涡轮增压器转让专利

申请号 : CN201580068682.2

文献号 : CN107110011B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 西瓦拉曼·维佳亚库马林正基

申请人 : 株式会社马勒滤清系统

摘要 :

这种涡轮增压器(1)包括:涡轮叶轮(3),该涡轮叶轮由排气驱动;第一和第二压缩机叶轮(4),(5),该第一和第二压缩机叶轮通过轴部件(6)而同轴地与涡轮叶轮(3)连接;压缩机壳体(8),该压缩机壳体容纳第一和第二压缩机叶轮(4),(5),并在其中形成了连通通道(17)以便将由第一压缩机叶轮(4)压缩的空气供给至第二压缩机叶轮(5);以及电马达(11),该电马达布置在连通通道(17)中,并使用轴部件(6)作为它的旋转轴。

权利要求 :

1.一种涡轮增压器,包括:

涡轮叶轮,所述涡轮叶轮由来自内燃机的排气驱动;

第一压缩机叶轮和第二压缩机叶轮,所述第一压缩机叶轮和第二压缩机叶轮经由轴部件而同轴地连接于涡轮叶轮;

主壳体,所述主壳体容纳第一压缩机叶轮和第二压缩机叶轮,并在其中限定连通通道,由第一压缩机叶轮压缩的空气通过所述连通通道而沿所述轴部件的轴向方向流向第二压缩机叶轮;以及电马达,所述电马达布置在连通通道中;

其中:所述电马达包括:作为它的旋转轴的所述轴部件;和筒形马达壳体,所述筒形马达壳体设置在所述主壳体中并且具有面对第一压缩机叶轮的第一端部部分和面对第二压缩机叶轮、沿所述轴部件的轴向方向与所述第一端部部分相反定位的第二端部部分;并且其中:所述马达壳体的第一端部部分和第二端部部分与所述连通通道连通,使得被压缩的空气通过所述马达壳体的第一端部部分从所述连通通道引向所述马达壳体内部,沿所述轴部件的轴向方向在马达壳体内部流过并且通过所述马达壳体的第二端部部分排出至所述连通通道。

2.根据权利要求1所述的涡轮增压器,其中:电马达具有多个散热翅片,这些散热翅片凸出地形成于马达壳体的外周表面上。

3.根据权利要求2所述的涡轮增压器,其中:当沿所述轴部件的轴向方向看时,散热翅片从电马达径向凸出。

4.根据权利要求2或3所述的涡轮增压器,其中:所述散热翅片从所述马达壳体的第一端部部分至第二端部部分连续地形成。

5.根据权利要求1-3中任一项所述的涡轮增压器,其中:所述马达壳体的第二端部部分与所述连通通道连通,使得在马达壳体内部的空气能够沿所述轴部件的轴向方向从所述马达壳体的第二端部部分排出至所述连通通道。

6.根据权利要求1-3中任一项所述的涡轮增压器,其中:所述电马达包括转子和定子,所述转子和定子布置在所述马达壳体中使得从所述马达壳体的第一端部部分引入的空气在所述转子与定子之间流到所述马达壳体的第二端部部分。

7.根据权利要求1-3中任一项所述的涡轮增压器,其中:所述马达壳体包括:第一筒形部件,所述第一筒形部件固定至所述马达壳体的第一端部部分并且具有形成于第一筒形部件中的空气引入孔以便提供从所述连通通道至所述马达壳体的第一端部部分的空气连通;

以及第二筒形部件,所述第二筒形部件固定至所述马达壳体的第二端部部分并且具有形成于第二筒形部件中的空气排出孔以便提供从所述马达壳体的第二端部部分至所述连通通道的空气连通。

说明书 :

涡轮增压器

技术领域

[0001] 本发明涉及一种用于内燃机的涡轮增压器。

背景技术

[0002] 通常已知一种涡轮增压器,它包括:涡轮叶轮,该涡轮叶轮附接于轴部件的一端,并通过排气能量而旋转;以及压缩机叶轮,该压缩机叶轮同轴地附接于轴部件的另一端,并且适于压缩空气和将压缩空气供给至内燃机的燃烧室。
[0003] 专利文献1公开了一种上述类型的涡轮增压器,该涡轮增压器还包括电马达,该电马达布置在轴部件上、在涡轮叶轮和压缩机叶轮之间,使得即使在内燃机的低速状态中(例如在车辆起动时)由于涡轮的不充分转速而不能进行充分增压的情况下,电马达也能够被驱动,以便增加压缩机叶轮的转速,提升涡轮增压器的增压压力,因此从车辆起动的早期阶段就获得所需的动力性能。
[0004] 在专利文献1中,需要电马达来获得高转速和高输出,目的是给予轴部件所需的扭矩。不过,高转速、高输出的电马达的尺寸变得较大。使用这样的大尺寸马达可能导致涡轮增压器的总体尺寸增加。
[0005] 而且,从高转速、高输出的电马达的定子线圈(作为定子)产生大量的热。由于这种发热,电马达的磁体(作为转子)可能由于被加热至高温度而衰退。这可能由于磁力衰退而引起电马达的驱动效率降低。
[0006] 现有技术文献
[0007] 专利文献
[0008] 专利文献1:日本专利申请公开No.2000-130176

发明内容

[0009] 根据本发明,提供了一种涡轮增压器,它包括:涡轮叶轮,所述涡轮叶轮由来自内燃机的排气驱动;第一压缩机叶轮和第二压缩机叶轮,所述第一压缩机叶轮和第二压缩机叶轮经由轴部件而同轴地连接于与涡轮叶轮;主壳体,所述主壳体容纳第一压缩机叶轮和第二压缩机叶轮,并在其中限定连通通道,由第一压缩机叶轮压缩的空气通过所述连通通道而流向第二压缩机叶轮;以及电马达,所述电马达布置在连通通道中,并包括作为它的旋转轴的轴部件。
[0010] 电马达可以具有多个散热翅片,这些散热翅片凸出地形成于电马达的外周表面上。散热翅片可以形成为从电马达径向凸出。而且,散热翅片可以从电马达的面对第一压缩机叶轮的一个端部部分至电马达的面对第二压缩机叶轮的另一个端部分连续地形成。
[0011] 电马达可以具有筒形马达壳体,所述筒形马达壳体形成为使得空气从马达壳体的面对第一压缩机叶轮的一个端部部分引入至马达壳体的内部,并且将空气从马达壳体的面对第二压缩机叶轮的另一端部部分排出至所述连通通道。所述马达壳体的所述另一端部部分可以与所述连通通道连通,使得在马达壳体内部的空气能够沿轴部件的轴向方向从所述马达壳体的所述另一端部部分排出至所述连通通道。
[0012] 在本发明中,电马达布置在连通通道中,空气通过该连通通道恒定地从第一压缩机叶轮侧流向第二压缩机叶轮侧。因此能够有效地冷却电马达,抑制由于温度升高而引起的电马达驱动效率降低。而且,空气通过第一压缩机叶轮和第二压缩机叶轮而两级压缩,使得即使当轴部件的转速相对较低时,也能够获得所需的增压压力。因此能够抑制电马达的发热,同时减小电马达的尺寸。

附图说明

[0013] 图1是根据本发明的一个实施例的涡轮增压器的局部切掉的示意图。
[0014] 图2是根据本发明的所述一个实施例的涡轮增压器的剖视图。
[0015] 图3是根据本发明的所述一个实施例的涡轮增压器的另一剖视图。

具体实施方式

[0016] 下面将参考图1至3详细介绍本发明的一个实施例。图1是根据本发明的一个实施例的涡轮增压器1的局部切掉的示意图。图2是根据本发明的所述一个实施例的涡轮增压器1的剖视图。图3是根据本发明的所述一个实施例的涡轮增压器1沿图2中的线A-A的另一剖视图。
[0017] 在涡轮增压器1中,要供给至车辆的内燃机(未示出)的空气在涡轮增压器壳体组件2内以两级被压缩。更具体地说,涡轮增压器1具有涡轮叶轮3、第一压缩机叶轮4和第二压缩机叶轮5,它们均同轴地附接于细长柱形轴部件6,以便通过使用排气能量来进行增压作用。
[0018] 涡轮增压器壳体组件2为基本筒形形状。如图1和2中所示,涡轮增压器壳体组件2总体包括:涡轮壳体7,该涡轮壳体7布置在涡轮增压器壳体组件2的一端侧;压缩机壳体8,该压缩机壳体8作为主壳体而布置在涡轮增压器壳体组件2的另一端侧;以及中间壳体9,该中间壳体9布置在涡轮壳体7和压缩机壳体8之间,且在其中容纳轴部件6。
[0019] 轴部件6由金属材料来制造。涡轮叶轮3固定于轴部件6的一个端部部分;第一压缩机叶轮4固定于轴部件6的另一端部部分;第二压缩机叶轮5固定于轴部件6的中间部分。
[0020] 涡轮壳体7、压缩机壳体8和中间壳体9均通过例如金属材料的铸造而制造。
[0021] 涡轮壳体7容纳涡轮叶轮3。涡轮叶轮3通过例如金属材料的铸造而制造,并具有形成于其上的多个涡轮叶片10。
[0022] 中间壳体9主要支撑轴部件6,并使得涡轮壳体7和压缩机壳体8沿轴部件6的轴向方向相互连接。
[0023] 压缩机壳体8不仅容纳第一压缩机叶轮4和第二压缩机叶轮5,还容纳:电马达11,该电马达11布置在第一压缩机叶轮4和第二压缩机叶轮5之间;第一筒形部件12,该第一筒形部件12插置在第一压缩机叶轮4和电马达11之间;以及第二筒形部件13,该第二筒形部件13插置在第二压缩机叶轮5和电马达11之间。
[0024] 在本发明实施例中,压缩机壳体8总体包括第一壳体部件14、第二壳体部件15和第三壳体部件16,并在其中限定连通通道17,由第一压缩机叶轮4压缩的空气通过连通通道17而流向第二压缩机叶轮5。这里,连通通道17是在第一压缩机叶轮4和第二压缩机叶轮5之间的位置处沿轴部件6的轴向方向形成于轴部件6的外周表面和压缩机壳体8的内周表面之间的连续空间。
[0025] 第一壳体部件14主要容纳第一压缩机叶轮4。第二壳体部件15主要容纳在连通通道17内的第一筒形部件12和电马达11。第三壳体部件16主要容纳第二压缩机叶轮5和第二筒形部件13,并沿轴部件6的轴向方向使得第二壳体部件15与中间壳体9连接。
[0026] 第一压缩机叶轮4通过例如金属材料的铸造来制造,并具有形成于其上的多个第一压缩机叶片18。第二压缩机叶轮5也通过例如金属材料的铸造来制造,并具有形成于其上的多个第二压缩机叶片19。
[0027] 如图2和图3中所示,电马达11包括:筒形马达壳体20;多个定子21,这些定子21由定子线圈构成,并固定于马达壳体20的内周侧;以及多个转子22,这些转子22由永磁体构成,并固定于轴部件6。在本实施例中,轴部件6用作电马达11的旋转轴。在由于涡轮叶轮3的不充分旋转而不能进行充分增压的情况下,电马达11通过定子21的通电而被驱动和旋转,以便补偿涡轮叶轮3的不充分旋转。而且,电马达11适于根据情况来产生电动力。
[0028] 马达壳体20由例如金属材料来制造,且在它的外周表面上具有:多个线性散热翅片23,这些线性散热翅片23沿轴部件6的轴向方向凸出地形成;以及多个线性肋24,这些线性肋24沿轴部件6的轴向方向以比散热翅片23更大的厚度凸出地形成。当沿轴部件6的轴向方向看时,散热翅片23和肋24从马达壳体20径向凸出。散热翅片23和肋24相互周向隔开,且均从马达壳体20的、面对第一压缩机叶轮4的一个端部部分(电马达11的一个端部部分)连续延伸至马达壳体20的、面对第二压缩机叶轮5的另一端部部分(电马达11的另一端部部分)。而且,散热翅片23和肋24均与轴部件6平行。马达壳体20的肋24通过未示出的螺栓从马达壳体20的径向方向固定于第二壳体部件15。第一筒形部件12通过未示出的螺栓固定于马达壳体20的第一压缩机叶轮侧的端部部分。第二筒形部件13通过未示出的螺栓从轴部件6的轴向方向固定于马达壳体20的第二压缩机叶轮侧的端部部分。
[0029] 第一筒形部件12通过例如金属材料的铸造来制造,并具有多个整流翅片25,这些整流翅片25形成于第一筒形部件12的外周表面上。整流翅片25用于对由第一压缩机叶轮4压缩的空气流进行整流,并将压缩空气引向马达壳体20与第二壳体部件15之间的空间。第一筒形部件12的第一压缩机叶轮4侧的端部部分定位成与第一压缩机叶轮4的后表面隔开。第一筒形部件12的第二压缩机叶轮5侧的端部部分通过未示出的螺栓而固定于马达壳体20的第一压缩机叶轮4侧的端部部分。
[0030] 多个第一空气引入孔26沿轴部件6的轴向方向穿过第一筒形部件12而形成。每个第一空气引入孔26具有相对于马达壳体20的内周表面在内侧的一端开口以及在与第一压缩机叶轮4的后表面相对的位置处的另一端开口。而且,多个第二空气引入孔27径向穿过第一筒形部件12而形成,使得每个第二空气引入孔27具有在第一筒形部件12的外周表面处的一端开口以及与第一空气引入孔26的中心区域连接的另一端开口。
[0031] 第二筒形部件13也通过例如金属材料的铸造而制造。多个空气排出孔28沿轴部件6的轴向方向穿过第二筒形部件13而形成。每个空气排出孔28具有在第三壳体部件16内部的位置处与连通通道17连通的一端开口以及相对于马达壳体20的内周表面在内侧的另一端开口。
[0032] 通过这些第一空气引入孔26和第二空气引入孔27,一部分压缩空气从第一压缩机叶轮4的后表面侧和整流翅片25之间引入至马达壳体20。引入至马达壳体20内部的压缩空气在定子21之间以及在定子21与转子22之间沿轴部件6的轴向方向朝向第二压缩机叶轮5流动,然后沿轴部件6的轴向方向通过第二筒形部件13的空气排出孔28而排出至第三壳体部件16内的连通通道17。即,马达壳体20的另一端部部分与连通通道17连通,使得在马达壳体20内部的空气沿轴部件6的轴向方向从马达壳体20的另一端部部分排出至连通通道17。这里,应当注意,图2中的参考标号29表示轴承,轴部件6由该轴承可旋转地支撑。
[0033] 在上述结构的涡轮增压器1中,在连通通道17内部的空气通过第二压缩机叶轮5的空气抽吸作用而恒定地流向第二压缩机叶轮5。因为电马达11布置在第一压缩机叶轮4和第二压缩机叶轮5之间的连通通道17中,因此空气不会保持和积累在电马达11附近。因此,能够有效地冷却电马达11,从而有效地抑制由于电马达11的温度升高而引起的、电马达11的驱动效率降低。
[0034] 例如,在电马达11的增压辅助操作过程中,通过抑制由于电马达11的温度升高而引起的电马达11的驱动效率降低,能够避免不能获得所需增压压力。因此保证充分增压压力,以便保持车辆的良好驱动状态。在电马达11的动力产生操作过程中,通过抑制由于电马达11的温度升高而引起的电马达11的驱动效率降低,能够避免不能获得所需的动力产生效率。因此,从涡轮叶轮3借助于排气而引起的盈余旋转而有效地再生电能,以便有助于提高车辆的燃料效率。
[0035] 在本实施例中,散热翅片23形成于马达壳体20的外周表面上。通过这些翅片,能够使得固定于马达壳体20的内周的定子21的热有效地散热至连通通道17内部的空气,并抑制定子21的温度升高。
[0036] 而且,在本实施例中,由第一压缩机叶轮4压缩的空气的一部分被引入至电马达11的内部。通过将这些压缩空气引入至电马达11,能够直接冷却发热的定子21以及通过定子21的发热而温度升高的转子22,使得电马达11能够从内部和外部被有效地冷却。
[0037] 而且,空气通过第一压缩机叶轮4和第二压缩机叶轮5两级压缩,使得即使当轴部件6的转速相对较低时,也能够获得所需的增压压力。这能够抑制电马达11的发热,同时减小电马达11的尺寸。
[0038] 因为空气通过第一压缩机叶轮4和第二压缩机叶轮5而两级压缩,因此能够在不将第一压缩机叶轮4的增压比设置为较高的情况下获得所需的增压压力。这能够降低由第一压缩机叶轮4压缩的空气的温度升高以及有效地冷却电马达11。
[0039] 因为涡轮增压器1构造成不仅执行两级空气压缩,还允许电马达11补偿涡轮叶轮3的不充分旋转,因此能够构造紧凑的涡轮增压器系统,该涡轮增压器系统能够从低旋转状态有效地获得良好增压效率,甚至在使用相对较小尺寸的电马达11的情况下。而且,通过涡轮增压器1的相对低旋转操作,扭矩和离心力设置成相对较小。因此,甚至在相对简单的低成本结构情况下,轴承29(轴部件6可旋转地支撑在该轴承29上)和电马达11均能够保证足够强度。