用于抑制熔体污染的堰体转让专利

申请号 : CN201580051696.3

文献号 : CN107075721B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : T·N·斯瓦米纳坦

申请人 : 各星有限公司

摘要 :

本发明提供一种用于从熔体生长晶锭的系统。该系统包括第一坩埚、屏障和护罩。第一坩埚具有形成用于容纳熔体的第一腔的第一基部和第一侧壁。屏障设置在第一坩埚的第一腔内,以抑制熔体从屏障的外侧移动到屏障的内侧。屏障从第一基部延伸到熔体上方。屏障具有向上延伸以在其间形成通道的内臂和外臂。护罩在内臂与外臂之间向下延伸以抑制污染物的通过。

权利要求 :

1.一种用于从熔体生长晶锭的系统,所述系统包括:第一坩埚,所述第一坩埚具有形成用于容纳熔体的第一腔的第一基部和第一侧壁;

屏障,所述屏障设置在所述第一坩埚的所述第一腔内,以抑制所述熔体从所述屏障的外侧向所述屏障的内侧的移动,所述屏障从所述第一基部延伸到要容纳于其中的熔体的上方,所述屏障具有向上延伸以在其间形成通道的内臂和外臂,其中,所述内臂通过内肩部与所述屏障的本体连接并且所述外臂通过外肩部与所述屏障的本体连接,所述内肩部和所述外肩部将所述内臂和所述外臂与所述屏障的本体间隔开;和护罩,所述护罩在所述内臂与所述外臂之间向下延伸以抑制污染物的通过。

2.根据权利要求1所述的系统,其中,其中一个臂以比另一个臂更大的距离与所述屏障的本体间隔开。

3.根据权利要求1所述的系统,其中,所述内肩部和所述外肩部中的至少一者从所述屏障的本体向外和向上弯曲。

4.根据权利要求1所述的系统,其中,其中一个臂与另一个臂和所述屏障的本体中的至少一者形成倾斜角度。

5.根据权利要求1所述的系统,其中,所述屏障与至少其中一个臂形成为单个单元。

6.根据权利要求1所述的系统,其中,所述屏障是具有穿过其中的通路的第二坩埚。

7.一种用于从熔体生长晶锭的系统,所述系统包括:第一坩埚,所述第一坩埚具有形成用于容纳熔体的第一腔的第一基部和第一侧壁;

屏障,所述屏障设置在所述第一坩埚的所述第一腔内,以抑制熔体从所述屏障外侧的位置移动到所述屏障内侧的位置;

设置在所述屏障的顶部上的分隔件,所述分隔件具有向上延伸的内臂和向上延伸的外臂;和护罩,所述护罩在所述内臂与所述外臂之间向下延伸以抑制污染物的通过。

8.根据权利要求7所述的系统,其中,所述分隔件包括将所述内臂与所述外臂连接的基座。

9.根据权利要求8所述的系统,其中,所述基座包括用于将所述屏障的至少一部分接纳在其中的环形凹部。

10.根据权利要求9所述的系统,其中,所述基座包括设置在所述环形凹部内的密封件。

11.根据权利要求8所述的系统,其中,所述基座与至少其中一个臂形成为单个单元。

12.根据权利要求8所述的系统,其中,所述基座与其中一个臂结合在一起。

13.根据权利要求8所述的系统,其中,其中一个臂与另一个臂、所述基座和所述屏障的本体中的至少一者形成倾斜角度。

14.根据权利要求8所述的系统,其中,所述基座和其中一个臂包括互相连接的结构。

15.根据权利要求14所述的系统,其中,所述互相连接的结构是所述基座中的用于将其中一个臂的一部分接纳在其中的凹部。

16.根据权利要求7所述的系统,其中,其中一个臂以比另一个臂更大的距离与所述屏障间隔开。

17.根据权利要求7所述的系统,其中,所述屏障是具有穿过其中的通路的第二坩埚。

18.根据权利要求17所述的系统,还包括位于所述第一坩埚与所述第二坩埚之间的第二屏障。

19.根据权利要求7所述的系统,其中,所述内臂具有内长度且所述外臂具有外长度,所述内长度与所述外长度不相等。

说明书 :

用于抑制熔体污染的堰体

[0001] 对相关申请的交叉引用
[0002] 本申请要求2014年7月25日提交的美国非临时专利申请No.14/341,584的优先权,其全部公开内容通过引用整体并入本文中。

技术领域

[0003] 本发明总体涉及用于生产半导体或太阳能材料的晶锭的系统和方法,更特别地涉及用于减少晶锭中的缺陷或位错的系统和方法。

背景技术

[0004] 在通过提拉(CZ)法生长的单晶硅的生产中,首先使多晶硅在拉晶装置的诸如为石英坩埚的坩埚中熔化,以形成硅熔体。然后提拉器将晶种下降到熔体中,并且缓慢地将晶种从熔体中提升出来,从而使熔体在晶种上凝固。为了使用该方法生产高品质单晶,紧邻晶锭的熔体的表面的稳定性必须被保持在大体恒定。用于实现此目标的已有系统并非完全令人满意。因此,需要更高效和有效的系统和方法来限制与晶锭邻近的熔体中的表面破坏。
[0005] 此“背景技术”章节意在向读者介绍可能与下文被描述和/或要求保护的本发明的各方面相关的技术的各方面。相信此讨论有助于为读者提供背景信息,以帮助更好地理解本发明的各方面。因此,应当理解的是,这些叙述应当从这个角度阅读,而不是作为对已有技术的认可。

发明内容

[0006] 一方面,提供了一种用于从熔体生长晶锭的系统。该系统包括第一坩埚、屏障和护罩。所述第一坩埚具有形成用于容纳熔体的第一腔的第一基部和第一侧壁。所述屏障设置在第一坩埚的第一腔内以抑制熔体从屏障的外侧移动到屏障的内侧。所述屏障从第一基部延伸到熔体上方。所述屏障具有向上延伸以在其间形成通道的内臂和外臂。所述护罩在内臂与外臂之间向下延伸以抑制污染物的通过。
[0007] 另一方面,提供了一种用于从熔体生长晶锭的系统。该系统包括第一坩埚、屏障、设置在屏障的顶部上的分隔件、和护罩。所述第一坩埚具有形成用于容纳熔体的第一腔的第一基部和第一侧壁。所述屏障设置在第一坩埚的第一腔内以抑制熔体从屏障外侧的位置移动到屏障内侧的位置。所述分隔件具有向上延伸的内臂和向上延伸的外臂。所述护罩在内臂与外臂之间向下延伸以抑制污染物的通过。
[0008] 存在对关于上述各方面提及的特征的各种改进。其它特征也可以结合在上述各方面中。这些改进和附加的特征可以单独地或以任意组合存在。例如,下面关于图示的任意实施例所讨论的各特征可以单独地或以任意组合结合在任一上述方面中。

附图说明

[0009] 图1是根据一个实施例的晶体生长系统的剖视图;
[0010] 图2是图1的坩埚组件的放大剖视图;
[0011] 图3是根据另一实施例的晶体生长系统的局部剖视图;
[0012] 图4是根据另一实施例的晶体生长系统的局部剖视图;以及
[0013] 图5是根据另一实施例的晶体生长系统的局部剖视图。
[0014] 在全部附图的多个视图中,对应的附图标记表示对应的部件。

具体实施方式

[0015] 参考图1,其中示意性示出一种晶体生长系统,其总体标记为100。晶体生长系统100用于通过直拉法生产单晶锭。如在本文中所讨论的,关于生产单晶锭的连续直拉法来描述所述系统,但是也可使用分批法。然而,在本文中公开的系统还可以用于例如通过定向凝固工艺生产多晶锭。
[0016] 晶体生长系统100包括支承容纳硅熔体112的坩埚组件200的坩埚支承件或承受器150,晶锭114由提拉器或提拉系统134(例如缆线)从熔体中拉出。在拉晶过程期间,晶种132被提拉器134下降到熔体112中,然后缓慢地从熔体上升或拉出。随着晶种132缓慢地从熔体
112上升,形成了单晶锭114。
[0017] 坩埚组件200包括具有第一基部212和第一侧壁214的第一坩埚210。坩埚210的侧壁214与提拉器134大致同心。侧壁214围绕基部212的圆周延伸。侧壁214和基部212形成第一腔216。在一些实施例中,坩埚210可具有32英寸的内半径,或者对于较低的氧量尺寸可以更大,或者对于较低的成本尺寸可以更小。
[0018] 在生产单晶锭的连续直拉法期间,原料供给到坩埚的径向外侧区域并在其中熔化,而晶锭同时从熔体生长。一个或多个硅石屏障或堰体位于原料供给处与晶锭被拉出处之间,以形成坩埚组件。这些堰体在坩埚组件内形成多个区,并且抑制未熔化的或固体的原料进入与正在生长的晶体紧邻的区域中。位于熔体中的内侧区域或内区中的固体原料的碎块或碎片通俗地称为“鱼(即游离块,fish)”。
[0019] 典型地,所述堰体是安放在坩埚内的石英管。在许多情况下,堰体的底部不会与坩埚形成完整无缺的屏障以阻止固体原料进入内区。结果,固体原料可以通过堰体的底部与坩埚之间的小间隙。固体原料进入与正在形成的晶锭邻近的区域中会大幅增加晶锭被撞击并且其晶体结构被破坏的风险(有时称为结构损失或LOS)。通过使用本发明的实施例,在晶锭生长过程期间,抑制了这些“鱼”进入内区和导致晶锭中的缺陷或位错。
[0020] 在本实施例中,圆柱形的熔体流动屏障或堰体300在侧壁214内侧的位置处沿基部212设置在腔216内。堰体300将腔216内的区域分隔成内区218和外区220。内区218由基部
212和堰体300内侧的区域限定。外区220由基部212、侧壁214和堰体300限定。堰体300抑制熔体112从堰体外侧的位置(外区220)移动到堰体300内侧的位置(内区218)。在此实施例中,堰体300包括本体302,本体302具有延伸穿过该本体的至少一个堰体通路304,以允许腔
216中的熔体移动到堰体300的内侧。堰体通路304沿堰体300的下部区段设置在最终熔体深度下方的一定高度处,以允许堰体300内侧的一致的熔体水平面。堰体300具有与向上延伸的内臂308连接的内肩部306和与向上延伸的外臂312连接的外肩部310。肩部306、308垂直于本体302。在另一些实施例中,肩部306、310与本体302成倾斜角度。在图示的实施例中,堰体300具有整体式结构。即,本体302、肩部306、310和臂308、312作为单个单元形成(例如,由诸如石英的单块材料形成)。在另一些实施例中,堰体300可具有模块化的结构。即,本体
302、肩部306、310和/或臂308、312可彼此单独地形成并且接合在一起以构成堰体300。在一个实施例中,例如,肩部306、310和臂308、312由整块石英形成,并且本体302由单独一块石英形成。
[0021] 肩部306和310共同形成基座,并且向上延伸的臂308和312形成在基部212上方被抬高或隔开的环形通道314。如图所示,向上延伸的臂308和312彼此平行并且具有不同长度。在另一些实施例中,向上延伸的臂308和312可相互成倾斜的角度。在一些实施例中,向上延伸的臂308和312可具有大致相等的长度。
[0022] 在一些实施例中,堰体300与基部212结合。在另一些实施例中,堰体300不包括延伸穿过本体的通路或缺口。在这些实施例中,熔体通过在堰体300与基部212之间流动而从外区220进入到内区218。
[0023] 在一些实施例中,堰体300可以是20英寸的石英圆柱体,其具有成形为与坩埚210的内部的接触点相适配的底边并且被火焰抛光。在这些实施例中,堰体300的高度为护罩350提供了必要的间隙。通过使用提供大的开放式内熔体表面区域的堰体,降低了晶锭114中的氧水平。使用气流来除去氧的蒸发式除氧子系统也可用于降低系统内的整体氧水平。
[0024] 作为向外区供给固体原料的结果,一些固体原料可能由于例如灰尘、固体原料与其它固体原料碰撞并且弹开、或者在固体原料的熔化期间由固体原料形成或释放的氢气泡的爆炸而变成在空中传播。变成在空中传播的固体原料的碎块通俗地称为“鸟(即飞行块,bird)”。通过使用本发明的实施例,在晶锭生长过程期间,防止了这些“鸟”进入内区和导致晶锭中的缺陷或位错。
[0025] 无法确定每个不受约束的“鸟”的轨迹,这是因为固体原料的大的硅颗粒物可能从熔体弹开,相互碰撞和反弹,并且跳离系统结构。内区中的熔体流可使在内熔体表面着陆的“鸟”朝正在生长的晶锭移动,从而导致这些未熔化的硅颗粒物与正在生长的晶锭接触并在其中形成缺陷或位错。在“鸟”或其它污染物存在大量可能轨迹的情况下,需要更实用的、成本高效的护罩。根据本发明的实施例并且为了实现改进的、可靠的晶体生长,限制这些“鸟”的轨迹以防止它们进入内区218,从而防止这些“鸟”与正在生长的晶锭接触,尤其在固液界面附近。
[0026] 如上所述,必须防止“鸟”进入内区或生长区216。参照图1,本实施例的晶体生长系统100包括邻近坩埚组件200的护罩350。护罩350具有锥形部件352。然而,可以使用将熔体112与系统100的上部部分隔开并且具有中央开口以允许从中拉出晶锭114的任何合适的水平旋转的截面形状。锥形部件352覆盖内区218和外区220的一部分,并且具有在内臂308与外臂312之间向下延伸到环形通道314中的竖向挡板354。当护罩安装在系统100内之后,挡板354沿锥形部件352的底部设置在将挡板置于内臂308与外臂312之间的位置处。环形通道
314形成环面体(toroid),其尺寸和形状确定为将挡板354接纳在其中。挡板354适当地形成为锥形部件352的一部分,锥形部件352可一体地制成或作为多个部件的组件制成。在本实施例中,锥形部件352和挡板354两者都由石墨或涂覆有碳化硅的石墨、高纯度钼制成,但是也可以使用其它合适的材料。
[0027] 撞击挡板354的“鸟”可与挡板的材料相互作用,从而导致挡板材料污染“鸟”。为了防止“鸟”进入内区218和污染熔体112(形式为来自石墨护罩的碳),所述“鸟”被收集和储存在通道314中,通道314可在该过程完成时被清空。
[0028] 通过在内臂308和外臂312的顶部之间延伸直线然后使该直线围绕堰体300的中心旋转,这两个顶部形成切向圆锥。在另一些实施例中,内臂308和外臂312可具有相同高度,从而在内臂308和外臂312的顶部之间形成切向线或平面。挡板354从锥形部件352向下延伸穿过该切向平面或圆锥,从而贯穿整个过程均穿入由内臂308和外臂312限定的梯形回转体积,以形成曲折的路径或迷宫布置结构,从而防止“鸟”和污染物进入内区218。
[0029] 环形通道314在内臂308与外臂312之间形成凹井,该凹井通过收集和存放进入其中的“鸟”而进一步减少了弹跳轨迹。此外,这些“鸟”可能通过与锥形部件352和挡板354中的一者或两者接触而已经被污染。因此,污染物被限制在环形通道314内,从而防止杂质到达正在生长的晶锭114。通过防止对内区218的污染,可以增加生长过程的寿命周期。
[0030] 在肩部306和310、臂308和312、挡板354和锥形部件352之间的间距的大小可确定为允许充足的氩气经迷宫式区域流出,例如以防止可能携带污染物或“鸟”的气体向内流动,如图2所示。通过充足的氩气向外流出,可以防止很小的污染物(例如灰尘或很小的颗粒物)进入内区218和导致晶锭中的缺陷或位错。
[0031] 挡板354可与肩部306和310的顶面间隔开一定的最小距离,该最小距离由内臂308与外臂312之间的熔体飞溅情况或环形通道314内的预期的“鸟”累积确定。除其它因素以外,所述熔体飞溅情况典型地取决于清扫气体流量、压力和温度。挡板354的长度或者挡板朝肩部306和310延伸并超出切向圆锥的距离也可取决于其它设计考虑。
[0032] 在本实施例中,内臂308和外臂312形成从坩埚210的基部212和熔体112向上突出的第一和第二底部圆柱体。挡板354形成从护罩350的锥形部件352向下延伸以与第一和第二底部圆柱体中的至少一者重叠的顶部圆柱体。这些圆柱体是在切向投影中形成直线的简单圆柱体。
[0033] 在一些实施例中,一个或多个圆柱体可形成包括内侧和/或外侧凸出部或弯曲部的复杂圆柱体。在一些实施例中,护罩具有一个以上向下延伸的挡板或圆柱体。在另一些实施例中,挡板可设置在以下这些位置中的一个或多个处:第一底部圆柱体或内臂的内侧,第一底部圆柱体与第二底部圆柱体或外壁之间,以及第二底部圆柱体的外侧。
[0034] 通过堰体与本发明的护罩相结合,阻止了从外区(尤其从进料管或通道)到内区的视线(路径)或直接路径。通过切断外区与内区之间的视线(路径),降低了发生允许“鸟”和污染物进入内区的颗粒物弹跳或某种牛顿轨迹的风险。
[0035] 在一个实施例中,通过使圆柱体在上部熔体自由表面与护罩之间重叠来切断外区与内区之间的视线(路径)。在本实施例中,护罩不具有延伸穿过其中的开口,这否则可能为“鸟”提供在外区与内区之间的路径。
[0036] 此外,堰体300和护罩350(特别是挡板354)的构型允许堰体300的本体302位于最内部堰体通常在常规系统中所处的位置的径向外侧,所述常规系统具有设置在从坩埚的基部向上延伸的两个堰体之间的挡板。因此,在本实施例中,内区中的熔体具有比常规系统的内区中的熔体更大的体积和表面积。与常规系统相比,内区中的熔体的较大体积和质量导致晶体中的氧浓度的降低,并且减少了熔体中的金属杂质偏析和累积。
[0037] 可以通过进料管120将固体原料116从进料器118放入外区220中。原料116处于比周围熔体112低得多的温度并且从熔体吸热,同时原料的温度上升且原料在外区中液化以形成外熔体部分。随着固体原料116(有时被称作“冷原料”)从熔体112吸收能量,周围熔体的温度与所吸收的能量成比例地下降。
[0038] 添加的原料116的量由进料器118控制,进料器118响应来自控制器122的启动信号。熔体112冷却的量由控制器122精确地确定和控制。控制器122将添加或不添加原料116,以调节熔体112的温度和质量。可以基于坩埚中的硅的质量添加原料116,例如通过测量熔体的重量或测量熔体的液面高度。
[0039] 随着固体原料116被添加到熔体112中,熔体的表面可能被扰动。这种扰动还影响熔体112的硅原子与晶种132的硅原子适当地对齐的能力。然而,堰体300抑制所述扰动的向内传播,如下文将讨论的。
[0040] 通过围绕坩埚组件布置在适当位置处的一个或多个加热器124、126、128向坩埚组件200提供热量。来自加热器124、126、128的热量首先熔化固体原料116,然后使熔体112维持在液化状态,从而为晶锭114提供合适的生长条件。加热器124大体为圆柱形的形状,并且向坩埚组件200的侧面提供热量,并且加热器126和128向坩埚组件的底部提供热量。在一些实施例中,加热器126和128大体为环形的形状。在另一些实施例中,加热器126和128被组合成单个加热器。
[0041] 加热器124、126和128适当地为电阻式加热器并且联接至控制器122。控制器122控制向加热器提供的电流以控制加热器的功率输送,以及控制原料,从而控制熔体的温度。传感器130(诸如高温计或类似温度传感器)在生长的单晶锭114的晶体/熔体界面处提供对熔体112的温度的连续测量。传感器130还可以配置成测量生长的晶锭的温度。传感器130在通信方面与控制器122联接。可以使用附加的温度传感器以关于对于原料的熔化或控制正在生长的晶锭关键的点进行测量和向控制器提供温度反馈。虽然为了清晰而示出了单个通信导线,但是一个或多个温度传感器可以通过多个导线或无线连接装置(例如通过红外线数据链路或其它适当的装置)链接至控制器。
[0042] 可以分别且独立地选择由控制器122供应至各加热器124、126和128的电流量,以优化熔体112的热特性。在一些实施例中,可以围绕坩埚布置一个或多个加热器来提供热量。
[0043] 如上所述,晶种132被附着至设置在熔体112上方的提拉器134的一部分。提拉器134为晶种132提供沿着垂直于熔体112的表面的方向的运动,以允许晶种朝着熔体被下降或下降到熔体中以及从熔体提升或提升出熔体。为了生产高品质的晶锭114,与晶种132/晶锭114邻近的区域中的熔体112必须维持在大体上恒定的温度且基本没有表面扰动,并且外来固体颗粒物必须最少。
[0044] 为了限制紧邻晶种132/晶锭114的区域中的表面扰动和温度波动,将堰体300放置在坩埚210的腔中。堰体300将熔体112分成内区218中的内熔体部分和外区220中的外熔体部分。内熔体部分在堰体300的内侧并且邻近晶种132/晶锭114。
[0045] 堰体300限制了熔体112在外熔体部分或外区220与内熔体部分或内区218之间的移动。可以通过堰体300的下部区段中的通路304来容许熔体112在各区之间的移动。
[0046] 熔体112的移动基本被限制在通路304的位置。通过沿堰体300的下部区段布置通路304,可以将熔体112的移动局限在沿坩埚组件200的底部。结果,熔体112向内区中的任何移动都是在熔体的顶部下方或与其直接相对的位置,其中晶锭114在熔体的顶部被拉出。通过对熔体移动的这种限制,限制了沿熔体112的内熔体部分的顶部的表面扰动和温度波动,从而限制了正在形成的晶锭中的位错。
[0047] 通路304容许熔体112在外区220与内区218之间的受控移动。通过抑制或限制熔体112在区218、220之间的移动,可以允许外区中的原料116随着原料进入内区中而加热至与内熔体部分的温度大致相当的温度。
[0048] 坩埚210和堰体300适当地由石英制成,并且熔体112和原料116是硅。在这些实施例中,硅熔体112是腐蚀性的并且可能导致坩埚和堰体的石英在低压力下击穿,从而显著地限制了系统的总运行时间。为了防止将限制总运行时间的坩埚210和堰体300的过度腐蚀,通过以介于约15托与约75托之间的压力和介于约90与约140标准升/分(SLPM)之间或小于约100SLPM的流量输送供给氩气,来向上偏压氧气。熔体表面中的较高氧含量由此限制石英腐蚀率。较高的压力降低了系统内的氩气的速度,从而导致从熔体表面蒸发的一氧化硅的减少。因此较少的一氧化硅被运送到排气管路中,从而防止了排气管路的过早阻塞和过早的运行终止。
[0049] 参照图3,其中示出了具有单个坩埚404、堰体430和护罩470的晶体生长系统400。堰体430与堰体300的基本相似之处在于它们都包括内臂和外臂。堰体430与堰体300的不同之处在于堰体430的内、外肩部是弓形的。堰体430包括在与自其向上延伸的内臂438连接之前从本体432沿曲线向内和向上延伸的内肩部436,以及在与自其向上延伸的外臂442连接之前从本体432沿曲线向外和向上延伸的外肩部440。内臂438和外臂442形成环形通道444,该环形通道444用作凹井以在晶体生长过程期间收集和储存进入其中的“鸟”。如图所示,弯曲的内、外肩部436和440有利于氩气流出以防止流出的气体滞留在该区域中。
[0050] 护罩470与护罩350的基本相似之处在于它们都包括锥形部件352、472和向下延伸的挡板354、474。挡板472延伸通过内臂438和外臂442的顶部边缘之间的线的至少一部分。换言之,由内臂438和外臂442的顶部形成的切向圆锥446被挡板474中断,使得不存在从外区到内区的视线(路径)。
[0051] 参考图4,其中示出了根据另一实施例的晶体生长系统500。熔体506总体被容纳在坩埚组件502内。坩埚组件502包括将第二坩埚540支承在第一坩埚510内的第一堰体520和第二堰体530。这种构造将熔体506分隔到外区、多个中间熔体区和内区中,并且用于在邻近正在生长的晶锭的区域中限制熔体506的表面扰动和温度波动。
[0052] 通过分别延伸穿过各堰体520和堰体530以及第二坩埚540的通路528、538和548来容许熔体506的移动。在一些实施例中,通路528、538和548可以不对齐以形成用于熔体从外区经中间区进入内区中的曲折路径。通过将熔体在各区之间的移动限制为沿第一坩埚510的内表面,可以允许外区中的原料或硅材料随着硅材料经过多个中间区而加热至与内区中的熔体的温度大致相当的温度。
[0053] 第二坩埚包括第二基部542和第二侧壁544。在所公开的实施例中,分隔件550安装或附着在第二侧壁544的顶部上。分隔件550包括从第二侧壁544向内延伸的周向基座552,如在本实施例中所示。在另一些实施例中,基座552可从侧壁544向外延伸或从侧壁544既向内又向外延伸。在本实施例中,基座552包括用于将第二侧壁544的至少一部分接纳在其中的凹部554。在另一实施例中,凹部554构造成将臂556、558中的一者的至少一部分接纳在其中。在另一些实施例中,所述分隔件和第二坩埚作为单一结构形成。
[0054] 在本实施例中,凹部554以垂直角度延伸到基座中。在另一些实施例中,凹部554以一定角度延伸到基座552中。在一些实施例中,基座552与侧壁544形成一定角度,使得气流在邻近正在生长的晶体114的基座552的部分下方不会被抑制。
[0055] 内臂556沿基座554的内部边缘向上延伸,外臂558沿基座的外部边缘向上延伸。在本实施例中,基座552、内臂556和外臂558作为单个单元形成。在另一些实施例中,基座552、内臂556和外臂558可形成为被组装在一起的单独的单元。在这些实施例中,基座552、内臂556和外臂558可结合在一起或包括互相连接的结构。在一些实施例中,基座552可与内臂
556和外臂558中的一者作为单个单元形成,并且与另一个臂组装在一起。
[0056] 内臂556和外臂558形成环形通道560,该环形通道560用作凹井以在晶体生长过程期间收集和储存进入其中的“鸟”,如以上关于环形通道314所述。在本实施例中,内臂556和外臂558彼此平行并且垂直于基座552。在另一些实施例中,内臂556和外臂558中的至少一者可与另一者形成一定角度,并且与基座552形成倾斜的角度。
[0057] 分隔件550可由石墨、石英或碳化硅制成。在侧壁540与分隔件550之间,例如在凹部554内,可设有密封件568,诸如在分隔件550与侧壁540之间的高温结合剂或联锁构件。
[0058] 与护罩350和470相似,护罩570包括锥形部件572和挡板574。挡板574的底部延伸穿过或中断由内臂556和外臂558形成的切向圆锥562,如以上关于堰体300的挡板354以及内臂308和外臂312所述的。
[0059] 参考图5,其中示出了根据另一实施例的晶体生长系统600。晶体生长系统600包括与坩埚组件502相似的坩埚组件602。坩埚组件602包括将第二坩埚640支承在第一坩埚610内的第一堰体620和第二堰体630。
[0060] 分隔件650安装或附着在第二坩埚640的顶部上。分隔件650与分隔件550的基本相似之处在于它们均包括基部以及内臂和外臂。分隔件650与分隔件550的不同之处在于,分隔件650具有其长度与基座552、内臂556和外臂558不同的基座652、内臂656和外臂658。基座652、内臂656和外臂658共同形成用于收集和储存进入其中的“鸟”的通道660。如上所述,切向圆锥662由内臂656和外臂658的顶部形成。
[0061] 再次参见图1和2,在用于在包括具有基部212和侧壁214的坩埚210的坩埚组件200中生长单晶锭114的方法的一个实施例中,将屏障或堰体300放置在坩埚中。堰体300包括本体302,该本体302具有与向上延伸的内臂308连接的内肩部306,和与向上延伸的外臂312连接的外肩部310。内臂308和外臂312形成环形通道314,其被抬升或隔开在基部212上方。
[0062] 堰体300内侧的区域限定出内区218。侧壁214与堰体300之间的区域限定出外区220。将原料116放置在外区220中。将加热器124、126和128放置在坩埚组件200附近以提供用于液化或熔化原料116的热量,从而形成熔体112。一旦液化,则熔体112从外区220移动到内区218中。熔体112在这些区之间的移动被局限于穿过堰体300的通路304。
[0063] 将晶种132下降到熔体112中,然后缓慢地从熔体112中提升出来以从晶种生长晶锭。随着晶种132被缓慢地提升,来自熔体112的硅原子与晶种132的硅原子对齐并附着在其上,从而允许晶锭作为单晶体长得越来越大。从熔体112中提升硅原子会导致硅原子冷却和凝固。
[0064] 通过抑制熔体在这些区之间的移动,可以抑制或防止未熔化的原料进入内区218中和导致晶锭中的位错。未熔化的原料可能干扰或负面地影响正在形成的晶锭的结构完整性和晶体结构。
[0065] 此外,熔体的温度随着熔体从外区来到内区而升高。在熔体到达内区时,熔体的温度与已经在内区中的熔体基本相当。在到达内区之前提高熔体的温度可以缩小内区中的温度场。控制器可用于维持内区中的基本恒定的温度。
[0066] 此外,通过将熔体在这些区之间的移动局限于通过所述通路,可以使得内区的表面保持相对不受干扰。通过将由于扰动产生的热能和机械能波基本限制在外区中,堰体基本上防止了外区中的扰动破坏内区中的熔体的表面。还通过通路的位置抑制了扰动进入内区中。该通路设置在熔体顶部接触液面的下方,以允许熔体移动到内区中而不破坏内区的表面稳定性。
[0067] 在一些实施例中,可通过传感器在紧邻正在生长的晶锭的位置处适当地测量内区中的熔体的温度。在另一些实施例中,可适当地测量外区中的熔体的温度。传感器与控制器连接。控制器通过向加热器供给或多或少的电流以及通过向熔体供给或多或少的原料来调节熔体的温度。控制器还能在从熔体提升晶种的同时供给原料,从而生长晶锭。
[0068] 在用于在任意实施例的坩埚组件中生长单个晶锭的方法的另一实施例中,熔体由屏障分为至少一个内区和外区,所述屏障具有自其向上延伸的至少两个底部圆柱体。固体原料被供给到外区中并在其中液化成熔体,并且同时在内区中生长出晶锭。熔体上方的空间由在底部圆柱体的顶部下方延伸的至少一个顶部圆柱体在底部圆柱体之间的位置处分隔,以切断内区与外区之间的视线路径。顶部圆柱体在环形通道的底部上方间隔开,以防止环形通道中的熔体或未熔化的原料与顶部圆柱体接触或喷溅到其上。顶部和底部圆柱体可以是简单的或复杂的圆柱体(例如,包括向内和/或向外的突出部或弯曲部的圆柱体)。
[0069] 底部圆柱体和顶部圆柱体设置为在其间形成缩小的开口。在给定的氩气流量、压力和温度下,所述缩小的开口可以增大从其中通过的氩气流出速率,而不会导致流出的氩气被限制或停滞。此构型有利于携带灰尘颗粒物(通常为硅,但有时为其它污染物)的流出的氩气向外并远离其中正在生长晶锭的内区主动径向漂移。由于在15至70托的稀薄炉内气氛中的清扫气体的质量密度较低,所以这种缩小的开口将影响主要是极小颗粒物的轨迹。
[0070] 在一些实施例中,两个底部圆柱体形成跨它们的最上部点的切向平面或切向圆锥。在这些实施例中,顶部圆柱体——例如挡板254——确定尺寸和成形为在两个底部圆柱体内径向地中断所述切向平面或切向圆锥,并由此切断从内区到外区的视线(路径)。
[0071] 根据本发明的实施例可有利地减小晶锭中的氧浓度以补偿操作压力的增大,从而通过更缓慢的石英溶解延长运行寿命,降低堰体的消耗率,并且提供更好的系统性能。在一些实施例中,所述环形通道在本体的顶部上形成截面杯体,其是单壁屏障。该杯体在熔体上方从屏障向内延伸,以提供比通过使用多个堰体形成的内区和外区更大的内区和外区。因此,单壁屏障的使用降低了晶体中的氧浓度,并且减少了熔体中的金属杂质偏析和累积。
[0072] 所述环形通道可在熔体-气体界面处的堰体顶部附近形成氩气流的局部死区或“气罩”,这降低了堰体或坩埚在熔体-气体界面处腐蚀的速度。因此,组件的使用寿命或炉的运行时间延长,这是因为不需要频繁更换堰体和坩埚。
[0073] 较大的外区或进料区域防止了外部进料区域中的结冰,允许原料更快地进给到外区中和液化,并且允许晶锭的更高生长速度。在晶体形成系统的运行期间或晶体生长过程期间,迷宫式流动为收集和储存在空中传播的原料或“鸟”提供了凹井。通过减少熔体表面中的扰动,增加了零位错(ZD)晶锭的产量。
[0074] 另外,利用根据本发明的实施例,通过使用具有与向下延伸的挡板匹配的向上延伸的环形通道的堰体,可以降低污染熔体的风险,以及由于“鸟”进入内区导致的晶锭中的结构损失的风险。风险的降低以及提高的效率和延长的运行时间不仅增加了晶体形成系统的总产量,而且降低了总运行成本。
[0075] 当介绍本发明或其实施例的元件时,冠词“一”、“一个”、“该”和“所述”是指存在一个或多个该元件。术语“包括”、“包含”和“具有”是包含性的,意味着可能存在除了所列举的元件之外的附加元件。使用表示特定取向(例如“顶部”、“底部”、“侧面”等)的术语是为了便于描述,而不要求所描述的部件的任何特定取向。
[0076] 在不背离本发明范围的情况下,可以对上述结构和方法进行各种改变,因此上文说明书中所包含的和附图所示的全部内容应旨在被解释成说明性而非限制性的。