人神经胶质细胞转化成用于大脑和脊髓修复的神经细胞的化学重编程转让专利

申请号 : CN201580072984.7

文献号 : CN107208045B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陈功吴冈义张磊殷久超叶怡君马宁馨格瑞斯·李

申请人 : 宾州研究基金会

摘要 :

本发明提供了将人神经胶质细胞重编程为人神经元的方法和组合物。使用能够通过转化生长因子β(TGF‑β)、骨形态发生蛋白(BMP)、糖原合成酶激酶3(GSK‑3)和γ‑分泌酶/Notch通路改变信号传导的化合物的组合实现重编程。使用选自thiazovivin、LDN193189、SB431542、TTNPB、CHIR99021、DAPT、VPA、SAG、2,6,9‑三元取代嘌呤的组中的三种或四种化合物的组来演示重编程。使用LDN193189/CHIR99021/DAPT组、B431542/CHIR99021/DAPT组、LDN193189/DAPT/SB431542组、LDN193189/CHIR99021/SB431542组、SB431542/CHIR99021/DAPT的三种药物组合来演示重编程。还提供使用所述化合物的功能类似物以及含有药物组合的药物制剂的重编程。

权利要求 :

1.化合物的组合在制备用于重编程个体大脑中人神经胶质细胞的药物中的用途,其中所述用途包括使所述人神经胶质细胞与共同抑制所述胶质细胞中转化生长因子β(TGF-β)、骨形态发生蛋白(BMP)、糖原合成酶激酶3(GSK-3)和γ-分泌酶/Notch通路的化合物接触,其中所述化合物的组合为以下组合的至少一种:i)LDN193189/CHIR99021/N-[(3,5-二氟苯基)乙酰基]-L-丙氨酰基-2-苯基]甘氨酸-1,1-二甲基乙基酯(DAPT)、ii)SB431542/CHIR99021/DAPT、iii)LDN193189/DAPT/SB431542或iv)LDN193189/CHIR99021/SB431542,其中所施用的化合物是无细胞且无病毒的,并且其中所述施用足以使得至少一些所述神经胶质细胞被重编程为神经元。

2.化合物的组合在制备用于产生个体大脑中神经元的药物中的用途,其中所述用途包括向所述个体施用所述化合物的组合,其中所述化合物的组合包含选自由LDN193189、SB431542、CHIR99021和N-[(3,5-二氟苯基)乙酰基]-L-丙氨酰基-2-苯基]甘氨酸-1,1-二甲基乙基酯(DAPT)组成的组中的至少三种化合物。

3.根据权利要求2所述的用途,其中所述化合物的组合包括LDN193189、SB431542、CHIR99021和DAPT的每一个。

4.根据权利要求1所述的用途,其中所述化合物的组合包括LDN193189、SB431542、CHIR99021中的一种,其中所述用途还包括使所述人神经胶质细胞与DAPT接触。

说明书 :

人神经胶质细胞转化成用于大脑和脊髓修复的神经细胞的化

学重编程

[0001] 相关申请的交叉引用
[0002] 本申请要求2014年11月25日提交的申请号为62/084,365的美国临时申请和2015年9月9日提交的申请号为62/215828的美国临时申请的优先权,其各自的公开内容通过引用并入本文。
[0003] 关于联邦政府资助研究的声明
[0004] 本发明是在根据由美国国立卫生研究院授予的编号为MH083911和AG045656的合同在政府支持下完成的。政府对本发明有一定的权利。

技术领域

[0005] 本公开大体上涉及与神经胶质瘢痕组织相关的病症的预防和治疗,更具体地涉及包含用于将内部神经胶质细胞转化为用于脑和脊髓修复的功能性神经元的小分子的组合物和方法。

背景技术

[0006] 神经退行性疾病中或神经损伤后功能性神经元的再生仍然是神经修复领域的主要挑战。目前的努力主要集中在使用源自胚胎干细胞或诱导多能干细胞的外源细胞的细胞替代疗法(Buhnemann等人,2006;Emborg等人,2013;Nagai等人,2010;Nakamura和Okano,2013;Oki等人,2012;Sahni和Kessler,2010)。尽管潜力很大,但这种细胞移植方法在临床应用中面临重大障碍,如潜在免疫注射、肿瘤发生和分化不确定性(Lee等人,2013;Liu等人,2013b;Lukovic等人,2014)。此外,虽然以前的研究已经表明,星形胶质细胞可以在体外(Guo等人,2014;Heinrich等人,2010)和体内(Grande等人,2013;Torper等人,2013;Guo等人,2014)直接转化成功能性神经元,并且在刺伤的小鼠脑(Niu等人,2013)或脊髓(Su等人,
2014)中星形胶质细胞可以转化成神经母细胞并继而分化为神经元细胞,这些方法具有需要在脑内病毒感染的显著缺点。因此,这些以前的方法需要执行复杂的脑外科手术、颅内注射病毒颗粒、并且伴随这些步骤的相当大的风险。因此,对于在中枢神经系统或周围神经系统中再生功能性神经元而不需要将外源重编程的细胞或病毒构建体引入人受试者的新组合物和方法,仍然存在不间断的并且未满足的需求。

发明内容

[0007] 本公开提供了将神经胶质细胞化学重编程为神经元的组合物和方法。本公开与以前的方法有很大不同,至少部分是因为它涉及使用化学合成的化合物对神经胶质细胞进行重新编程。因此,它不包括将外源基因、病毒载体或工程化的细胞引入患者的相关的风险,也不需要操纵培养中的干细胞或其它多能细胞或体细胞如成纤维细胞以将它们分化或反向分化成神经元或以其它方式制备用于向受试者施用的细胞。相反地,本公开包括将已经存在于个体的神经系统中的神经胶质细胞重编程,从而利用以下更充分描述的小分子的组合将神经胶质细胞转化为神经元。期望所述组合物和方法提供方便且安全的方法来治疗涉及例如反应性神经胶质细胞或神经胶质瘢痕的各种神经损伤或神经退行性疾病。本领域技术人员将认识到,神经胶质瘢痕可以由本领域已知的许多原因引起,并且其通常涉及包括脑和脊髓在内的中枢神经系统和外周神经系统中的损伤或疾病过程之后的星形胶质细胞增生。活性星形胶质细胞是神经胶质瘢痕的主要细胞组分,其次是NG2神经胶质细胞和小神经胶质细胞。因此,在实施方案中,本公开包括通过对星形胶质细胞进行化学诱导性重编程以将星形胶质细胞转化成神经元。但是也可以采用类似的化学重编程方法将NG2神经胶质细胞或小神经胶质细胞或围绕脑血管的其它细胞类型转化为神经元。
[0008] 从本公开呈现的描述、附图和数据可以显而易见地看出,我们已经开发出体外和体内数据,其证明预先存在的、经过分化的神经胶质细胞重编程为神经元。特别地,我们的数据表明,如本文所述的小分子的顺序应用导致大部分人星形胶质细胞(~70%)在体外重新编程为神经元细胞。此外,这些小分子-重编程的人神经元可以在培养中存活超过五个月,并显示出健壮的突触活动。此外,将人星形胶质细胞转化的神经元注入小鼠脑中表明,人神经元可以整合到局部脑回路中。因此,本公开中呈现的数据共同表明,现在可以实现以体内方式在损伤或患病大脑中将人星形胶质细胞化学重编程为功能性神经元,而不需要引入个体培养的细胞或病毒或其它表达载体或外源基因,这是一种从未有过的方法。
[0009] 本公开包括证明将共同作用于信号包括但不限于转化生长因子β(TGF-β)、骨形态发生蛋白(BMP)、糖原合成酶激酶3(GSK-3)和γ-分泌酶/Notch通路的化合物结合,可将神经胶质细胞重编程为神经元。大体上,本公开包括向有需要的个体施用能够抑制这些通路的化合物。在一个实施方案中,本公开包括施用化合物的组合,这些化合物选自由thiazovivin、LDN193189、SB431542、TTNPB、CHIR99021、DAPT、VPA、SAG、2,6,9-三元取代嘌呤或其药学上可接受的盐或这些化合物的类似物或具有相同或相似的功能效果使得它们的施用将神经胶质细胞重编程为神经元的化合物组成的组的化合物的组合和前述化合物的多种组合。在一种方式中,施用于个体的化合物包含选自由核心的四种化合物的至少三种化合物中(其不试图被任何特定理论约束),被认为是实现重编程所需要的。这些化合物是SB431542、LDN193189、CHIR99021和DAPT,其也可以使用如下所述的功能类似物取代。在一种方式中,本公开包括使用任意以下组合中:i)LDN193189/CHIR99021/DAP,ii)SB431542/CHIR99021/DAPT;iii)LDN193189/DAPT/SB431542,和iv)LDN193189/CHIR99021/SB431542。在一个实施方案中,使用SB431542/CHIR99021/DAPT的三种药物组合物。
[0010] 所述组合物可以以任何组合施用于有需要的个体,并且可以包括至少两种化合物的组合的同时给药,并且可以包括任何化合物和组合的顺序给药,下面将更全面的描述具体的实施方案。在某些方式中,将包含LDN193189和SB431542的组合物引入个体,其可以作为初始给药进行,并且将包含CHIR99021和DAPT的组合物引入个体,其可以在后续的给药中进行。
[0011] 可以采用任何可接受的途径和制剂施用组合物,包括但不一定限于口服、鼻内、静脉内和颅内方法。在一个方面,以口服方式施用组合物。
[0012] 在某些实施方案中,本公开的方法用于治疗目的,以诱导由于包含神经元缺失和/或胶质瘢痕形成的病症而需要神经元的个体中胶质细胞重编程为神经元。在某些实施方案中,所述个体是由于中风、缺氧或其他脑外伤的缺血性脑损伤,或已被诊断患有或怀疑患有阿尔茨海默病或其它神经退行性病症而需要所产生的神经元。
[0013] 在另一方面,本公开包括包含thiazovivin、LDN193189、SB431542、TTNPB、CHIR99021、DAPT、VPA、SAG、2,6,9-三元取代嘌呤中至少两种的组合的药物组合物,其中该组合物用于将胶质细胞重编程为神经元。还考虑了包含这些化合物的盐和类似物以及功能相关化合物(即功能类似物)的药物组合物。在实施方案中,本公开的药物组合物包括SB431542、LDN193189、CHIR99021和DAPT,和/或其药学上可接受的盐中的至少两种。在实施方案中,所述药物组合物包括SB431542、LDN193189、CHIR99021和DAPT中的所有,并且还可以包括另外的化合物。在实施方案中,本公开包括含有作为用于将神经胶质细胞重编程为神经元的活性剂的组合物,其中一个组:i)LDN193189/CHIR99021/DAPT、ii)SB431542/CHIR99021/DAPT、iii)LDN193189/DAPT/SB431542、以及iv)LDN193189/CHIR99021/SB-431542。在一个实施方案中,包括前述组中的任何三个成员。在一个实施方案中,组合物包含SB431542/CHIR99021/DAPT的三种药物组合或由SB431542/CHIR99021/DAPT的三种药物组合组成。
[0014] 在另一方面,本公开包括包含包装和至少一个容器的制品,所述容器包含药物组合物,所述药物组合物包含选自由thiazovivin、LDN193189、SB431542、TTNPB、CHIR99021、DAPT、VPA、SAG、2,6,9-三元取代嘌呤及其药学上可接受的盐组成的组中的至少三种化合物的组合,所述包装包含印刷信息,所述印刷信息提供所述药物组合物用于治疗病症的指示,其中所述病症与缺乏功能性神经元有关。

附图说明

[0015] 图1、顺序暴露于定义的小分子组将人星形胶质细胞转化为神经元细胞。(A)我们使用小分子混合物将培养的人星形胶质细胞转化为神经元的策略的示意图。注意到在不同的重编程阶段使用不同的小分子子集。(B、C)对人星形胶质细胞培养物(HA1800,ScienCell)的定量分析。我们的人星形胶质细胞培养物中的大部分细胞对于星形胶质细胞标记物GFAP(79.3±4.9%)、星形胶质细胞谷氨酸转运蛋白GLT-1(82.5±4.3%)和较小程度的S100β(39.3±1.8%)呈免疫阳性。没有细胞对神经元标记物NeuN、MAP2或双皮层素(DCX)呈免疫阳性。HuNu,用于人类细胞的人细胞核标记物。N=3批次。(D)无小分子处理的对照人星形胶质细胞培养物几乎没有对神经元标记物DCX(绿色)、β-Ⅲ微管蛋白(Tuj1,红色)或MAP2(青色)呈免疫阳性的细胞。(E)将人星形胶质细胞顺序暴露于小分子产生大量的神经元细胞,这些细胞对DCX(绿色)、Tuj1(红色)和MAP2(青色)呈免疫阳性。MCM代表主转化分子,包括共同用于重编程的9个小分子。在初次小分子处理后14天进行分析。(F)在初次小分子处理后30天,人星形胶质细胞转化的神经元发育出广泛的树突(MAP2,绿色),并且对成熟的神经元标记物NeuN(红色)呈免疫阳性。(G)小分子转化的人神经元在培养中存活4个月,并显示出健壮的树突状树(MAP2,绿色)以及广泛的轴突(SMI312,红色)。(H)用GFAP::GFP逆转录病毒示踪的星形胶质细胞谱系(Astroglial lineage)显示GFP+细胞在小分子处理后对于神经元标记物NeuN(红色)呈免疫阳性。N=5批次。(I和J)在暴露于MCM(67.1±
0.8%,Tuj1+神经元/DAPI标记的总细胞,n=4批次)8天后小分子处理达到高转化率。(K)将人中脑星形胶质细胞化学重编程为神经元。在对人中脑星形胶质细胞(ScienCell)进行初次小分子处理后1个月,大多数细胞对于神经元标记物NeuN(红色)和MAP2(绿色)呈免疫阳性。(L)在神经元分化培养基中1个月的培养下,无小分子处理的对照人中脑星形胶质细胞培养物几乎没有对NeuN(红色)或MAP2(绿色)呈免疫阳性的细胞。(M)定量分析显示出小分子处理后1个月(199.7±9.2每40x视野)由人中脑星形胶质细胞转化的大量NeuN-阳性神经元,而对照组只有少量NeuN+细胞(5.6±1.4每40x视野)。N=4批次。比例尺:小图B为50μm;
其它图像为20μm。***P<0.001,T检验(Student’s t test)。数据表示为平均值±SEM。
[0016] 图2、由小分子处理诱导的人星形胶质细胞转化的神经元的功能分析。(A)长期存活的小分子诱导的人神经元(培养5个月)和大量沿着树突(MAP2,Green)的突触点(SV2,红色)。比例尺:20μm。(B-D)显示了从由小分子诱导的1月龄(B)和2月龄(C)的人神经元记录到的Na+和K+电流的代表性踪迹。小图D显示了TTX(2μM)对Na+电流的阻断。(E)对通过小分子从人星形胶质细胞转化的2周龄至3月龄的神经元中的Na+和K+电流峰值的定量分析。(F)初次药物处理后75天小分子诱导的人神经元中记录到的重复动作电位的代表性踪迹。(G和H)显示了在2月龄的转化的人神经元中自发性突触活动的代表性踪迹。钳制电位=-70mV。(H)来自(G)的扩展的踪迹。(I)当钳制电位保持在0mV(2月龄)时,在人星形胶质细胞转化的神经元中显示的抑制性GABA能活动。这种活动被GABAA受体拮抗剂荷包牡丹碱(bicuculline)(BIC,10μM)阻断。(J-K)显示了3月龄的小分子诱导的人神经元中自发性爆发活动(burst activities)的代表性踪迹。HP=-70mV。(K)是(J)中爆发的扩展视图。(L)爆发活动被TTX(2μM)阻断。谷氨酸受体拮抗剂DNQX(10μM)阻断了的大多数在-70mV的突触活动,暗示它们是谷氨酸能的活动。(M)双重全细胞记录说明小分子转化的人神经元形成了强大的突触网络并且同步激发(fired)。(N)Ca2+比值成像进一步说明了小分子转化的人神经元高度连通并表现出同步活动。数据表示为平均值±SEM。
[0017] 图3、由小分子诱导的人星形胶质细胞转化的神经元的表征。(A-C)前-后神经元标记物的免疫染色显示,小分子转化的人神经元对前脑标记物FoxG1(A)呈阳性,但对后脑和脊髓标记物HOX B4(B)和HOX C9(C)呈阴性。(D-F)皮层神经元标记物的免疫染色显示,小分子诱导的人神经元对表层标记物Cux1(D)呈阴性,对深层标记物Ctip2(E)和Otx1(F)呈阳性。(G-H)小分子转化的人神经元对于一般的皮层神经元标记物Tbr1(G)和海马神经元标记物Prox1(H)也呈免疫阳性。(I)对小分子诱导人神经元的定量分析(FoxG1,97.1±1.1%,n=3批次;Cux1,3.1±1.9%,n=4批次;Ctip2,71.4±3%,n=4批次;Otx1,87.4±3.2%,n=3批次;Tbr1,86.4±3.4%,n=3批次;Prox1,73.4±4.4%,n=4批次)。比例尺:20μm。(J)MCM转化的人神经元对VGluT1呈免疫阳性。(K)小部分的MCM转化的人神经元是GAD67阳性的。(L-N)MCM转化的神经元对胆碱能神经元标记物囊泡乙酰胆碱转运体(vesicular acetylcholine transporter,VAChT)(L)、多巴胺能神经元标记物酪氨酸羟化酶(TH)(M)或脊髓运动神经元标记物Isl1(N)呈免疫阴性。(O)对小分子转化的人神经元的定量分析(VGluT1,88.3±4%,n=4批次;GAD67,8.2±1.5%,n=4批次)。比例尺:20μm。数据表示为平均值±SEM。
[0018] 图4、在使人星形胶质细胞化学重编程为神经元期间的转录和表观遗传调节。(A-B)PCR阵列显示出小分子处理后第4天(A)或第8天(B)神经转录因子(NGN1/2、NEUROD1和ASCL1)和未成熟神经元基因DCX的大量转录激活。注意到D8时DCX与对照相比增加超过2000倍。提供了PCR阵列测定中显示出显著变化的基因(P<0.05,Mann-Whitney t检验)。(C-F)通过实时定量PCR分析显示了在时间进程中的转录变化。神经转录因子NGN2(C)和NEUROD1(D)分别在D4和D6显示转录峰值;而星形胶质细胞基因GFAP(E)和ALDH1L1(F)显著下调。*P<0.05,**P<0.01,***P<0.001;双因素方差分析,随后是Dunnett检验(Dunnett’s test)。N=
3批次。(G-I)化学重编程期间GFAP启动子和转录起始位点的表观遗传调控。MeDIP-seq显示出小分子处理8天后GFAP启动子区域(G,盒区域)的甲基化显著增加,这被随后的BS-seq(亚硫酸氢盐测序)(H)证实。注意到超甲基化位点位于两个重要的转录因子结合位点(STAT3和AP1)的侧翼区,这会显著抑制GFAP的转录。BS-seq还显示GFAP转录起始位点(TSS)和5'UTR调节区(I)的甲基化水平显著增加,进一步表明通过DNA甲基化抑制GFAP转录。(J-K)MeDIP-seq和BS-seq显示出在神经元基因NEFM(神经丝M)的启动子区域的甲基化显著降低,表明在使人星形胶质细胞化学重编程为神经元期间神经元基因的转录激活。(L-M)CHIP-qPCR显示出小分子处理后可能由HDAC抑制剂VPA引起的NGN2启动子区域中组蛋白乙酰化的显著增加。(N-O)NGN2启动子区域(N)中H3K4的甲基化水平显著升高,而NGN2转录起始位点的H3K27甲基化显著降低(O),表明通过组蛋白修饰的NGN2的表观遗传活化。数据表示为平均值±SEM。
[0019] 图5、化学重编程期间神经转录因子的蛋白质表达水平的增加。(A-C)代表性图像说明了小分子处理不同天数内源性神经转录因子Ascl1(A)、Ngn2(B)和NeuroD1(C)逐渐活化。(D-E)代表性图像显示出从D0到D10的转化过程中神经元信号DCX(D)和NeuN(E)逐渐增加。(F)代表性图像显示出从D0到D10星形胶质细胞标记物GFAP减少。比例尺:20μm。(G-I)对Ascl1(G)、Ngn2(H)和NeuroD1(I)的蛋白表达水平的定量分析。注意到Ascl1在第2天显著增加3倍,而Ngn2在第4天达到峰值,NeuroD1在第6天达到峰值。N=3批次。(J)量化数据显示从第6天到第10天NeuN显著增加。N=3批次。(K)量化数据显示从D0到D10GFAP显著降低。N=3批次。数据表示为平均值±SEM。
[0020] 图6、对星形胶质细胞-神经元重编程期间每个单独的小分子的重要作用的评估。(A)用1%DMSO处理的人星形胶质细胞作为对照。NeuN,绿色;MAP2,红色。(B)9个小分子的定义组合诱导产生大量神经元(初次小分子处理后14天,与以下去除实验相同)。(C-F)从9个小分子库中单独去除DAPT(C)、CHIR99021(D)、SB431542(E)或LDN193189(F)显著减少转化的神经元数目。(G)一起去除音猬因子激动剂(sonic hedgehog agonists)SAG和Purmo略微减少转化的神经元数量。(H)去除VPA也略微降低神经元数量。(I-J)去除Tzv(I)或TTNPB(J)不影响神经元转化。比例尺:20μm。(K)定量分析显示了DAPT是最有效的重编程因子,其次是CHIR99021、SB431542和LDN193189。*P<0.05;**P<0.01;***P<0.001;单因素方差分析,然后是Sidak的多重比较检验。N=3批次。数据表示为平均值±SEM。
[0021] 图7、小分子转化的人神经元在小鼠脑中的体内存活和整合。(A)示意图显示了在将小分子转化的人神经元移植到出生后第1天小鼠脑中。(B)在细胞注射后7天(7DPI),在侧脑室周围鉴定出GFP阳性细胞。许多GFP阳性细胞对DCX(红色)也呈阳性,并且所有的GFP阳性细胞对人细胞核(HuNu,Blue)都呈免疫阳性,表明它们的人细胞特性。N=6只小鼠。(C)在11DPI时,一些GFP阳性细胞对MAP2(红色)呈免疫阳性,表明人神经元以体内方式在小鼠脑中的存活和生长。N=6只小鼠。(D)在11DPI时,对NeuN(红色)和HuNu(青色)呈免疫阳性的一些GFP阳性的人神经元迁移到相邻的纹状体区域并延伸出长的突起。(E)由NeuN(红色)和HuNu(蓝色)标记的人神经元在小鼠脑内存活超过1个月,并被小鼠神经元(NeuN阳性但HuNu阴性)包围。N=2只小鼠。(F)GFP阳性的人神经元受周围神经元的神经支配,如沿着GFP阳性神经突(插图)的许多突触点(SV2,红色)所示,表明被移植的人神经元突触融合到局部神经回路中。N=2只小鼠。比例尺:20μm。
[0022] 图8、培养的人皮层星形胶质细胞的表征。(A)在神经胶质培养基(GM,10%FBS)或N2培养基(用于重编程,无FBS)中培养的并且用Musashi、Nestin和Sox2免疫染色的人皮层星形细胞(HA1800,Sciencell)。注意到在两种培养基中,没有神经祖细胞。(B)对神经干细胞标记物的定量分析显示出与人神经祖细胞(NPC)相比培养的人星形胶质细胞中Musashi、巢蛋白(Nestin)和Sox2的表达水平较低。***P<0.0001,单因素方差分析,然后是Dunnett检验。N=3批次。(C-D)人星形胶质细胞(HA1800,Sciencell)在补充有BDNF、NT3和NGF的神经元分化培养基(NDM)中培养1个月,以确保神经分化,如果在星形胶质细胞培养物中有任何神经干细胞。定量分析显示,大多数细胞对于星形胶质细胞标记物S100β(74.7±1.5%)、GFAP(83.6±1.2%)、谷氨酸合成酶(GS)(94.3±0.7%)和GLT-1(91.4±1.5%)均呈免疫阳性。少量细胞对DCX(5.18±0.67)和Tuj1(8.98±0.75%)呈染色阳性,但没有对NeuN和NG2呈阳性的细胞。N=4批次,比例尺=20μm。(E-H)培养的人星形胶质细胞(HA1800)的功能分析。电生理记录显示大的K+电流,但没有Na+电流(E),相邻星形胶质细胞之间的间隙交界性联结(F-G)和谷氨酸(500M)转运体电流(H)。(F)显示出记录后局部星形胶质细胞域之间的染料联结。数据表示为平均值±SEM。
[0023] 图9、在小分子处理期间随时间推移对星形胶质细胞-神经元转化过程进行成像。(A)由表达GFP(绿色)的CAG::GFP逆转录病毒标记的人星形胶质细胞(HA)在使用1%DMSO处理作为对照在D8时保持星形胶质细胞形态。每日用尼康2000荧光显微镜成像。我们在这个随时间推移对活细胞进行成像的实验中使用CAG::GFP逆转录病毒代替GFAP::GFP逆转录病毒,因为GFAP启动子是弱启动子,因此GFAP::GFP感染的细胞中的GFP信号对于活细胞成像来说太弱。(B)代表性图片显示出培养21天后,对照组中GFP+细胞对星形胶质细胞标记物GFAP(红色)呈免疫阳性。(C)在小分子处理前一天至小分子处理后10天中监测两个GFP标记的人星形胶质细胞。从D0星形胶质细胞到D9神经元样细胞有明显的细胞形态转变。(D)随时间推移进行成像后,再D21将细胞固定,用神经元标记物NeuN和Tuj1进行免疫染色。小分子处理后的GFP标记的细胞(绿色,箭头)对NeuN(红色)和Tuj1(青色)呈免疫阳性。比例尺=20μm。(E-G)用GFAP::GFP逆转录病毒感染人星形胶质细胞以进行谱系示踪。GFAP::GFP感染的细胞均为GFAP+(E,红色)。不经过小分子处理,培养18天后GFP+细胞仍然是GFAP+星形胶质细胞(F,红色)没有检测到神经元(G)。N=3批次。比例尺=10μm。对小分子处理的组见图8H。
(H-J)感染LCN2::GFP逆转录病毒的人星形胶质细胞对GFAP(H,红色)和LCN2(H,青色)呈免疫阳性。不经过小分子处理,培养18天后,GFP+细胞保留星形胶质细胞形态和对GFAP(I,红色)免疫阳性。相比之下,小分子处理后,GFP+细胞对NeuN(J,红色)呈免疫阳性。N=3批次。
比例尺=10μm。
[0024] 图10、人星形胶质细胞从不同来源到神经元的转化。(A)人中脑星形胶质细胞(HA中脑,Sciencell)的表征,其对星形胶质细胞标记物GFAP、S100β、GS和Glt1呈免疫阳性,但显示出神经干细胞标记物Sox2和巢蛋白的低表达水平。(B)不经过小分子处理的对照人中脑星形胶质细胞培养物几乎没有对神经元标记物DCX(绿色)或β-Ⅲ微管蛋白(Tuj1,红色)呈免疫阳性的细胞。(C)将人中脑星形胶质细胞顺序暴露于小分子产生了大量的对DCX(绿色)和Tuj1(红色)呈免疫阳性的神经元细胞。在初次小分子处理后16天分析。(D-E)在不经过小分子处理(D)或经过小分子处理(E)的人中脑星形胶质细胞的1月龄培养物中下轴突标记物SMI312(绿色)的免疫染色图像。(F)从人中脑星形胶质细胞转化的长期存活的人神经元。大量突触点(SV2,红色)沿着树突(MAP2,绿色)分布在NeuN阳性(青色)神经元中。(G-H)使用相同的小分子方案也成功地将来自不同来源(Gibco)的人脑星形胶质细胞重编程为神经元,效率为41.1±3.6%。N=4批次。(I)免疫染色显示了从Gibco人星形胶质细胞转化的2月龄神经元中突触蛋白(红色)和MAP2(绿色)信号。因此,使用相同的小分子策略可以使不同来源的人脑星形胶质细胞成功地转化为神经元。小图A和I的比例尺为10μm,其余为20μm。
[0025] 图11、人星形胶质细胞不经过干细胞阶段直接转化成神经元。(A-C)代表性图像显示出与人NPC培养物相比,在小分子处理的不同天数,低表达水平的神经干细胞标记物Sox2(A,红色)、巢蛋白(B,绿色)和Pax6(绿色)。(D)代表性图像显示出如细胞增殖标记物Ki67(红色)所示,在重新编程期间无显著细胞扩增。(E-F)BrdU确定在小分子介导重编程前后的星形胶质细胞转化的神经元的出生日期。BrdU在小分子处理前1天(E)或小分子处理后10天(F)施用于培养基中。在第30天固定细胞。(E)中的箭头指向BrdU和NeuN共定位的细胞。(G-I)对化学重编程期间Sox2(G)、巢蛋白(H)和Pax6(I)的荧光强度的定量分析,将其归一化为D0时的强度。与D0相比,Sox2表达水平在D4-D10略有增加,但远低于NPC细胞(G)。另一方面,与NPC细胞相比,巢蛋白表达水平非常低(H)。类似地,与NPC细胞(I)相比,Pax6+细胞也非常少。(J)对Ki67+细胞进行定量分析,以评估化学重编程期间的细胞增殖率。与D0相比,小分子处理后D2-D6细胞增殖明显减少。人星形胶质细胞的总体增殖率明显低于NPC细胞。在存在小分子的情况下降低的增殖速率表明在化学重编程期间不发生细胞扩增。(K)对E-F中BrdU标记的神经元的定量分析。当在小分子处理前加入BrdU时,大量细胞显示BrdU和NeuN的共定位(77.3±3.8%)。如果在小分子处理后添加BrdU,则几乎没有与BrdU共定位的NeuN+细胞(D10至D30,1.75±0.73%),表明在小分子存在下大部分转化成神经元。N=3批次。比例尺=20μm。**P<0.001;***P<0.0001;单因素方差分析,随后是Dunnett的多重比较检验。数据表示为平均值±SEM。
[0026] 图12、小分子介导的重编程中的信号传导通路。(A-B)PCR阵列表明不经过小分子处理但用1%DMSO处理的对照人星形胶质细胞培养物(作为溶剂对照)在第4天(A)或第8天(B)没有显著的基因表达变化。(C-F)在对照人星形胶质细胞培养物(1%DMSO)中,实时定量PCR还显示神经转录因子NGN2(C)和NEUROD1(D)或神经胶质基因GFAP(E)和ALDH1L1(F)的转录变化极小。N=3批次。(G)代表性图像显示出在小分子处理2天后细胞核中磷酸化SMAD1/5/9(绿色)水平降低。p-SMAD1/5/9的荧光强度的定量分析表明BMP信号传导通路被抑制。
(H)代表性图像和定量分析说明了初次小分子处理后D6Notch细胞内结构域(NICD)(绿色)水平降低,表明Notch信号传导通路被抑制。(I)代表性图像和定量分析说明了用小分子处理6天后磷酸化GSK3β(绿色)水平升高,表明GSK3β失活。**P<0.001;***P<0.0001;单因素方差分析,随后是Dunnett的多重比较检验。N=3批次。比例尺=10μm。数据表示为平均值±SEM。
[0027] 图13、在不经过小分子处理的对照人星形胶质细胞中,内源性神经转录因子没有显著变化。(A-C)免疫染色显示出对照人星形胶质细胞(1%DMSO)中内源性神经转录因子Ascl1(A)、Ngn2(B)和NeuroD1(C)的蛋白表达水平非常低。(D)NeuN染色显示出对照条件下几乎没有神经元。(E)代表性图像显示出对照条件下显示GFAP(红色)的恒定表达。(F-H)D2-D10培养期间Ascl1(F)、Ngn2(G)和NeuroD1(H)的荧光强度的定量分析,其归一化为D0时的强度。(I)定量分析显示出D0到D10对照人星形胶质细胞培养物中几乎没有NeuN阳性细胞。(J)定量分析显示出对照人星形胶质细胞培养物中GFAP表达从D0至D10仍然很高。N=3批次。比例尺=20μm。数据表示为平均值±SEM。
[0028] 图14、注射到小鼠皮层中的小分子在体内促进小鼠皮层星形胶质细胞转向神经干细胞。(A)单次注射(dpi)包括SB431542  0.1nmol、LDN193189  0.01nmol、CHIR990210.03nmol、DAPT 0.1nmol、SAG 0.01nmol和TTNPB 0.01nmol(以2μl的总体积混合)的小分子后6天小鼠皮层星形胶质细胞(GFAP,红色)表现出显著的形态学变化并表达高水平的巢蛋白(绿色)。在注射位点周围观察到一些表达DCX(青色)的细胞。N=4只动物。(B)定量分析显示体内小分子处理的小鼠星形胶质细胞中巢蛋白表达增加(Student's t检验,***P<0.0001)。(C)分离出小分子处理的皮层组织并在体外培养。与用含有6%DMSO的PBS处理的对照皮层组织相比,有许多更多和更大的原代神经球。(D-E)定量分析显示出小分子处理的皮层组织产生更多神经球(D)并且具有更大尺寸(E)。Student's t检验,***P<
0.0001。(F)将原代神经球传代培养并作为单个细胞种板。高度增殖性单个细胞持续分裂以在种板后3天在悬浮培养中形成次级神经球。(G-H)定量显示出在小分子处理的组中形成的具有较大尺寸(H)的更多次级神经球(G)。Student's t检验,**P<0.001,***P<0.0001。(I)来自次级神经球的细胞以单层培养,并对神经干细胞标记物Sox2(绿色)和巢蛋白(红色)呈免疫阳性。(J)来自次级神经球的细胞在神经元分化培养基中分化为神经元细胞(Tuj1,绿色),而在神经胶质培养基中分化为少突胶质细胞(CNPase,红色)或星形胶质细胞(GFAP,绿色)。N=3批次。比例尺:A、I、J=20μm。C、F=200μm。数据表示为平均值±SEM。
[0029] 图15、数据显示总共4个小分子可以成功地将人神经胶质细胞重新编程为神经元。(A)将核心药物,即SB431542 5μM、LDN193189 0.25μM、CHIR99021 1.5μM、DAPT 5μM,加入人星形胶质细胞细胞系HA1800中6天。每两天更换一次含有药物的培养基。药物加入后14天,针对神经元标记物NeuN对细胞进行免疫染色,显示许多人神经胶质细胞转化为神经元。(B-C)SB431542被其功能类似物Repsox 1μM(B)或A-8301 0.25μM(C)替代。(D)对四组中NeuN呈免疫阳性的细胞进行定量。将不同的批次归一化为核心组。SB替换为Repsox组的转化率为核心药物组的88.5±5.0%,而SB替换为A-8301组的转化率为核心药物组的86.8±5.0%。
[0030] 图16、显示核心药物功效的数据。(A)将核心药物,即SB431542 5μM、LDN193189 0.25μM、CHIR99021 1.5μM、DAPT 5μM加入人星形胶质细胞细胞系HA1800中6天。每两天更换一次含有药物的培养基。药物加入后14天,针对神经元标记物NeuN对细胞进行免疫染色。
(B-C)LDN193189被其功能类似物Dorsomorphin 1μM(B)和DMH1 1.5μM(C)替代。(D)对四组中NeuN呈免疫阳性的细胞进行定量。将不同的批次归一化为核心组。LDN193189替换为Dorsomorphin组与核心组的转化效率相似,而LDN193189替换为DMH1组的转化率为核心组的86.8±4.9%。
[0031] 图17、显示核心药物功效的数据。(A)将核心药物,即SB431542 5μM、LDN193189 0.25μM、CHIR99021 1.5μM、DAPT 5μM加入人星形胶质细胞细胞系HA1800中6天。每两天更换一次含有药物的培养基。药物加入后14天,针对神经元标记物NeuN对细胞进行免疫染色。
(B-C)CHIR99021被其功能类似物ARA014418 6μM(B)或SB216763 1μM(C)替代。(D)对四组中NeuN呈免疫阳性的细胞进行定量。将不同的批次归一化为核心组。CHIR替换为ARA014418组转化率为核心组的56.9±4.3,而CHIR替换为SB216763的转化率为核心组的76.07±4.2%。
[0032] 图18、显示核心药物功效的数据。A)将核心药物,即SB431542 5μM、LDN193189 0.25μM、CHIR99021 1.5μM、DAPT 5μM加入人星形细胞细胞系HA1800中6天。每两天更换一次含有药物的培养基。药物加入后14天,针对神经元标记物NeuN对细胞进行免疫染色。(B-C)DAPT被其功能类似物BMS906024 2μM(B)和RO4929097 0.5μM(C)替代。(D)对四组中NeuN呈免疫阳性的细胞进行定量。将不同的批次被归一化为核心组。DAPT替换为RO4929097组实现了与核心组相似的转化率,而DAPT替换为BMS906024组的转化率为核心组的85.0±6.1%。
[0033] 图19、数据显示SB431542、LDN193189、CHIR99021和DAPT中3种药物的任意组合可以将人神经胶质细胞重编程为神经元。药物加入6天,并在药物处理后14天针对神经元标记物NeuN进行免疫染色。3种药物组合SB431542/CHIR99021/DAPT似乎比SB431542/LDN193189/CHIR99021更有效。

具体实施方式

[0034] 本公开包括设计为将人神经胶质细胞转化为功能性神经元的组合物和方法。在实施方案中,本公开包括但不一定限于的神经胶质瘢痕向神经组织的逆转,预期其可用于各种疗法,其非限制性实施方案包括脑和脊髓修复。该方法通常包括向有需要的个体施用有效量的包括thiazovivin、LDN193189、SB431542、TTNPB、CHIR99021、DAPT、VPA、SAG和2,6,9-三元取代嘌呤和其组合或选自由thiazovivin、LDN193189、SB431542、TTNPB、CHIR99021、DAPT、VPA、SAG和2,6,9-三元取代嘌呤和其组合组成的组的化合物的组合,使得个体中的神经胶质细胞被转化成神经元。在实施方案中,使用可选的化合物,其中这些化合物具有与上述化合物相同或相似的作用,并且其中组合的施用导致神经胶质细胞转化为神经元。
[0035] 在实施方案中,本公开预期广泛适用于需要神经元产生的任何人类受试者的治疗。神经元产生的需要增长是影响神经元功能和/或减少个体中功能性神经元数量的各种病症、紊乱或损伤中任何一种的结果。因此,本公开涉及预防和/或治疗包括但不一定限于缺血性脑损伤,例如由中风、缺氧或其它脑创伤引起的或由胶质瘢痕形成或神经退行性疾病引起的的病症。在实施方案中,本公开涉及治疗神经退行性紊乱,包括但不限于阿尔茨海默病或表现出痴呆的其它病症,或慢性创伤性脑病(CTE)例如具有急性或复发性脑创伤(即脑震荡)病史的运动员,或帕金森病,或亨廷顿舞蹈病,或多发性硬化症,或神经胶质瘤,或脊髓损伤或脊髓性肌萎缩或肌萎缩性脊髓侧索硬化症(ALS)。
[0036] 本公开被认为相对于以前的方法是新颖的,因为其不包括将经过修饰的细胞或病毒构建体引入受试者。例如,虽然美国专利公开号20130183674公开了使用含有化合物SB431542、LDN1933189、SU5402、CHIR99021和DAPT的细胞培养介质,用于诱导多能(pluripotent)干细胞或专能(multipotent)干细胞以形成为伤害感受器细胞(nociceptor cells),但是限于使用这些化合物用于体外分化这些干细胞,并且重要的是,这种现有技术的方法与我们将神经胶质细胞重编程为神经元细胞是不同的,因为干细胞可以天然地分化为神经元,但是神经胶质细胞不能变成神经元,除非经历重编程过程,例如在本公开中演示的重编程过程。此外,本领域技术人员将认识到,将培养的干细胞或其分化的神经元注入人受试者,特别脑,对受试者造成风险(srisk)。同样,如上所述,已经证明星形胶质细胞可以在体内转化为神经元,但是这些方法涉及将病毒载体或其它外源基因引入受试者中,这也对受试者造成特别的风险。
[0037] 与先前的方法相反,本公开在各种实施方案中提供了使用完全无细胞和病毒的包括彼此共同起作用以诱导神经胶质细胞转化为神经元的化学性化合物的药物制剂,本公开还提供了该过程的体内演示。
[0038] 在实施方案中,本公开包括向有需要的受试者施用有效量的一种或多种组合物,该组合物包含作为活性成分的选自thiazovivin、LDN193189、SB431542、TTNPB、CHIR99021、DAPT、VPA、SAG和2,6,9-三元取代嘌呤的化合物的组合。在实施方案中,这些化合物的不同组合依次施用。这些化合物中的每一种在本领域中是已知的并且是可商购获得的。本公开包括含有这些化合物中的任何三种、四种、五种、六种、七种、八种或全部九种的组合物和方法,并且可以包括本文所述的或本领域技术人员显而易见的可以给本公开带来益处的另外的化合物。本公开包括这些化合物的药学上可接受的盐、所述化合物和盐的类似物,以及发挥与所述化合物相同或相似功能的化合物,条件是将它们的组合施用于个体导致神经胶质细胞转化为神经元。
[0039] 在一个实施方案中,本公开包括向个体施用化合物的组合(同时或顺序),其中所述组合包含SB431542、LDN193189、CHIR99021和DAPT中的至少三种或由SB431542、LDN193189、CHIR99021和DAPT中的至少三种组成。不希望受理论束缚,这四种化合物在本文中有时被称为核心化合物。
[0040] 对于这些化合物,对本领域技术人员显而易见的是,SB431542是:-[4-(1,3-苯并二唑-5-基)-5-(2-吡啶基)-1H-咪唑-2-基]苯甲酰胺并具有化学结构:
[0041]
[0042] LDN193189是:4-(6-(4-(哌嗪-1-基)苯基)吡唑并[1,5-a]嘧啶-3-基)喹啉盐酸盐并具有化学结构:
[0043]
[0044] CHIR99021是:6-[[2-[[4-(2,4-二氯苯基)-5-(5-甲基-1H-咪唑-2-基)-2-嘧啶基]氨基]乙基]氨基]-3-腈基吡啶并具有化学结构:
[0045]
[0046] DAPT是:N-[(3,5-二氟苯基)乙酰基]-L-丙氨酰基-2-苯基]甘氨酸-1,1-二甲基乙基酯并具有化学结构:
[0047]
[0048] 本领域技术人员将认识到,本公开呈现的化学式和命名中的未明确表明的范围中,本文所述的每种化合物包括其药学上可接受的盐。还将认识到SB-431542是转化生长因子-β超家族I型激活素受体样激酶(ALK)受体ALK4、ALK5和ALK7的抑制剂。LDN-193189是骨形态发生蛋白I型受体ALK2和ALK3的抑制剂。CHIR99021是糖原合成酶激酶3(GSK-3)的选择性抑制剂,DAPT是γ-分泌酶的抑制剂。因此,具有这些功能的其它化合物(即功能类似物)包括在本公开的范围内。在这方面,本公开提供数据证明好使用选自由包含SB431542、LDN193189、CHIR99021和DAPT的四种核心化合物的组的仅三种药物的组合可以实现神经胶质细胞向神经元的重编程。此外,本公开提供了这四种核心药物可以用功能类似物替代并且仍具有相似效果的证据,即促进人神经胶质细胞转化为神经元。本文所用的“功能类似物”是指与另一个化合物相比具有相似物理、化学、生物化学或药理学性质的化合物。功能类似物可以具有或可以不具有彼此相似的结构。在本公开中证明了通过转化生长因子β(TGF-β)、骨形态发生蛋白(BMP)、糖原合成酶激酶3(GSK-3)和γ-分泌酶/Notch通路而共同作用于信号传导的组合化合物可将神经胶质细胞重编程为神经元。这使用药物组合i)LDN193189/CHIR99021/DAPT、ii)SB431542/CHIR99021/DAPT、iii)LDN193189/DAPT/SB431542和iv)LDN193189/CHIR99021/SB431542进行具体说明(参见实施例9和图15-19)。此外,证明用功能类似物替代这些化合物可以获得相同的结果。例如,TGF-β受体抑制剂SB431542可以被其它TGF-β受体抑制剂替代,例如Repsox和A8301。同样地,BMP受体抑制剂LDN193189可以被其功能类似物替代,如使用Dorsomorphin和DMH1所证明的。GSK-3抑制剂CHIR9902可以用诸如AR-A014418和SB216763的功能类似物代替。类似地,γ-分泌酶/Notch1信号传导抑制剂DAPT,可以被泛Notch(pan-Notch)抑制剂BMS906024或RO4929097替代。因此,在各种实施方案中,本公开包括通过调节TGF-β、BMP、GSK-3和γ-分泌酶/Notch信号传导通路将人神经胶质细胞重编程为神经元。其它功能类似物描述在表1中。因此,在某些实施方案中,本发明所涵盖的SB431542、LDN193189、CHIR99021和DAPT的替代物包括但不一定限于本表中所述的那些:
[0049] 表1
[0050]
[0051]
[0052]
[0053]
[0054] 在实施方案中,施用的组合包括Shh激动剂平滑激动剂(SAG),其是音猬因子的激动剂。
[0055] 因此,从本公开的描述、实施例和附图中将显而易见,我们已经发现,通过将本文所述的小分子组合能够将人星形胶质细胞直接重编程为功能性神经元。在进行这一发现时,我们测试了许多靶向被认为对激活神经发生的同时抑制神经胶质发生重要的信号传导通路的小分子。我们发现上述小分子组能够将人星形胶质细胞重编程成神经元。更详细地说,当人星形胶质细胞同时暴露于九个小分子共同的库中时,它们经历严重的细胞死亡,并且神经元重编程效率低,低于10%。相反,当九个小分子的子集以顺序的方式施用时,大多数人类星形胶质细胞(~70%)被重新编程为神经元细胞。我们证明这些小分子重编程的人神经元可以在培养中存活超过三个月,并显示出强健的突触活动。将人星形胶质细胞转化的神经元注入小鼠脑中,显示这些人神经元可以整合到局部脑回路中。这些数据共同证明了人星形胶质细胞经过纯化学重编程成为功能性神经元的可行性,预期这将导致化学递送的方便方法,用于治疗各种脑损伤和神经退行性病症。此外,我们的结果并不限于体外证明,因为如本文所展示的,将化学重编程的人神经元施用于动物产生与在小鼠脑中内源性神经元的突触连接。
[0056] 通常地,本公开的方法包括向受试者施用有效量的本文所述的化合物,使得个体中神经元的数量增加。在实施方案中,将个体中的神经胶质细胞(例如星形胶质细胞)重编程,以使其转化为神经元。在实施方案中,新产生的神经元主要包含具有少量GABA能神经元的谷氨酸能神经元。在实施方案中,通过使用本文所描述的方法(必要情况下由本领域技术人员以明显为本公开带来益处的方式对该方法做出改变),预期本公开将促进新皮层前脑神经元、或中脑神经元、或后脑神经元、或脊髓神经元或其组合的发育。在实施方案中,预期本公开的方法将导致转化为神经元的细胞中的内源性神经转录因子的增加。在实施方案中,靶细胞表现出Ascl1、Ngn2、NeuroD1和组合的表达增加。在实施方案中,经过重编程的神经元的特征在于表达神经元标记物,其包括但不一定限于Dcx和NeuN。在实施方案中,脑中的细胞,例如神经胶质细胞,被转化为神经元。在实施方案中,神经元是功能性神经元。功能性神经元可以表现出包括但不一定限于激发出重复动作电位、发育出多个树枝状分支和释放出神经递质的性质,所述神经递质包括但不一定限于谷氨酸(谷氨酸)、多巴胺、乙酰胆碱、5-羟色胺、去甲肾上腺素(去甲肾上腺素)和γ-氨基丁酸(GABA)。
[0057] 包含本公开化合物的组合物可以在药物制剂中提供。药物制剂的形式没有特别限制,但通常包含这些活性成分和至少一种非活性成分。在某些实施方案中,合适的药物组合物可以通过将任何一种化合物或其组合的化合物与药学上可接受的载体、稀释剂或赋形剂以及本领域熟知的合适的组分混合来制备。这些载体、稀释剂和赋形剂的一些实例可以在以下文献中找到:Remington:The Science and Practice of Pharmacy(2005)21st Edition,Philadelphia,PA.Lippincott Williams&Wilkins。在实施方案中,药物制剂适于将活性成分递送穿过血脑屏障和/或脊髓或中枢神经系统的其它部分。这样的组合物可以包含例如脂质制剂或其它基于纳米颗粒的递送系统。
[0058] 在一个实施方案中,所述药物制剂适合于口服施用,因此可以以雾化的、液体或固体剂型提供。固体剂型包括但不一定限于片剂、胶囊剂、囊片剂和条剂,用于吞咽或口服溶解,并且可以提供用于快速释放或延时释放,或在一段时间内以期望的序列释放不同的化合物。也可以使用包含两种化合物或任何组合的化合物的分开的药物组合物。因此,所述药物制剂可以包含SB431542、LDN193189、CHIR99021和DAPT的任意两种或任意组合,以及任何其它功能类似物。因此,在某些实施方案中,为了刺激人受试者中神经元的重编程的目的,LDN193189、SB431542、CHIR99021和DAPT或这些化合物或它们的功能类似物中的三种的集合可能是必需的。在实施方案中,核心化合物可能对将神经胶质细胞重编程为神经元可能是需要和充分的。
[0059] 关于药物制剂的给药,给药途径可以是任何合适的途径。在实施方案中,以口服的方式递送包含所述化合物的组合物。在其它非限制性实施方案中,通过静脉内、非肠道、皮下、腹膜内、经皮、鼻内滴注、通过植入或动脉内施用组合物。在实施方案中,可以使用可植入医疗装置,例如泵,包括但不限于渗透泵。在实施方案中,经颅内途径递送包含所述化合物的组合物。
[0060] 鉴于本公开的益处,可以结合本领域技术人员的知识来确定化合物的合适的剂量。在实施方案中,当确定活性成分有效量和给药方案时,可以考虑个体的体重和年龄、神经元损伤或疾病的个人史以及经历相同的神经元损伤、或存在神经胶质瘢痕形成或反应性神经胶质瘤的风险。在实施方案中,以每天约0.01nmol至约100nmol或更高的量施用化合物,包括本数并且包括其间的所有整数和范围,取决于所使用的递送方法。在实施方案中,以单次、多次或控制释放剂量方案提供化合物。在实施方案中,同时或顺序施用根据本公开的SB431542、LDN193189、CHIR99021和DAPT以及其它小分子。
[0061] 在某些实施方案中,本公开包括被设计为赋予个体与改善的神经元健康和/或功能相关的有益效果的营养组合物。在某些实施方案中,本发明的组合物可用于改善个体的一般健康状况或个体的认知能力,例如用于改善记忆或维持记忆。在实施方案中,所述组合物可用于改善短期记忆、长期记忆或运动技能的任意或全部,运动技能包括但不一定限于粗略和精细的运动技能。因此,本公开包括使用包含本文所述的小分子的营养补充剂。
[0062] 在一个实施方案中,本公开包括制品。在某些方面,制品包括封闭或密封的包装,其包含两种本文所述的化合物或本文所述的化合物的组合,例如分开的片剂、胶囊剂等。所述包装可以包括一个或多个容器,例如封闭或密封的小瓶、瓶子、泡罩(blister)(泡状物(bubble))包装或用于销售、分配或药剂使用的任何其它合适的包装。因此,所述包装可以包含药物组合物,该药物组合物包括所有SB431542、LDN193189、CHIR99021和DAPT、或这些化合物中仅三种化合物、或功能类似物和/或本文所述的其它化合物。可以包括这些化合物中的任意两种或全部,并且每种可以在相同或不同的剂量制剂中分开单独提供或与一种或多种其它物质组合提供,以使其可以同时或顺序递送。在一个实施方案中,LDN193189或SB431542或其组合与CHIR99021或DAPT或其组合分开提供。
[0063] 除了药物组合物之外,包装可以包含印刷信息。印刷信息可以提供在标签上或插入的纸上,或打印在包装材料本身上。印刷信息可以包括识别包装中的活性剂、非活性成分的量和类型、药物组合物旨在治疗的病症的指示、和服用药物组合物的说明书的信息,例如给定时间段服用的剂量数量,服用组合物的顺序等的信息。因此,在各种实施方案中,本公开包括包装在包装材料中并以在包装材料上或包装材料中印刷而识别的本发明的药物组合物,所述组合物用于治疗或预防任何与神经元恶化、神经元不足或神经元功能缺陷有关疾病、病症或紊乱。在另一个实施方案中,除了药物组合物,本公开包括营养制剂,并且印刷材料提供关于使用这样的制剂以提高认知功能、记忆、运动功能、总体健康等的信息。
[0064] 提供以下具体实施例来说明本发明,但不旨在以任何方式进行限制。在参考图中的颜色的情况下,标签被提供为参考颜色的代表性样品。
[0065] 实施例1
[0066] 该实施例证明了成功地通过如上所述小分子将人星形胶质细胞重编程为神经元。这些实验设计用于开发采用诸如但不限于可容易地被患者服用的口服施用药物的方法通过小分子将人星形胶质细胞重编程为神经元的便捷方法。因此,我们研究了小分子是否可以代替神经转录因子而将神经胶质细胞重编程为神经元。我们使用用于化学重编程培养中的人皮层星形胶质细胞(HA1800,ScienCell,San Diego,CA,USA),用于人脑修复的临床应用。基于两个主要的选择标准:一个ct抑制神经胶质的信号传导通路,另一个是激活神经元的信号传导通路,我们选择20种小分子作为我们的起始候选库。包括一些分子是因为它们可以调节DNA或组蛋白结构以提高重编程效率。选择用于我们初始筛选的20种小分子是:
SB431542、RepSox、LDN193189、dorsomorphin、DAPT、BMS-299897、CHIR99021、TWS119、Thiazovivin、Y27632、SAG、2,6,9-三元取代嘌呤(purmorphamine)、TTNPB、RA、VPA、毛喉素、BIX01294、RG-108、ISX9和Stattic。
[0067] 我们主要使用在原代培养中的人皮层星形胶质细胞(HA1800,ScienCell,San Diego,CA,USA)进行化学重编程。人星形胶质细胞被分离、传代并维持在具有10%胎牛血清(FBS)的培养基中,以减少可能的祖细胞污染,因为FBS刺激祖细胞的分化。对于初始测试,我们将一组小分子共同应用于人星形胶质细胞培养物,但在药物治疗2天后观察到大量细胞死亡。为了减少细胞死亡,我们在不同的时间点添加了较少的小分子。每种分子用一系列不同的浓度进行测试,以找出重编程的最佳浓度。在测试了数百种不同的组合后,我们发现了当以逐步方式添加9种小分子的组合时,9种小分子的组合能够将人星形胶质细胞重编程为神经元(图1A)。此9种小分子的组以下简称为主转化分子(MCM)。具体来说,人星形胶质细胞首先用LDN193189(0.25μM)、SB431542(5μM)、TTNPB(0.5μM)和thiazovivin(Tzv,0.5μM)处理2天。SB431542是TGFβ/激活受体的抑制剂,其在早期神经发育期间参与抑制神经元的去向(fate)并促进神经胶质细胞的去向。类似地,LDN193189是BMP受体的抑制剂,其是TGFβ受体的成员,对于星形胶质细胞分化是重要的。TTNPB是视黄酸受体的激动剂,据报道其在中枢神经系统模式中是至关重要的。我们使用LDN193189、SB431542和TTNPB的组合,以通过抑制神经胶质信号传导通路并同时激活神经元信号传导通路来启动重编程过程。Tzv是Rho相关激酶(ROCK)的抑制剂,促进细胞存活,并且据报道可提高Ipsc重编程效率。Tzv贯穿包括于重编程期间的8天内。在初始两天的引发后,我们用包括CHIR99021(1.5μM),DAPT(5μM)和VPA(0.5mM)的第二组小分子替换了第一组3种小分子(LDN193189、SB431542和TTNPB)。CHIR99021是糖原合成酶激酶3(GSK3)的抑制剂。GSK3信号传导促进神经祖细胞体内平衡和新皮层神经诱导。DAPT(N-[N-(3,5-二氟苯乙酰基)-L-丙氨酰]-S-苯基甘氨酸叔丁酯),间接抑制notch信号传导通路的γ-分泌酶抑制剂,有效地诱导祖细胞的神经分化。VPA(丙戊酸)是组蛋白脱乙酰酶抑制剂,促进组蛋白乙酰化。VPA仅包含在重编程培养基中2天,因为更长的暴露增加细胞死亡,而CHIR99021和DAPT在第3天至第6天存在。在第7至第8天,我们使用SAG(0.1μM)和2,6,9-三元取代嘌呤(Purmo,0.1μM),两种用于激活音猬因子(Shh)信号传导通路的激动剂,以完成重编程过程。Shh信号传导是CNS模式的关键决定因素。SAG和Purmo或Shh本身已被用于诱导多能干细胞的神经元分化。在第9天,我们除去培养基中的SAG和Purmo,并用神经营养因子(BDNF、NT3和IGF-1)替代,以促进星形胶质细胞-神经元转化后的神经元成熟。这种成功的重编程策略如图1A所示。
[0068] 在重编程之前,我们表征了我们的培养物中的人星形胶质细胞的特性,并发现大多数细胞对星形胶质细胞标记物GFAP(79.3±4.9%)和Glt1(星形胶质细胞特异性谷氨酸转运蛋白,82.5±4.3%)呈免疫阳性,没有检测到神经元(图1B-C)。我们发现人星形细胞培养物中几乎没有神经干细胞的污染,如通过Sox2、Musashi和巢蛋白的免疫染色(图8A-B)所示,可能是由于在我们的培养基中存在10%FBS。在补充有生长因子(BDNF、NT3和NGF)的神经分化培养基中培养人星形胶质细胞一个月后,进一步确认:大多数细胞对星形胶质细胞标记物(S100β、GFAP、谷氨酰胺合成酶、Glt1)呈免疫阳性,但是对神经元或NG2细胞很少阳性(图8C-D)。此外,我们进行了膜片钳记录,并证明我们培养的人星形胶质细胞是功能性的,具有大的K+电流和谷氨酸转运体电流,但没有Na+电流,并且在星形胶质细胞之间形成间隙联结(图8E-H)。在没有小分子的对照重编程培养基(1%DMSO)中,在我们的人皮层星形胶质细胞培养物中几乎没有检测到神经元(图1D)。相比之下,在顺序暴露于小分子后,我们发现大量的对神经元标记物诸如双皮层素(DCX)、β3-微管蛋白(Tuj1)、MAP2和NeuN呈免疫阳性的神经元样细胞(图1E-F)。人星形胶质细胞转化的神经元在我们的培养物中存活4-5个月,并发育出强健的轴突和树突(图1G)。为了使得从星形胶质细胞到神经元的转化过程可视化,我们用1μl编码EGFP的逆转录病毒感染人星形胶质细胞,以使得在每个盖玻片中仅观察到少量的EGFP阳性的星形胶质细胞(图9)。我们进行了随时间推移的成像来监测人星形胶质细胞的形态学变化。在没有小分子的情况下,人星形胶质细胞从第0天到第8天的形态没有变化(图9A),并且对于神经胶质细胞标记物GFAP呈免疫阳性(图9B)。相比之下,在小分子处理期间,从第8天到第10天随着长轴突的延伸存在明显从星形胶质细胞形态到神经元形态明显的转变(图9C)。随时间推移进行成像后,我们在第21天固定细胞并进行免疫染色。GFP标记的神经元样细胞确实对NeuN和Tuj1呈免疫阳性(图9D)。我们进一步使用GFAP::GFP逆转录病毒标记星形胶质细胞(91±6.7%的GFAP::GFP感染细胞为GFAP+),并示踪星形胶质细胞-神经元转化过程(图9E)。在小分子处理后18天,GFP标记的星形胶质细胞有效转化为NeuN+神经元(68.7±4.2%,图1H,n=5批次);而没有经过小分子处理的对照组没有检测到神经元(图9F-G)。使用LCN2::GFP逆转录病毒(88.5±3%的LCN2::GFP标记的细胞为GFAP+)以示踪星形胶质细胞-神经元转化(图9H-J)获得了相似的结果,54.4±5.3%的LCN2::GFP标记的星形胶质细胞在小分子处理后18天(n=3批次)变成NeuN+神经元。通过谱系示踪实验获得的转化效率与小分子处理诱导的整体转化效率相似(图1I-J;对照组,3.3±0.5%Tuj1+,n=4批次;MCM,67.1±0.8%Tuj1+,n=4批次;p<0.0001,Student t检验)。
[0069] 为了研究来自不同来源的人星形胶质细胞是否可以使用相同的小分子方案重编程为神经元,我们进一步测试了来自ScienCell的人中脑星形胶质细胞和人脊髓星形胶质细胞。有趣的是,采用我们的逐步9种小分子策略人中脑星形胶质细胞有效地重编程为神经元(图1K-M、图10A-F),而采用相同的方案不能使人脊髓星形胶质细胞重编程为神经元(数据未示出)。这个结果表明我们的化学重编方案更适合于人脑来源的星形胶质细胞。为了进一步测试我们的小分子重编程策略是否普遍适用于来自不同来源的人星形胶质细胞,我们从Gibco购买了人星形胶质细胞,并发现也可以使它们重编程为神经元(图10G-I)。为了确保我们的化学重编程方法不涉及人星形胶质细胞重分化为神经祖细胞,我们在第0至第10天的化学重编程过程中监测了Sox2、巢蛋白、Pax6和Ki67信号,并与神经祖细胞进行比较(图11)。虽然Sox2在重编程期间显示出一些增加,但从未达到神经祖细胞的水平(图11A、G)。巢蛋白和Pax6在小分子处理过程中没有显著增加(图11B-C、H-I)。Ki67标记的增殖细胞在小分子处理后显着降低(图11D、J),表明没有可以扩增并且产生神经元的祖细胞。此外,当我们在化学处理之前用BrdU标记人星形胶质细胞时,许多转化的神经元呈BrdU阳性(图11E、K);然而,当我们在小分子处理后第10天用BrdU标记我们的细胞培养物时,基本上所有转化的神经元对BrdU呈阴性(图11F、K),表明所有的神经胶质细胞向神经元的转化发生在小分子存在期间。总而言之,我们已经开发了利用定义的小分子组合将人星形胶质细胞化学重编程为神经元的成功策略。
[0070] 实施例2
[0071] 本实施例证明根据本公开产生的小分子转化的人神经元在激发动作电位和释放神经递质方面是全功能的。特别地,我们发现小分子转化的神经元存活了很长时间(>5个月),并且沿树突显示出强健的突触点(图2A)。类似地,从中脑人星形胶质细胞和Gibco的人星形胶质细胞重新编程的神经元也在培养中存活了多于2个月,沿树突上具有许多突触点(图10F、I)。膜片钳记录显示出星形胶质细胞转化的神经元中明显的钠电流和钾电流,并在神经元的成熟期间逐渐增加(图2B-E;2个月:INa=1889±197Pa,n=10;IK=2722±263Pa,n=10)。这些神经元能够激发重复动作电位(图2F)。更重要的是,小分子转化的神经元显示出强健的自发性突触活动,包括兴奋性突触后电流(EPSC;频率=0.66±0.14Hz;振幅=24.8±8.2Pa,n=15)(图2G-H)和抑制性突触后电流(IPSC;频率=0.48±0.21Hz;振幅=
23.3±6.3Pa,n=2)(图2I)。值得注意的是,在初次小分子处理后3个月,人星形胶质细胞转化的神经元显示出被TTX或DNQX消除的大的周期性爆发活动(图2J-L),表明这些神经元形成功能性网络并开始一起同步激发。为了支持这一观点,我们进行了双重全细胞记录,并证明两个相邻神经元显示同步爆发活动(图2M)。此外,我们采用Fura-2Ca2+比例成像,并记录化学重编程的神经元中的同步Ca2+尖峰(图2N),表明这些神经元已经在功能上联网在一起。
因此,人星形胶质细胞可以用定义的小分子进行化学重编程为全功能的神经元。
[0072] 实施例3
[0073] 本实施例证明本文所述的小分子将人星形胶质细胞重编程为前脑谷氨酸能神经元。为了表征小分子诱导的重编程后的神经元特性,我们检查了从前向到后向神经系统表达的神经元标记物。我们发现大多数人星形胶质细胞转化的神经元对于前脑标记物FoxG1呈免疫阳性(97.1±1.1%,图3A,n=3批次),但对后脑和脊髓标记物HoxB4和HoxC9呈阴性(图3B-C,n=3批次)。我们接下来用各种皮层神经元标记物进行了一系列免疫染色。我们发现人星形胶质细胞转化的神经元大部分对皮层表层标记物Cux1呈免疫阴性(图3D),但对于深层标记物Ctip2(图3E,71.4±3%,n=5批次)和Otx1(图3F)呈免疫阳性。人星形胶质细胞转化的神经元对前脑神经元标记物Tbr1(图3G,86.4±3.4%,n=3批次)以及海马神经元标记物Prox1(图3H)也是免疫阳性的。图3I显示了定量结果。因此,我们的经过化学重编程的神经元主要是前脑深层神经元或海马神经元。
[0074] 我们进一步研究基于它们所含的神经递质的神经元亚型。我们发现大多数小分子重编程的神经元对于谷氨酸能神经元标记物VgluT1呈免疫阳性(图3J)。小部分的转化的神经元对GABA能神经元标记物GAD67呈免疫阳性(图3K)。另一方面,星形胶质细胞转化的神经元对胆碱能标记物VAChT(图3L)、多巴胺能标记物TH(图3M)或脊髓运动神经元标记物Isl1(图3N)主要呈免疫阴性。神经元亚型的定量分析如图3O所示。(Vglut1,88.3±4%,n=4批次;GAD67,8.2±1.5%,n=4批次)。这些结果表明采用我们的小分子重编程方案谷氨酸能神经元是主要亚型。可能需要不同的小分子将人星形胶质细胞重编程为其它神经元亚型。
[0075] 实施例4
[0076] 本实施例证明在化学重编程期间内源性神经转录因子的活化。为了了解化学重编程的分子机制,我们首先使用PCR阵列(Qiagen)来研究基因谱变化。在小分子处理后的第4天,我们发现在包括NGN1/2、NEUROD1和ASCL1的几种神经转录因子的转录水平以及未成熟的神经元标记物DCX中高达300倍的显著增加(图4A)。在第8天,转录水平上最显著的变化是未成熟神经元基因DCX,其显示出2000倍的增加(图4B),表明小分子处理结束时大多数新转化的细胞是未成熟神经元。相比之下,神经胶质细胞相关基因通常是下调的(图4A-B)。然后我们进行实时定量PCR实验,以检查化学重编程过程中在时间进程上NGN2、NEUROD1和星形胶质细胞基因GFAP和ALDH1L1的转录变化(图4C-F)。有趣的是,我们发现在小分子处理期间,NGN2转录在第4天达高峰(图4C),而NEUROD1在第6天达到高峰(图4D),这与早期脑发育过程中它们的顺序表达一致。对于神经胶质细胞基因,GFAP转录水平在D4显著降低超过200倍(图4E),折与神经转录因子的活化一致(图4C-D)。类似地,另一种星形细胞基因ALDH1L1的转录水平也下调(图4F)。相比之下,没有经过小分子处理的对照实验显示出极少的转录变化(图12A-F)。因此,我们的小分子处理激活神经转录因子,同时抑制星形胶质细胞基因。
[0077] 实施例5
[0078] 本实施例提供了关于表观遗传调节是否参与我们的化学重编程的研究。基因启动子中的DNA甲基化影响转录因子结合的可及性,因此成为多能干细胞重编程的限速因子。我们进行甲基化DNA免疫沉淀,然后进行测序(MeDIP-seq,甲基化DNA免疫共沉淀测序),以检查小分子处理之前和之后感兴趣的基因的甲基化水平。如预期的那样,在小分子处理(D0)之前,人星形胶质细胞中GFAP基因的启动子区域最初未被甲基化,但在小分子处理8天后检测到甲基化明显增加(图4G)。通过靶向亚硫酸氢盐测序(BS-seq)进一步证实了这种增加的甲基化(图4H)。值得注意的是,该GFAP启动子区域含有已被证明在GFAP基因的激活中起关键作用的STAT3和AP1的转录因子结合位点。BS-seq数据显示STAT3和AP1结合区域的侧翼位点是高度甲基化的(图4H),这可以解释为什么GFAP转录在小分子处理后显著下调(图4E)。我们的MeDIP-seq还显示在小分子处理后GFAP转录起始位点(TSS)的DNA甲基化增加,这也被BS-seq证实(图4I)。与神经胶质细胞基因GFAP相反,神经元基因NEFM(对神经元特异的中等规模的神经丝基因)在小分子处理后显示启动子区域的甲基化信号降低(图4J-K),表明神经元基因的激活。我们还研究了参与神经元分化的重要基因-转录因子NGN2的表观遗传调控。MeDIP-seq分析表明,与以前的报道一致(Covic等人,2010),NGN2启动子区域的甲基化水平在小分子处理前后相当低(数据未显示)。除了DNA甲基化,组蛋白修饰也可以调节基因表达。因此,我们进一步研究了NGN2启动子区和转录起始位点的组蛋白修饰(图4L-O)。与化学重编程过程中HDAC抑制剂VPA的应用一致,观察到组蛋白乙酰化在D8显著增加(图4M)。
有趣的是,H3K4me3水平在启动子区域显著增加(图4N),而在D8H3K27me3水平在转录起始位点显著降低(图4O),这与小分子处理诱导的NGN2的转录激活一致。综上,我们的研究结果表明,我们的化学重编程过程涉及转录调控和表观遗传调控二者。
[0079] 为了证实我们的转录分析和表观遗传学分析,我们进一步进行免疫染色以检查化学重编程过程中的蛋白质表达变化(图5)。我们发现在用LDN193189、SB431542和TTNPB进行2天处理后Ascl1表达水平首次显示出显著增加(图5A和G)。在小分子处理后,Ngn2的表达水平在D4显示峰值(图5B和H;在CHIR99021、DAPT和VPA存在下)。与Ascl1和Ngn2相比,NeuroD1的表达似乎延迟,在小分子处理后D6达到峰值(图5C和I),这与我们的转录研究一致(图4C-D)。此外,免疫染色实验还显示,在NeuroD1的峰值表达之后,一些细胞在D4-D6开始显示诸如DCX的神经元标记物(图5D),并且在D8-D10出现NeuN+神经元(图5E和J)。与神经元标记物的增加相反,星形胶质细胞蛋白GFAP在小分子处理后表现出显著降低(图5F和K),这与GFAP基因的表观遗传沉默和转录下调一致。在没有经过小分子处理的情况下培养10天的对照星形胶质细胞在神经转录因子、神经元蛋白NeuN或星形胶质细胞蛋白GFAP的表达水平上没有显示太大的变化(图13)。这些实验表明我们的小分子策略已成功激活内源性神经转录因子,这可能在星形胶质细胞重编程为神经元中起重要作用。
[0080] 实施例6
[0081] 本实施例描述了在化学重新编程期间每种单独化合物的功能作用的分析。为了剖析每个单个分子对重编程的贡献,我们通过从我们的鸡尾酒库(cocktail pool)中取消每个单独的化合物进行了一系列实验(图6)。与顺序暴露于总共9种分子相比,除去DAPT导致转化神经元数量的最显著降低(图6A-C)。类似地,除去CHIR99021或SB431542或LDN193189也显著降低了重编程效率(图6D-F)。除去VPA或SAG+Purmo会稍微降低重编程效率(图6G-H)。有趣的是,除去Tzv或TTNPB对星形胶质细-神经元重编程没有显著影响(图6I-J)。图6K说明药物取消实验的总结数据。虽然Tzv因为主要作为细胞存活因子而没有任何效果并不奇怪,但是出人意料的是,除去TTNPB没有影响。我们将TTNPB包括在内,因为它是被发现在神经分化中起重要作用的视黄酸受体的激动剂。TTNPB贡献的缺乏表明视黄酸可能不是将星形胶质细胞重编程为神经元的必要因素。因此,本公开包括组合物不包括TTNPB的条件。另一方面,抑制Notch信号传导、GSK-3β和BMP/TGFβ信号传导通路似乎对将星形胶质细胞重新编程为神经元是重要的。为了确保在我们的小分子处理过程中这些信号传导通路确实被抑制,我们对磷酸化的SMAD1/5/9、Notch细胞内结构域(NICD)和磷酸化的GSK3β(图12G-1)进行了一系列免疫染色。我们的结果显示,在小分子处理后,BMP/TGFβ、Notch和GSK3β信号传导通路被显著抑制(图12G-I),这表明这些信号传导通路的抑制与星形胶质细胞向神经元转化之间的密切联系。
[0082] 实施例7
[0083] 本实施例提供了人神经元在重编程之后在小鼠脑中的体内整合的演示。我们进一步研究人星形胶质细胞转化的神经元是否能够在小鼠脑中体内存活。为了将人星形胶质细胞转化的神经元与脑内预先存在的小鼠神经元区分开,我们使用EGFP-慢病毒在小分子处理之前感染人类星形胶质细胞,以使人星形胶质细胞转化的神经元大部分被EGFP标记(图7A)。在初次小分子处理后14天,我们收获含有转化的神经元和未转化的星形胶质细胞二者的细胞,并将其注入新生小鼠的侧脑室(图7A)。在细胞注射后7天(DPI),我们在侧脑室内发现了一簇EGFP标记的细胞,其均对人核(HuNu,图7B)呈免疫阳性,这表明这些细胞源自注射的人细胞。重要的是,我们发现许多EGFP标记的人细胞对神经元标记物DCX(图7B)、MAP2(图
7C)和NeuN(图7D)呈免疫阳性,这表明人星形胶质细胞转化的神经元可以在小鼠脑中体内存活。甚至在细胞注射后一个月,我们仍然能够识别与侧脑室如丘脑和纹状体相邻的脑区域中的EGFP标记的神经元簇(图7E),这表明人星形胶质细胞转化的神经元可能已迁移出侧脑室并集成到局部神经回路中。在支持这一观念的同时,我们发现沿着EGFP+人神经元的树突上有许多突触点(图7F),这表明这些移植的人神经元已经与宿主神经元建立了突触连接。总之,这些体内实验证明,我们的小分子重编程的人神经元不仅可以在小鼠脑中存活,而且可以整合到局部神经回路中。
[0084] 我们还尝试采用我们的小分子策略在体外和体内将小鼠星形胶质细胞重编程为神经元。我们发现经过小分子处理的小鼠星形胶质细胞比溶剂对照组在体内表达更多的巢蛋白信号(图14A-B)。因此,我们分离了小分子注射区域周围的皮层组织并在体外培养。有趣的是,经过小分子处理的皮层组织比溶剂对照组产生更多的神经球(图14C-H)。这些神经球可以解离成神经干细胞并产生神经元、星形胶质细胞和少突胶质细胞(图14I-J)。
[0085] 实施例8
[0086] 本实施例提供了用于获得本公开数据的材料和方法的描述。
[0087] 人类星形胶质细胞培养物。人星形胶质细胞购自ScienCell(HA1800,加利福尼亚)或Gibco(N7805-100)。人星形胶质细胞是从人胎儿脑组织获得的原代培养物。将它们分离出来并在10%胎牛血清(FBS)的存在下培养,这基本上会导致任何祖细胞的分化。人星形胶TM质细胞在它们超过90%融合度时被传代培养。对于传代培养,通过TrypLE  Select(Invitrogen)对细胞进行胰蛋白酶消化,以900rpm离心5分钟,重新悬浮,并铺板于由DMEM/F12(Gibco)、10%胎牛血清(Gibco)、青霉素/链霉素(Gibco)、3.5mM葡萄糖(Sigma)组成并补充有B27(Gibco)、10ng/ml表皮生长因子(EGF,Invitrogen)和10ng/ml成纤维细胞生长因子2(FGF2,Invitrogen)的培养基中。将细胞培养在37℃含有5%CO2的潮湿空气中。
[0088] 将人星形胶质细胞重编程为神经元。在24孔板(BD Biosciences)中,以每盖玻片50000个细胞的密度在聚-D-赖氨酸(Sigma)包被的盖玻片(12mm)上培养星形胶质细胞。将细胞在人星形胶质细胞培养基中培养至90%融合度。在重新编程前的第0天,用由DMEM/F12(Gibco)、青霉素/链霉素(Gibco)和N2补充剂(Gibco)组成的N2培养基替代一半的培养基。
接下来的一天(第1天),培养基全部被补充有小分子的N2培养基或含有1%DMSO的N2培养基对照组完全替代。对于使用9个分子进行重编程(MCM处理)的大多数实验,使用TTNPB(0.5μM,Tocris#0761)、SB431542(5μM,Tocris#1614)、LDN193189(0.25μM,Sigma#SML0559)和Thiazovivin(0.5μM,Cayman#14245)持续处理星形胶质细胞2天。在第三天,使用包括CHIR99021(1.5μM,Tocris#4423)、DAPT(5μM,Sigma#D5942)、VPA(0.5mM,Cayman#13033)和Thiazovivin(0.5μM)的不同组小分子替代培养基。在第5天,通过替换仅含有CHIR99021(1.5μM)、DAPT(5μM)和Thiazovivin(0.5μM)的培养基而撤出VPA。在第7天,使用含有SAG(0.1μM,Cayman#11914)、2,6,9-三元取代嘌呤(Purmo,0.1μM,Cayman#10009634)和Thiazovivin(0.5μM)的培养基进行替换。在第9天,使用含有DMEM/F12(Gibco)、0.5%FBS(Gibco)、3.5mM葡萄糖(Sigma)、青霉素/链霉素(Gibco)和N2补充剂(Gibco)的神经元分化培养基(NDM)对培养基进行全部替换。每周将200l的神经元分化培养基加入每个孔中以保持渗透压不变。为了促进转化的神经元的突触成熟,在第9天将脑源性神经营养因子(BDNF,
20ng/ml,Invitrogen)、胰岛素样生长因子1(IGF-1,10ng/ml,Invitrogen)和神经营养蛋白
3(NT-3,10ng/ml,Invitrogen)添加到神经元分化培养基中,并且每四天更新一次直到第30天(Song等人,2002)。
[0089] 为了检查我们的人星形胶质细胞是否含有任何神经干细胞,我们在补充有BDNF 20ng/ml、NT3 10ng/ml和NGF 10ng/ml的神经元分化培养基中培养人星形胶质细胞1个月。
生长因子每3-4天更新一次。
[0090] 衍生自人多能干细胞的人神经祖细胞(NPC)是来自Fred Gage博士的礼物。在含有DMEM/F12、青霉素/链霉素、B27补充剂、N2补充剂和FGF2(20ng/ml)(Gibco)的神经元增殖培养基的聚-L-鸟氨酸和层粘连蛋白包被的盖玻片中培养NPC。
[0091] 数据和统计分析。细胞计数是通过对每个盖玻片上的几个随机选择的视野拍摄图像并通过Image J软件进行分析而进行。通过Image J软件分析荧光强度。数据表示为平均值±SEM。Student t检验用于比较两组数据。单因素方差分析和事后检验用于多组数据的统计分析。
[0092] 体内小分子转化的人神经元的移植。用野生型C57/BL6小鼠进行体内实验。小鼠在12小时光照/黑暗循环中饲养,并提供足够的食物和水。实验方案由宾夕法尼亚州立大学IACUC批准,并与国家卫生研究院的指导方针一致。
[0093] 用10μl FUGW-GFP慢病毒悬浮液转导在T25烧瓶中培养的人星形细胞用于高效感染。在病毒转导后一天,用TrypLE解离细胞,并以每盖玻片50000个细胞的密度铺在24孔板中聚-D-赖氨酸包被的盖玻片上。当细胞达到90%融合度时,约70%的细胞是GFP阳性的。在GFP感染后,根据上述方案用小分子处理人星形胶质细胞。在初次小分子处理后的第14天,用Accutase(Gibco)将人星形胶质细胞和转化的神经元的混合物解离,并用补充有10ng/ml BDNF、10ng/ml NT3和10ng/ml IGF-1的20μl神经元分化培养基重悬浮。将含有2×105个细胞的细胞悬浮液注射到新生小鼠幼仔(出生后第1天,P1)的侧脑室,每个半球注射2μl。使用立体定位装置(Hamilton),将细胞距离人字缝尖(lambda)前面1.5mm和侧面1.5mm以及深度1mm注射。在注射后7、11、14天和1个月收集脑,以进行分析。
[0094] 免疫细胞化学。对于脑切片染色,将小鼠用2.5%阿佛丁(Avertin)麻醉,然后用冰冷的包括:124mM NaCl、26mM NaHCO3、10mM葡萄糖、1.3mM MgSO4、1.25mM NaH2PO4、2.5mM KCl、2.5mM CaCl2的人工脑脊髓液(ACSF)灌注。取出大脑并在4℃下在4%多聚甲醛(PFA)中固定过夜。将来自年轻小鼠(<1月龄)的脑用30%蔗糖脱水2天,并用低温恒温器(Leica)以50μm切片切割。成年小鼠(>1个月龄)的大脑通过振动切片机(Leica)以45μm切片切割。将冠状脑切片在2.5%正常山羊血清、2.5%正常驴血清和0.3%TritonX-100的磷酸盐缓冲盐水(PBS,pH 7.4)中孵育2小时,然后在一抗中孵育过夜。
[0095] 对于细胞培养染色,在室温下将培养物在4%PFA的PBS中固定15分钟。首先用PBS洗涤细胞三次,然后在2.5%正常山羊血清、2.5%正常驴血清和0.1%TritonX-100的PBS中孵育30分钟。在4℃下将一抗与脑切片或培养物在3%正常山羊血清、2%正常驴血清和0.1%TritonX-100的PBS中孵育过夜。在PBS中再一次洗涤后,在室温下将样品与和Alexa Fluor 488、Alexa 546、Alexa 647(1:800,分子探针)、FITC、TRITC或Dylight(1:500,Jackson ImmunoResearch)缀合的适当的二抗孵育1h,然后在PBS中进行充分洗涤。最后将盖片用带有含DAPI(Invitrogen)的抗褪色固定溶液固定在载玻片上。用荧光显微镜(Keyence BZ-9000)或共聚焦显微镜(Olympus FV1000)分析载玻片。使用FV10-ASW 
3.0Viewer软件(Olympus)获取并分析Z-stack数字图像。
[0096] 电生理学。对于人星形胶质细胞转化的神经元,利用使用已知技术的Multiclamp 700A膜片钳放大器(Molecular Devices,Palo Alto,CA)进行全细胞记录。使用由128mM NaCl、30mM葡萄糖、25mM HEPES、5mM KCl、2mM CaCl2和1mM MgCl2组成的浴液不断灌注记录室。用NaOH将浴液pH溶液调至7.3,渗透压为315-325mOsm/L。将补片移液管从硼硅酸盐玻璃(4-6MΩ)中拉出,并填充由10Mm KCl、125mM葡萄糖酸钾、5mM磷酸肌酸钠、10mM HEPES、2mM EGTA、4mM MgATP和0.5mM Na2GTP组成的移液管溶液,用KOH调节pH 7.3。串联电阻通常为
10-25MΩ。对于电压钳实验,膜电位通常保持在-70mV,除了在记录IPSC时牵制电位设置为
0mV。通过重力驱动药物输送系统(VC-6,Harvard Apparatus,Hamden,CT)施用药物。为了监测人星形胶质细胞间的间隙联结,在移液管溶液中加入2mM磺酰罗丹明B(SRB)染料(MW=
559Da)。
[0097] 使用pCamp 9软件(Molecular Devices,Palo Alto,CA)获取数据,以10kHz采样并在1kHz下过滤。使用pClamp 9Clampfit软件分析Na+电流和K+电流和动作电位。使用MiniAnalysis软件(Synaptosoft,Decatur,GA)分析自发性突触活动。所有实验均在室温(22-24℃)下进行。
[0098] RNA提取
[0099] 在化学处理期间的D0、2、4、6和10,使用 RNA试剂盒从人皮层星形胶质细胞中提取RNA。对于24孔板的每个孔加入350μl的裂解缓冲液,并收集细胞裂解物。用 RNA柱进行RNA纯化,纯化的RNA用40μl不含RNA酶的H2O洗脱,产生每孔100至300ng/μl的RNA浓度。使用NanoDrop测量RNA浓度并检查RNA质量。所有分离的RNA的A260/A280比例在2和2.1之间,表明RNA纯度。分离的RNA储存在-80℃。
[0100] Cdna合成和定量实时PCR
[0101] 对于实时定量PCR(Qrt-PCR),使用Quanta Biosciences qScriptTM Cdna SuperMix进行Cdna合成。对于每个样品,每20μl总反应体积使用1μg RNA。反应混合物在25℃孵育5分钟,42℃30分钟,85℃5分钟,保持在4℃。Cdna产物用不含RNA酶/DNA酶的H2O稀释5倍。使用Applied Biosystems Primer Express软件设计引物组,并列于表2。RT-Qpcr使用Quanta Biosciences Green SuperMix,ROXTM进行。使用实时循环仪
TM
Applied StepOnePlus 。最终反应体积为25μl中使用对应于1μg总RNA的5μl Cdna。进行了95℃15秒和65℃45秒的40个PCR循环用于扩增。在PCR循环后进行熔解曲线分析。比较Ct方法用于定量和计算基因表达倍数变化。GAPDH用作内部对照基因,相对于在第0天对照人类星形胶质细胞组的基因表达分析相对基因表达。对每个样品RT-Qpcr数据有三次重复PCR反应。
[0102] PCR阵列
[0103] 在小分子处理之前(D0)和之后(D4和D8),对人星形胶质细胞进行RT2分析器PCR阵列(Qiagen,PAHS-404ZC-12)。使用QIAGEN RT2First Strand Kit(Qiagen#330401)从分离的RNA(利用 RNA试剂盒)合成Cdna。对于每个96孔PCR阵列板,将0.5μg总RNA与19.5μl逆转录混合物混合,并在42℃孵育15分钟,然后在95℃孵育5分钟。将20μl的Cdna产物用81μl无RNA酶的H2O稀释。对于每个96孔PCR阵列板,将101μl稀释的Cdna与RT2SYBR Green Qpcr mastermix(Qiagen#330522)混合以达到2700μl的总体积。将25μl Qpcr混合物转移到PCR阵列板的每个孔中。实时循环仪Applied  StepOnePlusTM用于PCR反应和数据采集。进行40个95℃15秒和60℃1分钟的循环,然后进行熔解曲线分析。在同一分析中,对于所有RT2分析器PCR Array运行将基因阈值设定为相同的值。使用QIAGEN RT2Profiler PCR Array数据分析软件3.5版进行定量。将D0的基因表达设置为对照。
[0104] 病毒生产
[0105] Pcag::GFP-IRES-GFP逆转录病毒载体是Fred Gage博士(Salk Institute,CA)的礼物。从Hgfap启动子-Cre-MP-1(Addgene)中亚克隆出人GFAP启动子基因,并替换CAG启动子以产生Pgfap::GFP-IRES-GFP逆转录病毒载体(Guo等人,2014)。从小鼠基因组亚克隆出小鼠LCN2启动子序列并取代CAG启动子以产生Plcn2::GFP-IRES-GFP逆转录病毒载体。FUGW-EGFP慢病毒载体由Roger Nicoll博士(加州大学旧金山分校,旧金山,美国)慷慨提供。将逆转录病毒颗粒包装在gpg helperfree HEK(人类胚胎肾)细胞中,以产生如前所述的VSV-G(水泡性口腔炎病毒糖蛋白)-假型逆转录病毒(Guo等人,2014;Tashiro等人,
2006)。如先前所述,慢病毒颗粒被包装在HEK293T细胞中(Naldini等人,1996)。病毒颗粒的
8
滴度在HEK细胞转导后测定,约为10个颗粒/ml。
[0106] 随时间推移进行成像
[0107] 用1μl Pcag::GFP-IRES-GFP逆转录病毒悬浮液转导T25烧瓶中培养的人星形胶质细胞。在病毒转导后2小时,用TrypLE解离细胞,并以24孔板中每个盖玻片50000个细胞的密度铺在聚-D-赖氨酸包被的盖玻片上。在第0天,每个孔中只能发现1个或2个GFP阳性细胞簇。在不经过或经过小分子处理的第0、2、4、6、8天和第10天,在荧光显微镜(Nikon TE-2000-S)下,对一个GFP阳性的簇成像,这与上述相同。为了使通过顺序应用9个分子诱导的重编程过程可视化,在改变含有下一组小分子的培养基之前的每个时间点拍摄图像。
[0108] 谱系示踪实验
[0109] 将人星形胶质细胞在聚-D-赖氨酸包被的盖玻片中培养并用2μl Pgfap::GFP-IRES-GFP逆转录病毒悬浮液过夜感染。为了Plcn2::GFP-IRES-GFP逆转录病毒感染,用100ng/ml脂多糖(LPS)对培养的人星形胶质细胞进行预处理,使其具有反应性并表达LCN2。
然后用小分子或1%DMSO处理感染逆转录病毒的细胞。将细胞培养18天,然后固定用于免疫染色。
[0110] BrdU出生日期测定
[0111] 在小分子处理前1天,将人皮质星形细胞与终浓度为10μM的5-溴-2-脱氧尿苷(BrdU)一起孵育12小时。第二天,完全去除含BrdU的培养基,并小心向培养物中加入新鲜的人星形胶质细胞培养基。约70-80%的人星形胶质细胞在D0被BrdU标记。用小分子处理标记有BrdU的人星形胶质细胞,并在初次小分子处理后第30天固定。在另一组中,在小分子处理后的第10天将10μM BrdU加入神经分化培养基中,并且每3-4天更新一次直到第30天。在第30天,在室温下将细胞用4%PFA固定15分钟,随后在37℃下用2M HCl处理20分钟使得DNA变性。用PBS洗涤5次后,在室温下将细胞在封闭缓冲液(PBS中含有2.5%正常驴血清,2.5%正常山羊血清,0.1%Triton)中封闭1小时,然后在抗-BrdU的一抗(Dako,1:500)中4℃过夜孵育。
[0112] 钙成像
[0113] 通过将人星形胶质细胞转化的神经元在含有Fura-2AM(2μg/ml)的培养基中在培养箱(37℃)中孵育30分钟,将钙指示剂Fura-2AM(Life Technology)载入细胞。使用Nikon 20×Super Fluor物镜(NA 0.75)、Hamamatsu ORCA-ER数码相机(Hamamatsu,盐田市,日本)和用于快速改变激发波长的Sutter DG5光学切换器(Sutter Instrument,Novato,CA)监测血浆中的钙浓度。使用Hamamatsu的Simple PCI软件进行数据采集和分析。
[0114] 甲基化DNA免疫沉淀(MeDIP)和高通量测序
[0115] 根据制造商的方案(Active Motif)进行MeDIP实验。利用Qiagen DNA纯化试剂盒纯化富集的甲基化DNA,以用于根据制造商的方案使用NEBNext ChIP-Seq Library Prep Reagent Set for Illumina进行文库制备。简言之,使用25ng输入的基因组DNA或实验富集DNA用于每个文库构建。在连接接头后,利用AMPure XP珠(Beckman Coulter)选择出150-300bp的DNA片段。Agilent 2100BioAnalyzer用于定量经过扩增的DNA,使用Qpcr以准确定量文库浓度。20Pm稀释的文库用于测序。使用Illumina HISeq 2000进行50个循环的单端序列。使用标准Illumina内部流程(pipeline)进行图像处理和序列提取。
[0116] 靶向的BS-seq
[0117] 根据供应商的用法说明,将DNA样品应用于EpiTect亚硫酸氢盐试剂盒(Qiagen)。然后利用Ampure XP珠纯化PCR扩增子,并洗脱在50μl H2O中。浓度用Qubit High Sensitivity试剂盒定量,然后每个样品以相等的摩尔浓度合并。然后按照Illumina推荐的标准程序将混合的扩增子进行文库制备和Miseq深度测序(100×或更深)。使用标准的Illumina内部流程进行图像分析和碱基识别。
[0118] 为了确定GFAP转录起始位点的DNA甲基化状态,使用EZ DNA Methylation-Gold试剂盒(Zymo Research)根据制造商的说明书,用亚硫酸氢钠处理基因组DNA。使用巢式PCR扩增亚硫酸氢盐转化的DNA。然后将纯化的PCR扩增子连接到TOPO-TA载体(Invitrogen)中。纯化重建的质粒,对各个克隆进行测序。从每个时间点随机挑选10个克隆。数据来自2个独立实验。
[0119] 生物信息学分析
[0120] 使用已知技术进行MeDIP-seq的生物信息学分析。简而言之,使用Bowtie将FASTQ序列文件比对到HG19参考基因组。通过ChIP-Seq(MACS)软件的基于模型的分析来鉴定峰。
[0121] 对于BS-seq,首先使用Trimmomatic 0.20对双末端读段进行预处理,以除去接头序列以及3'和5'末端的低质量序列。然后使用Bowtie 0.12.9(-m1-130-n0-e90-X550)将经过预处理的读段比对到我们感兴趣的位点处的C转换为T和G转化为A的序列。仅保留唯一比对读段,并使用MarkDuplicates(Picard Tools 1.82)删除PCR重复。为了避免对由重叠的双末端读段覆盖的参考位置进行计数,剪切掉重叠区域,保留具有较高质量的重叠区域。原始经计算转换的C和G被恢复,并利用SAMTools mpileup对每个参考胞嘧啶位置的C读段和T读段计数。
[0122] 染色质免疫沉淀(ChIP)-定量PCR
[0123] 采用经过微小改变的常规方法进行染色质免疫沉淀(ChIP)实验。简言之,将小分子处理前后培养的人星形胶质细胞用1%甲醛固定10分钟,并用0.125M甘氨酸淬灭5分钟。将染色质用Bioruptor(Diagenode Inc.)超声处理到300-500个碱基对片段的范围。在ChIP程序之后,使用DNA清洁和浓缩试剂盒(Zymo research)纯化洗脱的DNA样品。由Qpcr确定富集程度,归一化为总输入。
[0124] 立体定向注射小分子到小鼠脑中
[0125] 在2月龄的野生型C57BL6小鼠上进行脑手术。通过将20mL/kg 0.25%Avertin(25mg/ml三溴乙醇和25μl/ml叔戊醇的混合物)注射到腹膜中来麻醉小鼠,然后置于立体定向装置中。使用人造眼软膏来覆盖和保护眼睛。对动物进行中线头皮切口和身体感觉皮层上方头骨上的钻孔操作。每只小鼠用2μl注射器和34号针接受小分子混合物或含有6%DMSO的PBS的一次注射(坐标:AP 1.25mm,ML 1.4mm,DV-1.5mm)。注射体积和流速以0.2μl/min控制为2μl。注射后,将针保持至少5分钟,然后慢慢取出。
[0126] 体外细胞悬液培养
[0127] 在小分子注射后6天(dpi),以暴露于CO2的方式处死动物。将脑切开,分离注射位点周围约1.5mm的皮层脑组织,切成0.1×0.1mm的块,用0.5%胰蛋白酶(Gibco)在37℃下处理30分钟,然后在900G下离心8分钟。将细胞沉淀用补充有20ng/ml FGF2和20ng/ml EGF的神经元增殖培养基重悬浮,并将10ml培养基中的约100个细胞接种在具有超低附着表面的6孔板(Corning#3471)中。生长因子每2-3天更新一次。初次接种一周后,观察神经球,并在10倍显微镜(尼康)下计数。为了传代培养(subculture),通过在900G下离心3分钟收集一周龄的原代神经球,并使用细胞消化液(Gibco)在37℃下孵育5分钟。细胞沉淀物在900G下离心5分钟并研磨成单细胞,然后悬浮于神经元增殖培养基中。传代培养后3天,观察二代神经球,并在10×显微镜下计数。为了单层培养,按照上述方案将4日龄的二代神经球进行胰蛋白酶化并再悬浮。将单细胞接种在聚-L-鸟氨酸/层粘连蛋白包被的盖玻片上,并用20ng/ml FGF2和20ng/ml EGF的神经元增殖培养基培养。当细胞达到60-70%融合度时,用4%PFA固定细胞或用含有DMEM/F12、5%FBS、50mg/mlNaHCO3和青霉素/链霉素的神经元分化培养基或神经胶质培养基诱导细胞分化。
[0128] 在本研究中使用以下一抗:
[0129] 多克隆抗绿色荧光蛋白(GFP,鸡,1:1000,Abcam,AB13970)、多克隆抗胶质纤维酸性蛋白(GFAP,兔,1:1000,Abcam,Z0334)、多克隆抗神经胶质纤维酸性蛋白(GFAP,鸡,1:1000,Millipore,AB5541)、单克隆抗S100β(小鼠,1:800,Abcam,ab66028)、多克隆抗囊泡谷氨酸转运蛋白1(vGluT1,兔,1:1000,Synaptic Systems)、多克隆抗囊状谷氨酸转运蛋白(SV2,小鼠,1:2000,开发研究杂交瘤库,爱荷华市)、多克隆抗微管相关蛋白2(MAP2,鸡,1:
2000,Abcam,AB5392)、多克隆抗T-box,脑,1(polyclonal anti-T-box,brain,1,Tbr1,1:
300,兔,Abcam,AB31940)、多克隆抗Prox1(兔,1:1000,ReliaTech GmbH,102-PA32)、多克隆抗musashi-1(兔,1:500,Neuromics,RA14128)、单克隆抗SRY(性别决定区Y)-box2(Sox-2,小鼠,1:500,Abcam,AB79351)、多克隆抗SRY(性别决定区Y)-box2(Sox-2,兔,1:500,Millipore,AB5603)、单克隆抗-Biii微管蛋白(Tuj1,小鼠,1:1000,COVANCE,MMS-435P)、多克隆抗双皮质素(DCX,兔,1:500,Abcam,AB18723)、多克隆抗NeuN(兔,1:1000,Millipore,ABN78)、单克隆抗NG2(小鼠,1:200,Abcam,AB50009)、单克隆抗泛素-轴突神经丝标记物(SMI 312,1:1000,小鼠,Covance,SMI-312R)、多克隆抗神经胶质谷氨酸转运蛋白GLT-1(EAAT2)(Glt1,豚鼠,1:2000,Millipore,AB1783)、单克隆抗NeuroD1(小鼠,1:1000,Abcam,ab60704)、单克隆抗人核(HuNu,小鼠,1:1000,Millipore,MAB1281)、单克隆抗突触小泡蛋白(小鼠,1:800,Millipore,MAB368)、多克隆抗CDP(Cux1,兔,1:500,Santa Cruz,sc-
13024)、单克隆抗Ctip2(大鼠,1:600,Abcam,ab18465)、抗Otx1(小鼠,1:200,开发研究杂交瘤库,爱荷华市,otx-5F5)、抗HoxC9(小鼠,1:200,开发研究杂交瘤库,爱荷华市,5B5-2)、抗HoxB4(小鼠,1:200,开发研究杂交瘤库,爱荷华市,I12抗Hoxb4)、多克隆抗FoxG1(山羊,1:
1000,Abcam ab3394)、多克隆抗囊泡乙酰胆碱转运蛋白(VAChT,豚鼠,1:800,Millipore,AB1588)、单克隆抗GAD67(小鼠,1:1000,Millipore,MAB5406)、抗Isl1(小鼠,1:200,开发研究杂交瘤库,爱荷华市,39.4D5)、单克隆抗酪氨酸羟化酶(TH,小鼠,1:600,Millipore,MAB318)、多克隆抗神经元质蛋白2(Neurogenin2)(Ngn2,兔,1:600,Abcam,ab26190)、单克隆抗NeuroD1(小鼠,1:800,Abcam,ab60704)、多克隆抗MASH1/Acheatescute同系物1(Ascl1,兔,Abcam,ab74065)、单克隆抗巢蛋白(小鼠,1:800,Neuromics,MO15056)、多克隆抗Ki67(兔,1:800,Abcam,ab15580)、单克隆抗N200(小鼠,1:1000,Sigma,N0142)、单克隆抗BrdU(小鼠,1:500,Dako,074401-8)、单克隆抗谷氨酰胺合成酶(GS,小鼠,1:800,Millipore,MAB302)、单克隆抗磷酸化GSK-3β(Ser9)(Ser9)(5B3)(兔,1:100,Cell signaling,9323)、单克隆抗磷酸化细胞信号转导分子1(Smad1)(Ser463/465)/胞信号转导分子5(Smad5)(Ser463/465)/胞信号转导分子9(Smad9)(Ser465/467)(D5B10)(兔,1:600,Cell signaling,13820)、单克隆抗裂解Notch1(Val1744)(D3B8)(兔,1:200,Cell signaling,4147)、单克隆抗CNPase(小鼠,1:800,Abcam,ab6319)、多克隆抗脂质运载蛋白-
2/NGAL(LCN2,山羊,1:1000,R&D,AF1857)。
[0130] 以下抗体用于在CHIP测定中的下拉DNA:多克隆抗乙酰基组蛋白H3(兔,Millipore,06-599);多克隆抗三甲基组蛋白H3(Lys27)(H3K27Me3,兔,Millipore,07-449);和多克隆抗H3K4me3(兔,Active Motif 39159)。
[0131] 实施例9
[0132] 本实施例延伸了前述公开,并且证明了采用四种药物和甚至三种药物足以实现使神经胶质细胞重编程为神经元。具体地,本实施例证明了采用SB431542(TGF-β抑制剂)、LDN193189(BMP抑制剂)、CHIR99021(GSK-3抑制剂)和DAPT(γ-分泌酶和Notch抑制剂)的组合进行重编程可以成功使人神经胶质细胞重编程为功能性神经元。此外,我们还测试了这四种药物中的每一种与其它具有相似作用的药物的组合,并证明了它们都可以使人星形胶质细胞转化为神经元。因此,本公开包括利用作用于以下信号传导通路的一种或其组合的药物组合而使神经胶质细胞重编程为神经元:TGF-β、BMP、GSK-3和γ-分泌酶/Notch信号传导通路。
[0133] 附图15-19中呈现的数据显示出可以替换各种具有相似活性的药物,但仍然发挥重编程的作用。证明能够重编程的特别组合包括:i)LDN193189/CHIR99021/DAPT、ii)SB431542/CHIR99021/DAPT、iii)LDN193189/DAPT/SB431542、和iv)LDN193189/CHIR99021/SB431542。此外,我们证明了LDN193189可以被其功能类似物Dorsomorphin和DMH1代替;SB431542可以被Repsox或A8301代替;CHIR99021可以被其功能类似物ARA014418和SB216763代替;而DAPT可以被其功能类似物BMS906024和RO4929097代替。因此,本公开证明了来自SB431542、LDN193189、CHIR99021和DAPT的组的任何三种药物组合可以使人神经胶质细胞重编程为神经元,同时这些组合中任何一种或多种药物可以被其功能类似物代替却仍然实现重编程。
[0134] 尽管已经通过具体实施方案对本发明进行了描述,然而常规改变对本领域技术人员将是明显的,并且这种改变旨在在本发明的范围内。