取代的芳环基时,其化学结构式选自以下a、b、c任一或两者混合物:
[0015]
[0016] 本发明的长链聚苯并噁嗪的化学结构式如下,其中n≥2:
[0017]
[0018] 较优的,所述的长链基苯并噁嗪单体,选自实施例中的化合物I-1、I-2、I-3、I-4、I-5、I-6、I-7、I-8中的一种或两种混合物。
[0019] 所述的无机粒子为二氧化钛(TiO2)、二氧化硅(SiO2)、氧化锌(ZnO)、磷酸银(Ag3PO4)、碳纳米管、纳米粘土、石墨烯和聚苯乙烯(PS)中的一种或两种以上。所述的无机粒子的粒径为5~500nm。
[0020] 较优的,所述的无机粒子为TiO2,或者所述的无机粒子为TiO2和Ag3PO4的混合物。
[0021] 当所述的无机粒子为TiO2及其掺杂物时,其中TiO2无机粒子的比例应该占重量比50%以上。
[0022] 所述的溶剂选自氯仿、甲苯、二氯甲烷、乙醇、二甲苯、四氢呋喃、二噁烷中的一种或两种以上。
[0023] 较优的,所述的长链苯并噁嗪单体、无机粒子、溶剂的重量比为1:(0.1~7):(5~50);更优的,所述的长链苯并噁嗪单体、无机粒子、溶剂的重量比为1:2:25。
[0024] 本发明的第二方面,提供了一种无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层的制备方法,所述的无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层是通过旋涂法(或浸涂法)和进一步热固化处理在干净的玻璃、金属、陶瓷或聚合物纤维滤布表面制备得到。
[0025] 所述的金属为低碳钢、铜、铁、铝或不锈钢中的一种;所述的聚合物纤维滤布为100-8000目涤纶、锦纶、维纶、丙纶、聚偏氟乙烯纤维滤布中的一种。
[0026] 所述旋涂(或浸涂)和热固化方法,可采用本领域常规技术和苯并噁嗪聚合常规技术,如参考文献:Zhang W,Lu X,Xin Z,Zhou C,Liu J.Fluorine-free Superhydrophobic/Hydrophobic Polybenzoxazine/TiO2 Films with Excellent Thermal Stability and Reversible Wettability[J].RSC Advances,2015,68(5):55513-55519;和参考文献:Zhang W,Lu X,Xin Z,Zhou C.Self-cleaning Polybenzoxazine/TiO2 Surface with Superhydrophobicity and Superoleophilicity for Oil/water Separation[J].Nanoscale,2015,46(7):19476-19483.
[0027] 较优的,所述的旋涂(或浸涂)方法和进一步热固化条件为:旋涂时间为10~300s(优选10~180s);旋涂速度为900~5000r/min(优选900~3000r/min);浸涂时间为5~300s(优选5~210s);提拉速度为40~120mm/min(优选40~90mm/min);热固化温度为150~300℃(优选160~250℃);热固化时间为0.1~12h。
[0028] 本发明进一步提供了上述的无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层的制备技术,所述的制备技术包括以下步骤:
[0029] A、将长链苯并噁嗪单体溶解于溶剂中;将无机粒子加入上述溶液,超声混合分散均匀后得到苯并噁嗪和无机粒子共混物;
[0030] B、将步骤A得到的长链苯并噁嗪和无机粒子共混物滴于干净的玻璃、金属或陶瓷表面上,以900~5000r/min的速度旋涂10~300s,再置于150~300℃下交联反应0.1~12h;或将干净的聚合物纤维滤布浸入步骤A得到的苯并噁嗪和无机粒子共混物中5~300s,以40~120mm/min的速度提拉后将其干燥,再置于150~300℃下交联反应0.1~12h。
[0031] 步骤B中,干净的玻璃、金属、陶瓷或滤布表面,是将玻璃、金属、陶瓷或滤布经水、乙醇、丙酮超声清洗并于氮气氛围下吹干。
[0032] 较优的,步骤B中,所述的旋涂速度3000r/min,160℃在固化箱中进行交联反应;所述的提拉速度60mm/min。
[0033] 本发明的有益效果:
[0034] 所述的无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层的表面为双级复合结构,具体是由无机粒子堆积而成的微米尺度和无机粒子或及其掺杂物本征的纳米尺度所组成。
[0035] 所述的无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层的表面水接触角大于160°,滚动角小于5°,具有超疏水低粘附特性,当表面倾斜时(倾斜角度小于20°),水滴可在涂层表面自由滚动;在紫外光照处理后,其转换为超疏水高粘附特性,当表面倾斜或倒置时,水滴均粘附在涂层表面且无法滚动;在加热处理后,超疏水高粘附涂层又恢复为初始超疏水低粘附表面,水滴可再次在涂层表面自由滚动。
[0036] 所述的无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层在有机溶剂、强腐蚀性溶液、强酸强碱中浸泡后,仍具备其初始超疏水特性,所述的浸泡时间大于100h;所述的无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层在紫外光下暴露后,仍具备初始超疏水特性,所述的暴露时间大于10h;所述的无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层在高温处理后,仍具备初始超疏水特性,所述的温度为250~450℃,处理时间大于3h。
[0037] 本发明的技术特征在于使用价廉易得的新型长链聚苯并噁嗪疏水材料替代含氟疏水试剂,制备了粘附性可逆转换的功能表面,降低了成本。其次,本发明的技术工艺简单,通过旋涂(或浸涂)和后续直接固化即可制备粘附性可逆转换复合涂层,这大大缩短了工艺流程时间、减小了成本,更适于工业连续化生产。再次,本发明复合涂层具有良好的粘附性可逆转换特性,可以实现微量液滴的无损运输。最后,本发明的复合涂层具有优良的耐溶剂、耐腐蚀性液体、耐酸碱、耐紫外照射及耐高温特性。

附图说明

[0038] 图1为本发明实施例1制备的无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层的表面形貌扫描电镜图片。
[0039] 图2为本发明实施例1制备的无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层的表面水接触角和滚动角图片。
[0040] 图3为本发明实施例1制备的无氟长链聚苯并噁嗪的粘附性可逆转换复合涂层的粘附性可逆转换滚动角演示图片。

具体实施方式

[0041] 下面结合实施例对本发明提供的具体实施方式作详细说明。
[0042] 下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。
[0043] 实施例1
[0044] (1)将2×2cm的玻璃片(宏达医疗设备公司)经水、乙醇、丙酮超声清洗15min,在80℃下烘干备用;
[0045] (2)将1g长链苯并噁嗪单体(3-辛基-3,4-二氢-2H-1,3-苯并噁嗪,P-o,如式I-1)溶解于25g氯仿中;将2g TiO2无机粒子(粒径25-70nm)加入上述溶液,超声混合分散2h后得到长链苯并噁嗪/无机粒子共混物;
[0046]
[0047] (3)室温下,将上述长链基苯并噁嗪/无机粒子共混物滴于干净的玻璃片之上,以3000r/min的旋涂速度涂覆120s,水平放于玻璃器皿中,干燥后立即放入160℃固化箱中固化3h。
[0048] 其表面形貌扫描电镜图片如图1所示,可知该表面由无机粒子堆积而成的微米尺度和无机粒子本征的纳米尺度组成的双级复合结构;经接触角测量仪测试,上述方法制备的复合涂层对水的接触角为~167°,滚动角为~1°,为超疏水低粘附表面,其接触角和滚动角测量结果如图2所示。将该样品置于于100W汞灯下照射2小时以上,由于空气中的水汽吸附到复合涂层表面,其表面水接触角为~157°,当表面倾斜或倒置时,水滴均无法滚动,转换为超疏水高粘附表面。于100W Hg灯下照射后的样品再在100℃下加热处理30分钟,由于吸附到复合涂层表面的水洗挥发,其表面接触角恢复到~167°,滚动角为~2°,膜层再次转换为初始状态的超疏水低粘附表面,实现了粘附性的可逆转换,如图3所示。此外,准备乙醇、甲苯、四氢呋喃、丙酮、二氯甲烷、二甲基亚砜有机溶剂各10ml并配制1M HCl、1M NaOH、3.5wt%NaCl溶液并将所制备的涂层浸泡在其中于室温环境下放置100h后用水冲洗并室温晾干,而后测试其表面水接触角;将所制备的涂层置于250~450℃高温下3h后测试其表面水接触角;将所制备的涂层置于100W汞灯下照射长达10h以上后测试其表面水接触角;所制备的超疏水自清洁可耐300℃以上高温,耐高强度紫外光照射,在多种溶剂、强酸、强碱、强腐蚀性液体中浸泡后表面润湿性及自清洁性能稳定。
[0049] 实施例2
[0050] (1)将2×2cm的低碳钢(甘肃蓝科石化高新装备股份有限公司,Q235B)经机械打磨至Sa21/2后,表面涂油后用丙酮超声清洗去除其表面的机油,于氮气氛围下吹干;
[0051] (2)将1g长链苯并噁嗪单体(3-辛基-6-乙基-3,4-二氢-2H-1,3-苯并噁嗪,EP-o,如式I-2)溶解于35g四氢呋喃中;将4g SiO2无机粒子(粒径50-100nm)加入上述溶液,超声混合分散2h后得到长链苯并噁嗪/无机粒子共混物;
[0052]
[0053] (3)室温下,将上述长链苯并噁嗪/无机粒子共混物滴于干净的低碳钢片之上,以3000r/min的旋涂速度涂覆150s,水平放于玻璃器皿中,干燥后立即放入170℃固化箱中固化3h。
[0054] 其操作步骤及实施方法均同实施例1。
[0055] 实施例3
[0056] (1)将2×2cm的铝片(甘肃蓝科石化高新装备股份有限公司)经丙酮超声清洗后,在氮气氛围下吹干备用;
[0057] (2)将1g长链苯并噁嗪单体(3-十二烷-6-乙基-3,4-二氢-2H-1,3-苯并噁嗪,EP-da,如式I-3)溶解于15g乙醇中;将7g碳纳米管加入上述溶液,超声混合分散2h后得到长链苯并噁嗪/无机粒子共混物;
[0058]
[0059] (3)室温下,将上述长链苯并噁嗪/无机粒子共混物滴于干净的铝片之上,以2800r/min的旋涂速度涂覆120s,水平放于玻璃器皿中,干燥后立即放入180℃固化箱中固化3h。
[0060] 其操作步骤及实施方法均同实施例1。
[0061] 实施例4
[0062] (1)将2×2cm的不锈钢片(甘肃蓝科石化高新装备股份有限公司)经丙酮超声清洗后,在氮气氛围下吹干备用;
[0063] (2)将1g长链苯并噁嗪单体(2,2-双(3-辛烷基-3,4-二氢-2H-1,3-苯并噁嗪基)异丙烷,BA-o,如式I-4)溶解于5g二甲苯中;将0.2g TiO2无机粒子(粒径25-70nm)加入上述溶液,超声混合分散2h后得到长链苯并噁嗪/无机粒子共混物;
[0064]
[0065] (3)室温下,将上述长链苯并噁嗪/无机粒子共混物滴于干净的不锈钢片之上,以2000r/min的旋涂速度涂覆120s,水平放于玻璃器皿中,干燥后立即放入200℃固化箱中固化1h。
[0066] 其操作步骤及实施方法均同实施例1。
[0067] 实施例5
[0068] (1)将2×2cm的平整陶瓷片(甘肃蓝科石化高新装备股份有限公司)经丙酮超声清洗后,在氮气氛围下吹干备用;
[0069] (2)将1g长链苯并噁嗪单体(双(3-十八烷基-3,4-二氢-2H-1,3-苯并噁嗪基)二甲酮,BN-sa,如式I-5)溶解于20g甲苯中;将1g石墨烯加入上述
[0070] 溶液,超声混合分散2h后得到长链苯并噁嗪/无机粒子共混物;
[0071]
[0072] (3)室温下,将上述长链苯并噁嗪/无机粒子共混物滴于干净的陶瓷片之上,以2000r/min的旋涂速度涂覆200s,水平放于玻璃器皿中,干燥后立即放入190℃固化箱中固化2h。
[0073] 其操作步骤及实施方法均同实施例1。
[0074] 实施例6
[0075] (1)将2×2cm的铜片(甘肃蓝科石化高新装备股份有限公司)经丙酮超声清洗后,在氮气氛围下吹干备用;
[0076] (2)将1g长链苯并噁嗪单体(双(3-十八烷基-3,4-二氢-2H-1,3-苯并噁嗪基)二砜,BS-sa,如式I-6)溶解于50g四氢呋喃中;将5g TiO2无机粒子(粒径25-70nm)加入上述溶液,超声混合分散2h后得到长链苯并噁嗪/无机粒子共混物;
[0077]
[0078] (3)室温下,将上述长链苯并噁嗪/无机粒子共混物滴于干净的玻璃片之上,以1500r/min的旋涂速度涂覆300s,水平放于玻璃器皿中,干燥后立即放入230℃固化箱中固化2h。
[0079] 其操作步骤及实施方法均同实施例1。
[0080] 实施例7
[0081] (1)将2×2cm的铁片(甘肃蓝科石化高新装备股份有限公司)经丙酮超声清洗后,在氮气氛围下吹干备用;
[0082] (2)将1g长链苯并噁嗪单体(2,2-双(3-十二烷基-3,4-二氢-2H-1,3-苯并噁嗪基)异丙烷,BA-da,如式I-7)溶解于5g氯仿中;将0.2g TiO2无机粒子(粒径25-70nm)加入上述溶液,超声混合分散2h后得到苯并噁嗪/无机粒子共混物;
[0083]
[0084] (3)室温下,将上述长链苯并噁嗪/无机粒子共混物滴于干净的玻璃片之上,以1500r/min的旋涂速度涂覆210s,水平放于玻璃器皿中,干燥后立即放入220℃固化箱中固化3h。
[0085] 其操作步骤及实施方法均同实施例1。
[0086] 实施例8
[0087] (1)将4×5cm的锦纶纤维滤布(上海天略纺织新材料有限公司)经水、乙醇、丙酮超声清洗15min,在80℃下烘干备用;
[0088] (2)将1g长链苯并噁嗪单体(3-十八烷基-6-甲基-3,4-二氢-2H-1,3-苯并噁嗪,MP-sa,如式I-8)溶解25g二噁烷中;将1g TiO2无机粒子(粒径25-70nm)加入上述溶液,超声混合分散2h后得到长链苯并噁嗪/无机粒子共混物;
[0089]
[0090] (3)室温下,将干净的锦纶纤维滤布浸入长链苯并噁嗪/纳米粒子共混物60s后,以120mm/min的提拉速度将其拉出,用长尾夹将其竖直夹起,干燥后立即放入190℃固化箱中固化1h。
[0091] 其操作步骤及实施方法均同实施例1。
[0092] 实施例9
[0093] (1)将2×2cm的玻璃片(宏达医疗设备公司)经水、乙醇、丙酮超声清洗15min,在80℃下烘干备用;
[0094] (2)将1g长链苯并噁嗪单体(如式I-1)溶解于15g四氢呋喃中;将0.8g TiO2无机粒子(粒径25-70nm)和0.2g Ag3PO4无机粒子(粒径100-500nm)加入上述溶液,超声混合分散2h后得到长链苯并噁嗪/无机粒子共混物;
[0095] (3)室温下,将上述长链苯并噁嗪/无机粒子共混物滴于干净的玻璃片之上,以3000r/min的旋涂速度涂覆120s,水平放于玻璃器皿中,干燥后立即放入160℃固化箱中固化3h。
[0096] 其操作步骤及实施方法均同实施例1。
[0097] 实施例10
[0098] (1)将2×2cm的玻璃片(宏达医疗设备公司)经水、乙醇、丙酮超声清洗15min,在80℃下烘干备用;
[0099] (2)将0.3g长链苯并噁嗪单体(如式I-1)和0.7g苯并噁嗪单体(如式I-4)溶解于15g四氢呋喃中;将0.8g TiO2无机粒子(粒径25-70nm)和0.2g Ag3PO4无机粒子(粒径100-
500nm)加入上述溶液,超声混合分散2h后得到长链苯并噁嗪/无机粒子共混物;
[0100] (3)室温下,将上述苯并噁嗪/无机粒子共混物滴于干净的玻璃片之上,以3000r/min的旋涂速度涂覆120s,水平放于玻璃器皿中,干燥后立即放入160℃固化箱中固化3h。
[0101] 其操作步骤及实施方法均同实施例5。
[0102] 对比实例1
[0103] (1)将2×2cm的玻璃片(宏达医疗设备公司)经水、乙醇、丙酮超声清洗15min,在80℃下烘干备用;
[0104] (2)将1g长链苯并噁嗪单体(3-辛基-3,4-二氢-2H-1,3-苯并噁嗪,P-o,如式I-1)溶解于25g氯仿中;超声1h后得到苯并噁嗪均匀溶液;
[0105] 其操作步骤及实施方法均同实施例1。
[0106] 对比实例2
[0107] (1)将2×2cm的铝片(甘肃蓝科石化高新装备股份有限公司)经丙酮超声清洗后,在常温下晾干备用;
[0108] (2)将1g长链苯并噁嗪单体(3-辛基-6-乙基-3,4-二氢-2H-1,3-苯并噁嗪,EP-o,如式I-2)溶解于15g乙醇中;超声分散1h后得到苯并噁嗪均匀溶液;
[0109] 其操作步骤及实施方法均同实施例2。
[0110] 对比实例3
[0111] (1)将2×2cm的不锈钢片(甘肃蓝科石化高新装备股份有限公司)经丙酮超声清洗后,在常温下晾干备用;
[0112] (2)将1g长链苯并噁嗪单体(2,2-双(3-辛烷基-3,4-二氢-2H-1,3-苯并噁嗪基)异丙烷,BA-o,如式I-4)溶解于5g甲苯中;超声分散1h后得到苯并噁嗪均匀溶液;
[0113] 其操作步骤及实施方法均同实施例4。
[0114] 对比实例4
[0115] (1)将2×2cm的平整陶瓷片(甘肃蓝科石化高新装备股份有限公司)经丙酮超声清洗后,在常温下晾干备用;
[0116] (2)将1g长链苯并噁嗪单体(双(3-十八烷基-3,4-二氢-2H-1,3-苯并噁嗪基)二甲酮,BN-sa,如式I-5)溶解于20g二噁烷中;超声分散1h后得到苯并噁嗪均匀溶液;
[0117] 其操作步骤及实施方法均同实施例5。
[0118] 对比实例5
[0119] (1)将2×2cm的玻璃片(宏达医疗设备公司)经水、乙醇、丙酮超声清洗15min,在80℃下烘干备用;
[0120] (2)将1g非长链苯并噁嗪单体(6-乙基-3,4-二氢-2H-1,3-苯并噁嗪,EP-am,如式I-9)溶解于10g四氢呋喃中;将2g TiO2无机粒子(粒径25-70nm)加入上述溶液,超声混合分散2h后得到非长链苯并噁嗪/无机粒子共混物;
[0121] 其操作步骤及实施方法均同实施例1。
[0122]
[0123] 对比实例6
[0124] 将2×2cm的玻璃片经水、乙醇、丙酮超声清洗后,在常温下晾干备用;仅将干净片干燥后立即放入160℃固化箱中处理1h。
[0125] 其操作步骤及实施方法均同实施例1。
[0126] 由各实施例制备的网膜表面水接触角、滚动角和粘附性可逆转换特性如表1所示。
[0127] 表1实施例制备的网膜表面水接触角、滚动角和自清洁特性
[0128]
[0129] 由表1可知,加入长链聚苯并噁嗪材料后,涂层表面的水接触角有所提高,均大于90°,说明长链聚苯并噁嗪有利于制备疏水表面;加入TiO2或及其掺杂物后,可以有效得到长链基聚苯并噁嗪超疏水涂层,涂层表面的水接触角大于160°,并且其表面水滴滚动角小于5°,具备良好超疏水低粘附特性。然而,非长链聚苯并噁嗪复合膜层不具备低粘附特性。
以上结果也说明表面双级粗糙结构的形成和长链聚苯并噁嗪的复合有利于制备超疏水自清洁涂层。此外,加入光敏材料如TiO2、Ag3PO4或及其掺杂物后且涂层具有超疏水特性,所制备的涂层才具备粘附性可逆转换特性。
[0130] 以上已对本发明创造的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可做出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。