车辆转让专利

申请号 : CN201680011077.6

文献号 : CN107249967B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 本多智一佐佐木仁

申请人 : 本田技研工业株式会社

摘要 :

本发明提供一种能够改善转弯时的车辆的姿势控制或操作性能的车辆。车辆(10)具备旋转速度取得机构(76),其取得向转向系统施加转向力或转向附加力的旋转电力机械(70)的旋转速度。驱动控制装置(38)基于旋转电力机械(70)的旋转速度来控制由驱动装置(48)控制的左右驱动力差。

权利要求 :

1.一种车辆(10、10A、10B、10C),其具备:驱动装置(48、44a),其通过控制车辆(10、10A、10B、10C)的左车轮(42a、46a)的驱动力即左驱动力和所述车辆(10、10A、10B、10C)的右车轮(42b、46b)的驱动力即右驱动力,从而能够控制所述左驱动力与所述右驱动力的差异即左右驱动力差;

驱动控制装置(38),其控制所述驱动装置(48、44a);以及旋转电力机械(70),其与转向轮机械连接,并且向包括所述转向轮在内的转向系统施加转向力或转向附加力,所述车辆(10、10A、10B、10C)的特征在于,所述车辆(10、10A、10B、10C)还具备旋转速度取得机构,其取得所述旋转电力机械(70)的旋转速度,所述驱动控制装置(38)基于所述旋转速度,来控制由所述驱动装置(48、44a)控制的所述左右驱动力差。

2.根据权利要求1所述的车辆(10、10A、10B、10C),其特征在于,所述转向系统具有转向量取得机构(52),其取得所述车辆(10、10A、10B、10C)的转向主体的转向量,所述旋转电力机械(70)在转向力传递路径上配置在比所述转向量取得机构(52)靠近所述转向轮的位置,所述转向力或所述转向附加力基于所述转向量来求出。

3.根据权利要求1所述的车辆(10、10A、10B、10C),其特征在于,所述驱动装置(48、44a)包括与所述左车轮(42a、46a)机械连接的左旋转电力机械(24、

24a)和与所述右车轮(42b、46b)机械连接的右旋转电力机械(26、26a)。

4.根据权利要求2所述的车辆(10、10A、10B、10C),其特征在于,所述驱动装置(48、44a)包括与所述左车轮(42a、46a)机械连接的左旋转电力机械(24、

24a)和与所述右车轮(42b、46b)机械连接的右旋转电力机械(26、26a)。

5.根据权利要求2或4所述的车辆(10、10A、10B、10C),其特征在于,所述驱动控制装置(38)除了基于所述旋转速度以外,还基于所述转向量和所述车辆(10、10A、10B、10C)的车轮速度来控制由所述驱动装置(48、44a)控制的所述左右驱动力差。

6.一种车辆(10、10A、10B、10C),其具备:驱动装置(48、44a),其通过控制与车辆(10、10A、10B、10C)的左车轮(42a、46a)机械连接的左旋转电力机械(24、24a)的转矩即左转矩和与所述车辆(10、10A、10B、10C)的右车轮(42b、46b)机械连接的右旋转电力机械(26、26a)的转矩即右转矩,从而能够控制所述左车轮(42a、46a)的转矩和所述右车轮(42b、46b)的转矩;

驱动控制装置(38),其控制所述驱动装置(48、44a);以及旋转电力机械(70),其与转向轮机械连接,并且向包括所述转向轮在内的转向系统施加转向力或转向附加力,所述车辆(10、10A、10B、10C)的特征在于,所述车辆(10、10A、10B、10C)还具备旋转速度取得机构,其取得所述旋转电力机械(70)的旋转速度,所述驱动控制装置(38)基于所述旋转速度来控制所述左转矩及所述右转矩。

7.根据权利要求6所述的车辆(10、10A、10B、10C),其特征在于,所述转向系统具有转向量取得机构(52),其取得所述车辆(10、10A、10B、10C)的转向主体的转向量,所述旋转电力机械(70)在转向力传递路径上配置在比所述转向量取得机构(52)靠近所述转向轮的位置,所述转向力或所述转向附加力基于所述转向量来求出。

8.根据权利要求7所述的车辆(10、10A、10B、10C),其特征在于,所述驱动控制装置(38)除了基于所述旋转速度以外,还基于所述转向量和所述车辆(10、10A、10B、10C)的车轮速度来控制由所述驱动装置(48、44a)控制的所述左转矩及所述右转矩。

说明书 :

车辆

技术领域

[0001] 本发明涉及能够调整左右的驱动轮的驱动力的车辆。

背景技术

[0002] 在日本特开平10-016599号公报(以下称作“JP 10-016599A”)中, 基于由方向盘角传感器48B检测出的方向盘角度(或转向角)来算出方向 盘角速度dθh(或转向角速度dθh),并基于方向盘角速度dθh来进行转向 过渡响应控制(图6、[0149]~[0154])。在转向过渡响应控制中,根据 转向角速度dθh而能够实现基于在转弯时施加于车辆的横向加速度的转矩 移动控制([0117])([0150])。换言之,在JP 10-016599A中,基于转 向角速度dθh来控制左右轮间的动力传递(参照[0001])。
[0003] 如上所述,在JP 10-016599A中,基于转向角速度dθh来控制左右轮 间的动力传递。然而,在JP 10-016599A的技术中,关于左右轮间的动力 传递控制(或左右轮的驱动力差)的控制,存在改善的余地。

发明内容

[0004] 本发明考虑到上述那样的课题而提出,其目的在于,提供一种能够适 当地控制转弯时的左右轮的驱动力差而改善车辆的姿势控制或操作性能 的车辆。
[0005] 本发明的车辆具备:
[0006] 驱动装置,其通过控制车辆的左车轮的驱动力即左驱动力和所述车辆 的右车轮的驱动力即右驱动力,从而能够控制所述左驱动力与所述右驱动 力的差异即左右驱动力差;
[0007] 驱动控制装置,其控制所述驱动装置;以及
[0008] 旋转电力机械,其与转向轮机械连接,并且向包括所述转向轮在内的 转向系统施加转向力或转向附加力,
[0009] 所述车辆的特征在于,
[0010] 所述车辆还具备旋转速度取得机构,其取得所述旋转电力机械的旋转 速度,[0011] 所述驱动控制装置基于所述旋转速度,来控制由所述驱动装置控制的 所述左右驱动力差。
[0012] 此处所说的“驱动力”以除了驱动轮的转矩[N·m]以外还包括能 够根据驱动轮的转矩算出的驱动轮的驱动力[N]这样的含义使用。另外, “左驱动力与右驱动力的差异”包括左驱动力与右驱动力之差的含义、以 及左驱动力与右驱动力之比的含义这两者。而且,“取得旋转速度”的 “取得”包括检测、算出、推定及预测中的任一个。
[0013] 根据本发明,除了转向轮的转向以外,还使用左右驱动力差来控制车 辆的横摆力矩。另外,左右驱动力差基于向车辆的转向系统施加转向力或 转向附加力的旋转电力机械的旋转速度来控制。因此,能够将左右驱动力 差设定为与旋转电力机械的旋转速度连动,由此能够适当控制车辆的横摆 力矩。
[0014] 而且,根据本发明,使用旋转电力机械的旋转速度作为转向状态来控 制左右驱动力差。通常,取得旋转电力机械的旋转速度的旋转速度取得机 构(尤其是其检测元件)处于比转向角取得机构靠转向轮侧的位置。换言 之,转向角取得机构与旋转速度取得机构相比在远离转向轮的位置进行检 测。再换言之,转向角取得机构在将转向盘与转向轮连结的转向转矩的传 递路径(转向力传递路径)上与转向轮相距的距离比旋转速度取得机构与 转向轮相距的距离远。
[0015] 此外,通常设置在转向盘附近的转向角取得机构(尤其是其检测元件) 的安装不要求为了控制旋转电力机械而严格进行的旋转速度取得机构的 安装程度的精度。从这点来看,转向角取得机构与旋转速度取得机构相比 也可能容易包含误差。
[0016] 根据以上,在与转向轮的实际转向角的关系中,转向角取得机构容易 产生相位延迟,与旋转速度取得机构相比容易包含误差。相反,在与转向 轮的实际转向角的关系中,旋转速度取得机构与转向角取得机构相比不容 易包含相位延迟及误差。因此,与使用转向角速度的情况相比,能够以高 的响应性及高的精度控制左右驱动力差。因此,能够改善车辆的姿势控制 或操作性能。
[0017] 所述转向系统也可以具有转向量取得机构,其取得所述车辆的转向主 体的转向量。也可以是,所述旋转电力机械在转向力传递路径上配置在比 所述转向量取得机构靠近所述转向轮的位置,所述转向力或所述转向附加 力基于所述转向量来求出。根据上述内容,基于比转向量取得机构接近转 向轮的旋转电力机械的旋转速度来控制左右驱动力差。因此,与基于转向 速度来控制左右驱动力差的情况相比,能够以高响应性且高精度控制左右 驱动力差。
[0018] 也可以是,所述驱动装置包括与所述左车轮机械连接的左旋转电力机 械和与所述右车轮机械连接的右旋转电力机械。由此,能够迅速且周密地 控制左右驱动力差及与之相伴的车辆的横摆力矩。
[0019] 也可以是,所述驱动控制装置除了基于所述旋转速度以外,还基于所 述转向量和所述车辆的车轮速度来控制由所述驱动装置控制的所述左右 驱动力差。由此,能够更适当地控制左右驱动力差和与之相伴的车辆的横 摆力矩。
[0020] 本发明的车辆具备:
[0021] 驱动装置,其通过控制与车辆的左车轮机械连接的左旋转电力机械的 转矩即左转矩和与所述车辆的右车轮机械连接的右旋转电力机械的转矩 即右转矩,从而能够控制所述左车轮的转矩和所述右车轮的转矩;
[0022] 驱动控制装置,其控制所述驱动装置;以及
[0023] 旋转电力机械,其与转向轮机械连接,并且向包括所述转向轮在内的 转向系统施加转向力或转向附加力,
[0024] 所述车辆的特征在于,
[0025] 所述车辆还具备旋转速度取得机构,其取得所述旋转电力机械的旋转 速度,[0026] 所述驱动控制装置基于所述旋转速度来控制所述左转矩及所述右转 矩。
[0027] 根据本发明,除了转向轮的转向以外,还使用左转矩及右转矩来控制 车辆的横摆力矩。另外,左转矩及右转矩基于向车辆的转向系统施加转向 力或转向附加力的旋转电力机械的旋转速度来控制。因此,能够将左转矩 及右转矩设定为与旋转电力机械的旋转速度连动,由此能够适当控制车辆 的横摆力矩。
[0028] 也可以是,所述驱动控制装置除了基于所述旋转速度以外,还基于所 述转向量和所述车辆的车轮速度来控制由所述驱动装置控制的所述左转 矩以及所述右转矩。由此能够更适当地控制左转矩及右转矩、以及与之相 伴的车辆的横摆力矩。

附图说明

[0029] 图1是本发明的一实施方式的车辆的一部分的简要结构图。
[0030] 图2是表示上述实施方式的所述车辆的驱动系统的一部分的框图。
[0031] 图3是表示关于左右后轮中的外轮的前馈控制用转矩的一例的图。
[0032] 图4是上述实施方式中的EPS马达速度前馈(FF)控制的流程图。
[0033] 图5是表示作为转向角传感器所检测出的转向角的时间微分值的转向 角速度和基于解析器所检测出的电角的EPS马达速度的输出例的图。
[0034] 图6是本发明的第一变形例的车辆的一部分的简要结构图。
[0035] 图7是本发明的第二变形例的车辆的一部分的简要结构图。
[0036] 图8是本发明的第三变形例的车辆的一部分的简要结构图。

具体实施方式

[0037] I.一实施方式
[0038]
[0039] [A-1.车辆10的整体结构]
[0040] 图1是本发明的一实施方式的车辆10的一部分的简要结构图。如图1 所示,车辆10具有驱动系统12及电动动力转向装置14(以下称作“EPS 装置14”)。
[0041] [A-2.驱动系统12]
[0042] (A-2-1.驱动系统12的整体结构)
[0043] 图2是表示本实施方式的车辆10的驱动系统12的一部分的框图。如 图1及图2所示,驱动系统12包括在车辆10的前侧串联配置的发动机20 及第一行驶马达22、在车辆10的后侧配置的第二行驶马达24及第三行驶 马达26、高电压蓄电池28(以下也称作“蓄电池28”)、第一~第三逆变 器30、32、34、驱动系统传感器组36(图2)及驱动电子控制装置38(以 下也称作“驱动ECU38”)。
[0044] 以下,将第一行驶马达22也称作“第一马达22”或“前侧马达22”。 另外,以下将第二行驶马达24也称作“第二马达24”或“左马达24”。 而且,以下将第三行驶马达26也称作“第三马达26”或“右马达26”。
[0045] (A-2-2.发动机20及第一~第三马达22、24、26)
[0046] 发动机20及第一马达22经由传动装置40向左前轮42a及右前轮42b (以下总称作“前轮42”)传递驱动力(以下称作“前轮驱动力Ff”)。 发动机20及第一马达22构成前轮驱动装置44。例如,车辆10在低负荷 时进行仅基于第一马达22的驱动,在中负荷时进行仅基于发动机20的驱 动,在高负荷时进行基于发动机20及第一马达22的驱动。
[0047] 第二马达24的输出轴与左后轮46a的旋转轴连接,向左后轮46a传递 驱动力。第三马达26的输出轴与右后轮46b的旋转轴连接,向右后轮46b 传递驱动力。第二马达24及第三马达26构成后轮驱动装置48。前轮驱动 装置44与后轮驱动装置48在机械上非连接,分别独立设置。以下,将左 后轮46a及右后轮46b合起来总称作后轮46。另外,将从后轮驱动装置 48向后轮46传递的驱动力称作后轮驱动力Fr。
[0048] 发动机20例如是六气缸型发动机,但也可以是两气缸、四气缸或八 气缸型等的其他的发动机。另外,发动机20不限定于汽油发动机,也可 以为柴油发动机、空气发动机等发动机。
[0049] 第一~第三马达22、24、26例如为三相交流无刷式,但也可以为三相 交流电刷式、单相交流式、直流式等的其他的马达。第一~第三马达22、 24、26的规格可以相等也可以不同。本实施方式的第一~第三马达22、24、 26均能够产生正转(使车辆10前进的旋转)方向的转矩以及反转(使车 辆10后退的旋转)方向的转矩。
[0050] (A-2-3.高电压蓄电池28及第一~第三逆变器30、32、34)
[0051] 高电压蓄电池28经由第一~第三逆变器30、32、34向第一~第三马达 22、24、26供给电力,并且将来自第一~第三马达22、24、26的再生电力 Preg充电。
[0052] 蓄电池28是包括多个蓄电池单体的蓄电装置(能量存储器),例如可 以利用锂离子二次电池、镍氢二次电池等。在本实施方式中利用锂离子二 次电池。也可以在蓄电池28的基础上或代替蓄电池28而使用其他蓄电装 置(电容器等)。需要说明的是,也可以在蓄电池28与第一~第三逆变器 30、32、34之间设置未图示的DC/DC转换器,对蓄电池28的输出电压或 第一~第三马达22、24、26的输出电压进行升压或降压。
[0053] 第一~第三逆变器30、32、34为三相全桥型的结构,进行直流/交流转 换。即,第一~第三逆变器30、32、34将直流转换为三相的交流而向第一 ~第三马达22、24、26供给。另外,第一~第三逆变器30、32、34将与第 一~第三马达22、24、26的再生动作相伴的交流/直流转换后的直流向蓄电 池28供给。
[0054] (A-2-4.驱动系统传感器组36)
[0055] 如图2所示,驱动系统传感器组36中包括车速传感器50、转向角传 感器52、横向加速度传感器54(以下称作“横G传感器54”)、车轮速 度传感器56及横摆角速度传感器58。
[0056] 车速传感器50检测车辆10的车速V[km/h]。转向角传感器52检测 转向盘60(转向输入装置)的转向角θst[度]。横G传感器54检测车辆 10(车身)的横向加速度Glat[m/s2]。车轮速度传感器56检测各车轮42a、 42b、46a、46b的旋转速度(以下称作“车轮速度Vwfl、Vwfr、Vwrl、 Vwrr”,总称作“车轮速度Vw”)[m/s]。横摆角速度传感器58检测车 辆10(车身)的横摆角速度Yr(度/s)。
[0057] (A-2-5.驱动ECU38)
[0058] 驱动ECU38通过控制发动机20及第一~第三逆变器30、32、34来控 制发动机20及第一~第三马达22、24、26的输出。驱动ECU38具有输入 输出部、运算部及存储部(均未图示)。另外,驱动ECU38也可以是组合 多个ECU而成的ECU。例如,也可以由与发动机20及第一~第三马达22、 24、26分别对应而设置的多个ECU和对发动机20及第一~第三马达22、 24、26的驱动状态进行管理的ECU来构成驱动ECU38。关于驱动ECU38 的详细情况,如后所述。
[0059] [A-3.EPS装置14]
[0060] EPS装置14进行辅助驾驶员对转向盘60的操作的转向辅助控制。如 图1所示,EPS装置14具有电动动力转向马达70(以下也称作“EPS马 达70”)、解析器72、转向转矩传感器74及电动动力转向电子控制装置 76(以下称作“EPS ECU76”)。作为EPS装置14的结构,例如可以使用 美国专利申请公开第2013/0190986号公报(以下称作“US 2013/0190986 A1”)(例如该公报的图2)所记载的结构。
[0061] EPS马达70为三相交流无刷式,经由蜗杆齿轮及涡轮齿轮(均未图示) 而与转向轴62连结。在转向辅助控制中,EPS马达70根据来自EPS ECU76 的指令来向转向轴62施加驱动力(转向附加力Fad)。此处的转向附加力 Fad是与驾驶员使转向盘60旋转的旋转方向相同的辅助力。或者,转向附 加力Fad也可以为与驾驶员使转向盘60旋转的旋转方向相反的反作用力。
[0062] 本实施方式的EPS马达70配置在比转向角传感器52靠前轮42a、42b 侧的位置。例如,和US 2013/0190986A1的图2中的转向角传感器92与 EPS马达60的位置关系同样。
[0063] 解析器72(旋转速度取得机构的一部分)检测EPS马达70的未图示 的输出轴或外转子的旋转角度即电角θe[deg]。转向转矩传感器74检测 从驾驶员向转向盘60输入的转矩Tst(以下称作“转向转矩Tst”)[N· m]。
[0064] EPS ECU76(旋转速度取得机构的一部分)基于转向转矩Tst、横摆角 速度Yr等来控制EPS马达70,由此控制转向轴62上的转向附加力Fad。 EPS ECU76具有输入输出部、运算部及存储部(均未图示)。本实施方式 的EPS ECU76算出来自解析器72的电角θe的时间微分值即EPS马达速 度ω[rad/sec]。EPS ECU76将算出的EPS马达速度ω经由通信线78向驱 动ECU38输出。
[0065] [A-4.驱动ECU38]
[0066] (A-4-1.驱动ECU38的整体结构(功能块))
[0067] 如上所述,图2是表示本实施方式的车辆10的驱动系统12的一部分 的框图,示出了驱动ECU38的功能块。图3是表示关于左右后轮46a、46b 中的外轮的前馈控制用转矩的一例的图。在驱动ECU38中,对图2所示 的各块的功能进行程序处理。但是,也可以根据需要而将驱动ECU38的 一部分置换为模拟电路或数字电路。
[0068] 如图2所示,驱动ECU38具有转向角比例前馈控制部100(以下称作 “转向角比例FF控制部100”或“FF控制部100”)、EPS马达速度前馈 控制部102(以下称作“EPS马达速度FF控制部102”或“FF控制部 102”)、第一加法器104、第二加法器106、低通滤波器108、反馈控制部 110(以下称作“FB控制部110”)、第一减法器112及第二减法器114。
[0069] (A-4-2.转向角比例FF控制部100)
[0070] 转向角比例FF控制部100执行转向角比例前馈控制(以下称作“转 向角比例FF控制”)。在转向角比例FF控制中,与转向角θst及横向加 速度Glat对应而控制驱动轮(在此为后轮46a、46b)的转矩(驱动力)。
[0071] 具体而言,FF控制部100算出左后轮46a用的转向角比例转矩Tff1l 并将其向第一加法器104输出,算出右后轮46b用的转向角比例转矩Tff1r 并将其向第二加法器106输出。以下,将转向角比例转矩Tff1l、Tff1r总 称作“转向角比例转矩Tff1”或“转矩Tff1”。图3示出了对于左右后轮 46a、46b中的外轮的转矩Tff1的一例。
[0072] 在FF控制部100中,通过与美国专利申请公开第2005/0217921号公 报(以下称作“US 2005/0217921A1”)的前馈控制部(US 2005/0217921 A1的图5的84)同样的结构及处理来算出转矩Tff1。
[0073] 即,FF控制部100基于发动机20的转矩(发动机转矩Teng)和第一 ~第三马达22、24、26的转矩(第一~第三马达转矩Tmot1、Tmot2、Tmot3) 来算出后轮46a、46b用的车轮驱动力F。
[0074] 另外,FF控制部100基于来自车速传感器50的车速V和来自转向角 传感器52的转向角θst来算出横向加速度Glat的推定值(推定横向加速 度Glat_e)。FF控制部100算出使来自横G传感器54的横向加速度Glat (实测值)与推定横向加速度Glat_e相加而得到的横向加速度Glat的修 正值(修正横向加速度Glat_c)。
[0075] 然后,FF控制部100基于修正横向加速度Glat_c来判断左右后轮46a、 46b中的哪一个为外轮。另外,FF控制部100基于修正横向加速度Glat_c 来算出前后分配比及左右分配比。FF控制部100基于判断出的外轮以及 算出的前后分配比及左右分配比来算出与后轮46a、46b相关的外轮/内轮 转矩分配比。
[0076] 接下来,FF控制部100通过使后轮46a、46b用的车轮驱动力F乘以 基于外轮/内轮转矩分配比的比例,来算出转向角比例转矩Tff1l、Tff1r。
[0077] (A-4-3.EPS马达速度FF控制部102)
[0078] EPS马达速度FF控制部102执行EPS马达速度前馈控制(以下称作 “EPS马达速度FF控制”或“马达速度FF控制”)。在马达速度FF控制 中,与来自EPS ECU76的EPS马达速度ω对应而控制驱动轮(在此为后 轮46a、46b)的转矩(驱动力)。
[0079] 具体而言,FF控制部102算出左后轮46a用的EPS马达速度转矩Tff2l 并将其向第一加法器104输出,算出右后轮46b用的EPS马达速度转矩 Tff2r并将其向第二加法器106输出。以下,将EPS马达速度转矩Tff2l、 Tff2r总称作“EPS马达速度转矩Tff2”或“转矩Tff2”。图3示出了对于 左右后轮46a、46b中的外轮的转矩Tff2的一例。
[0080] FF控制部102主要基于EPS马达速度ω来算出转矩Tff2。转矩Tff2 是用于设定与EPS马达速度ω相应的左右后轮46a、46b的转矩差ΔT[N ·m]的转矩。转矩差ΔT(以下也称作“左右转矩差ΔT”)是左右后轮 46a、46b各自的转矩(在此为目标值)之差。参照图4的流程图在后面叙 述EPS马达速度FF控制的详细情况。
[0081] (A-4-4.第一加法器104及第二加法器106)
[0082] 第一加法器104算出来自FF控制部100的转矩Tff1l与来自FF控制 部102的转矩Tff2l之和(以下称作“前馈合计转矩Tff_total_l”或“FF 合计转矩Tff_total_l”)。
[0083] 第二加法器106算出来自FF控制部100的转矩Tff1r与来自FF控制 部102的转矩Tff2r之和(以下称作“前馈合计转矩Tff_total_r”或“FF 合计转矩Tff_total_r”)。
[0084] 以下,将FF合计转矩Tff_total_l、Tff_total_r总称作“FF合计转矩 Tff_total”或“转矩Tff_total”。图3示出了对于左右后轮46a、46b中的 外轮的转矩Tff_total的一例。
[0085] (A-4-5.低通滤波器108)
[0086] 低通滤波器108仅使左后轮46a用的FF合计转矩Tff_total_l中的低频 率成分通过并将其向第一减法器112输出。另外,低通滤波器108仅使右 后轮46b用的FF合计转矩Tff_total_r中的低频率成分通过并将其向第二 减法器114输出。由此,能够避免FF合计转矩Tff_total的急剧变化。其 结果是,能够避免驾驶员对于FF合计转矩Tff_total的急剧的增加的不适 感。
[0087] (A-4-6.FB控制部110)
[0088] FB控制部110执行反馈控制(以下称作“FB控制”)。在FB控制中, 控制驱动轮的转矩(驱动力),以避免在车辆10转弯时车辆10的滑移角 变得过大。
[0089] 具体而言,FB控制部110算出左后轮46a用的反馈转矩Tfbl(以下称 作“FB转矩Tfbl”)并将其向第一减法器112输出,算出右后轮46b用 的反馈转矩Tfbr(以下称作“FB转矩Tfbr”)并将其向第二减法器114 输出。以下,将FB转矩Tfbl、Tfbr总称作“FB转矩Tfb”或“转矩Tfb”。
[0090] 在FB控制部110中,通过与US 2005/0217921A1的反馈控制部(US 2005/0217921A1的图5的86)同样的结构及处理来算出转矩Tfb。
[0091] 即,FB控制部110基于由车速传感器50检测出的车速V、由转向角 传感器52检测出的转向角θst、由横G传感器54检测出的横向加速度Glat 及由横摆角速度传感器58检测出的横摆角速度Yr,来算出车辆10的滑移 角。另外,FB控制部110基于由车速传感器50检测出的车速V及由横G 传感器54检测出的横向加速度Glat来算出滑移角阈值。
[0092] FB控制部110基于所述滑移角与所述滑移角阈值之差来算出FB转矩 Tfbl、Tfbr,以便算出后轮转矩的减少量、外轮转矩的减少量及内轮转矩 的增加量中的至少一方。即,FB控制部110在车辆10的滑移角比规定值 大时,判断为车辆10处于不稳定状态。并且,FB控制部110为了消除该 不稳定状态,算出FB转矩Tfbl、Tfbr,以便实现后轮分配转矩的减少、 外轮分配转矩的减少及内轮分配转矩的增加中的至少一方。
[0093] (A-4-7.第一减法器112及第二减法器114)
[0094] 第一减法器112算出来自低通滤波器108的FF合计转矩Tff_total_l 与来自FB控制部110的FB转矩Tfbl之差(以下称作“合计转矩Ttotal_l” 或“转矩Ttotal_l”)。第二减法器114算出来自低通滤波器108的FF合 计转矩Tff_total_r与来自FB控制部110的FB转矩Tfbr之差(以下称作 “合计转矩Ttotal_r”或“转矩Ttotal_r”)。通过合计转矩Ttotal_l控制第 二马达转矩Tmot2(左马达转矩),通过合计转矩Ttotal_r控制第三马达转 矩Tmot3(右马达转矩)。以下,将合计转矩Ttotal_l、Ttotal_r总称作“合 计转矩Ttotal”或“转矩Ttotal”。
[0095] [A-5.驱动ECU38的输出(转矩Tff1、Tff2、Tff_total)]
[0096] 图3示出了关于左右后轮46a、46b中的外轮的转向角比例转矩Tff1、 EPS马达速度转矩Tff2及FF合计转矩Tff_total的一例。根据图3可知, 当操作转向盘60时,转向角比例转矩Tff1及EPS马达速度转矩Tff2增加。 此时,转向角比例转矩Tff1的上升比较慢。因此,通过加入与转向角比例 转矩Tff1相比上升快的EPS马达速度转矩Tff2,能够加快作为FF合计转 矩Tff_total整体的上升。
[0097]
[0098] [B-1.EPS马达速度FF控制的流程]
[0099] 图4是本实施方式的EPS马达速度FF控制的流程图。在步骤S1中, EPS马达速度FF控制部102从EPS ECU76取得EPS马达速度ω,从转向 角传感器52取得转向角θst,从车轮速度传感器56取得车轮速度Vw,从 横G传感器54取得横向加速度Glat。
[0100] 在步骤S2中,FF控制部102基于转向角θst与车轮速度Vw的组合 来选择映射。此处的映射是规定EPS马达速度ω与EPS马达速度转矩Tff2 的关系的映射。在本实施方式中,将转向角θst与车轮速度Vw的每个组 合的多个上述映射预先存储于驱动ECU38的存储部(未图示)。需要说明 的是,此处的车轮速度Vw是关于能够变更左右的驱动力分配比的车轮(在 此为后轮46a、46b)的速度,例如可以使用车轮速度Vwrl、Vwrr的平均 值。或者,也可以使用车轮速度Vwrl、Vwrr中的大的一方或小的一方的 值。另外,如后所述,也可以使用除了利用映射以外的方法。
[0101] 在各映射中,以在EPS马达速度ω为相等的值时,与左右后轮46a、 46b的车轮速度Vw低的情况相比车轮速度Vw高的情况的EPS马达速度 转矩Tff2小的方式,规定EPS马达速度ω与EPS马达速度转矩Tff2的关 系。另外,在各映射中,以在EPS马达速度ω为相等的值时,与转向角θst 大的情况相比转向角θst小的情况的EPS马达速度转矩Tff2小的方式,规 定EPS马达速度ω与EPS马达速度转矩Tff2的关系。
[0102] 在步骤S3中,FF控制部102在步骤S2中选择出的映射中,选择与在 步骤S1中取得的EPS马达速度ω对应的EPS马达速度转矩Tff2。
[0103] 在步骤S4中,FF控制部102基于在步骤S1中取得的横向加速度Glat 来确定车辆10的转弯方向。
[0104] 在接下来的步骤S5中,FF控制部102对左右后轮46a、46b中的外轮 适用EPS马达速度转矩Tff2,对内轮适用使EPS马达速度转矩Tff2带有 负号的值-Tff2。即,FF控制部102针对外轮而对第一加法器104或第二 加法器106输出EPS马达速度转矩Tff2,针对内轮而对第一加法器104 或第二加法器106输出使EPS马达速度转矩Tff2带有负号的值-Tff2。
[0105] [B-2.基于EPS马达速度FF控制的有无的比较]
[0106] 图5是表示作为转向角传感器52所检测出的转向角θst的时间微分值 的转向角速度Vθst和基于解析器72所检测出的电角θe的EPS马达速度ω 的输出例的图。在图5的例子中,示出了转向角速度Vθst及EPS马达速 度ω分别适用了低通滤波器的波形。
[0107] 根据图5可知,与转向角速度Vθst相比,EPS马达速度ω的响应性 高且细小的变动(或噪声)少。其主要原因如下。
[0108] 即,如上所述,在本实施方式中,EPS马达70用的解析器72处于比 转向角传感器52靠前轮42a、42b(转向轮)侧的位置。换言之,转向角 传感器52与解析器72相比在远离前轮42a、42b的位置进行检测。再换 言之,转向角传感器52在将转向盘60与前轮42a、42b连结的转向转矩 Tst的传递路径(转向力传递路径)上与前轮42a、42b相距的距离比解析 器72与前轮42a、42b相距的距离远。
[0109] 因此,在与前轮42a、42b的实际转向角的关系中,转向角传感器52 容易产生相位延迟,与解析器72相比容易包含误差。相反,在与前轮42a、 42b的实际转向角的关系中,解析器72与转向角传感器52相比不容易包 含相位延迟及误差。需要说明的是,此处所说的相位延迟例如因转向力传 递路径中的轴(转向轴62等)的扭曲、连结机构(齿条-小齿轮机构等) 中的游隙等而产生。
[0110] 此外,通常设置在转向盘60附近的转向角传感器52的安装不要求为 了控制EPS马达70而严格进行的解析器72的安装程度的精度。从这点来 看,转向角传感器52与解析器72相比也可能容易包含误差(图5中的细 小的振动)。
[0111] 如以上那样,与转向角速度Vθst相比,EPS马达速度ω响应性高且 细小的变动(或噪声)少。因此,与作为比较例的转向角微分前馈控制(以 下称作“转向角微分FF控制”)相比,本实施方式的EPS马达速度FF 控制能够以高响应性且高精度进行转矩Tff2的算出。此处的转向角微分 FF控制是如下控制:在图4的流程图中,代替EPS马达速度ω而使用转 向角θst的时间微分值即转向角速度Vθst来算出转矩Tff2。
[0112]
[0113] 如上所述,转向辅助控制是由EPS装置14(EPS ECU76)进行的控制, 控制用于对驾驶员的转向进行辅助的转向附加力Fad。转向附加力Fad作 为转矩而示出,为与驾驶员的转向转矩Tst相同的方向。
[0114] EPS ECU76基于转向转矩Tst、横摆角速度Yr等来算出EPS马达70 的目标基准电流Iref。目标基准电流Iref是用于对驾驶员的转向进行辅助 的马达电流Im的基准值,基本上其绝对值随着转向转矩Tst的绝对值增大 而增加。需要说明的是,在目标基准电流Iref的算出时,可以利用所谓的 惯性控制、阻尼控制等。EPS ECU76以使马达电流Im与目标马达电流Imtar 一致的方式使EPS马达70的输出变化。
[0115]
[0116] 如以上那样,根据本实施方式,除了前轮42a、42b(转向轮)的转向 以外,还使用与转矩差ΔT(左右驱动力差)相关的转矩Tff2来控制车辆 10的横摆力矩(图2及图4)。另外,转矩差ΔT基于向车辆10的转向轴 62施加转向附加力Fad的EPS马达70的EPS马达速度ω(旋转电力机械 的旋转速度)来控制(图2、图4)。因此,能够将转矩差ΔT设定为与EPS 马达速度ω连动,由此能够适当地控制车辆10的横摆力矩。
[0117] 而且,根据本实施方式,使用EPS马达速度ω(旋转电力机械的旋转 速度)作为转向状态,来控制与转矩差ΔT(左右驱动力差)相关的转矩 Tff2(图2、图4)。
[0118] 解析器72(旋转速度取得机构的检测元件)处于比转向角传感器52 (转向角取得机构)靠前轮42a、42b(转向轮)侧的位置。换言之,转向 角传感器52与解析器72相比在远离前轮42a、42b的位置进行检测。再 换言之,转向角传感器52在将转向盘60与前轮42a、42b连结的转向转 矩Tst的传递路径(转向力传递路径)上与前轮42a、42b相距的距离比解 析器72与前轮42a、42b相距的距离远。
[0119] 另外,通常设置在转向盘60附近的转向角传感器52的安装不要求为 了控制EPS马达70而严格进行的解析器72的安装程度的精度。从这点来 看,转向角传感器52与解析器72相比也可能容易包含误差(图5中的细 小的振动)。
[0120] 根据以上,在与前轮42a、42b的实际转向角的关系中,转向角传感器 52容易产生相位延迟,且与解析器72相比容易包含误差。相反,在与前 轮42a、42b的实际转向角的关系中,解析器72与转向角传感器52相比 不容易包含相位延迟及误差。因此,与使用转向角速度Vθst的情况相比, 能够以高的响应性及高的精度控制转矩差ΔT(参照图5)。因此,能够改 善车辆10的姿势控制或操作性能。
[0121] 本实施方式中的转向系统具有取得车辆10的转向角θst(驾驶员(转 向主体)的转向量)的转向角传感器52(转向量取得机构)(图2)。另外, EPS马达70在转向转矩Tst的传递路径(转向力传递路径)上配置在比转 向角传感器52靠近前轮42a、42b(转向轮)的位置。在EPS ECU76进行 的转向辅助控制中,转向附加力Fad基于转向角θst(转向量)来求出。
[0122] 根据上述内容,基于根据比转向角传感器52接近前轮42a、42b的解 析器72所检测出的电角θe而算出的EPS马达速度ω(旋转速度),来控 制与转矩差ΔT(左右驱动力差)相关的转矩Tff2。因此,与基于根据转 向角传感器52所检测出的转向角θst算出的转向角速度Vθst来控制转矩 Tff2的情况相比,能够以高响应性且高精度控制转矩差ΔT。
[0123] 在本实施方式中,后轮驱动装置48(驱动装置)包括与左后轮46a机 械连接的左马达24(左旋转电力机械)和与右后轮46b机械连接的右马达 26(右旋转电力机械)(图1)。由此,例如与后述的第二变形例(图7) 及第三变形例(图8)相比,能够迅速且周密地控制左右转矩差ΔT(左右 驱动力差)及与之相伴的车辆10的横摆力矩。
[0124] 在本实施方式中,驱动ECU38(驱动控制装置)除了基于EPS马达速 度w(旋转速度)以外,还基于转向角θst(转向量)和车轮速度Vw来控 制左右转矩差ΔT(左右驱动力差)(图4的S2、S3)。由此,能够更适当 地控制转矩差ΔT以及与之相伴的车辆10的横摆力矩。
[0125] II.变形例
[0126] 需要说明的是,本发明没有限定于上述实施方式,当然能够基于本说 明书的记载内容而采用各种结构。例如,可以采用以下的结构。
[0127]
[0128] 在上述实施方式中,对作为机动四轮车的车辆10进行了说明(图1)。 然而,例如从基于EPS马达速度ω来调整左后轮46a(左驱动轮)与右后 轮46b(右驱动轮)的转矩差ΔT(左右驱动力差)的观点出发,则不限定 于此。例如,也可以是机动三轮车及机动六轮车中的任一个。
[0129] 在上述实施方式中,车辆10具有一个发动机20及三个行驶马达22、 24、26来作为驱动源(原动机)(图1),但驱动源不限定于该组合。例如, 车辆10也可以具有前轮42用的一个或多个行驶马达、后轮46用的一个 或多个行驶马达来作为驱动源。例如,可以仅将一个行驶马达用于前轮42 用或后轮46用的行驶马达。在该情况下,使用差动装置向左右轮分配驱 动力即可。另外,也可以采用向全部的车轮分别分配独立的行驶马达(包 括所谓的轮毂电机)的结构。
[0130] 在上述实施方式中,通过具有发动机20及第一马达22的前轮驱动装 置44来驱动前轮42,通过具有第二马达24及第三马达26的后轮驱动装 置48来驱动后轮46(图1)。然而,例如从基于EPS马达速度ω来调整 左车轮与右车轮的转矩差ΔT(动力差)的观点出发,则不限定于此。例 如,在上述实施方式中,调整转矩差ΔT(动力差)的对象为左右后轮46a、 46b,但根据车辆10的结构的不同,也可以调整前轮42a、42b的转矩差ΔT。
[0131] [A-1.第一变形例]
[0132] 图6是本发明的第一变形例的车辆10A的一部分的简要结构图。在车 辆10A的驱动系统12a中,使上述实施方式的车辆10的前轮驱动装置44 及后轮驱动装置48的结构相反。即,车辆10A的前轮驱动装置44a具备 在车辆10A的前侧配置的第二行驶马达24a及第三行驶马达26a。另外, 车辆10A的后轮驱动装置48a具备在车辆10A的后侧串联配置的发动机 
20a及第一行驶马达22a。需要说明的是,在图6中,省略了EPS装置14 的图示(后述的图7及图8也同样)。
[0133] [A-2.第二变形例]
[0134] 图7是本发明的第二变形例的车辆10B的一部分的简要结构图。在车 辆10B的驱动系统12b中,将来自发动机20的驱动力(以下称作“驱动 力Feng”)向前轮42a、42b及后轮46a、46b传递。由此,除了前轮42a、 42b(主驱动轮)以外,还将后轮46a、46b(副驱动轮)作为驱动轮。需 要说明的是,也可以与上述实施方式(图1)同样地在发动机20上连接有 马达
22。
[0135] 车辆10B具有传递离合器150、传动轴152、差速器齿轮154、差速器 齿轮输出轴156a、156b(以下也称作“输出轴156a、156b”)、第一离合 器158、左输出轴160、第二离合器
162及右输出轴164。
[0136] 传递离合器150基于来自驱动ECU38的指令来调整经由传动轴152 向后轮46a、46b分配的来自发动机20的驱动力Feng。差速器齿轮154将 经由传动轴152传递的向后轮46a、46b的驱动力Feng均等分配给左右的 输出轴156a、156b。
[0137] 第一离合器158基于来自驱动ECU38的指令来调整接合程度而将来 自输出轴156a的驱动力向与左后轮46a连结固定的左输出轴160传递。 第二离合器162基于来自驱动ECU38的指令来调整接合程度而将来自输 出轴156b的驱动力向与右后轮46b连结固定的右输出轴164传递。
[0138] 通过上述那样的结构,在车辆10B中,能够独立调整后轮46a、46b 的驱动力(转矩)。
[0139] 在第二变形例的车辆10B中,发动机20(原动机)与左后轮46a(左 驱动轮)经由第一离合器158(第一动力传递机构)连接。另外,发动机 20与右后轮46b(右驱动轮)经由第二离合器162(第二动力传递机构) 连接。第一离合器158及第二离合器162不仅能够进行连接状态与切断状 态的简单的切换,还能够调整滑动程度而将连接状态或切断状态切换为多 个阶段。
[0140] 另外,驱动ECU38(控制部)基于EPS马达70的EPS马达速度ω来 控制第一离合器158及第二离合器162,从而调整左后轮46a与右后轮46b 的转矩差ΔT。
[0141] 而且,第一离合器158能够对连接状态和切断状态进行切换,在连接 状态下,在发动机20与左后轮46a之间进行动力传递,在切断状态下, 在发动机20与左后轮46a之间进行动力切断。同样,第二离合器162能 够对连接状态和切断状态进行切换,在连接状态下,在发动机20与右后 轮46b之间进行动力传递,在切断状态下,在发动机20与右后轮46b之 间进行动力切断。另外,驱动ECU38基于EPS马达速度ω来切换第一离 合器158及第二离合器162的连接状态和切断状态,由此调整左后轮46a 与右后轮46b的转矩差ΔT。
[0142] 根据上述内容,驱动ECU38通过第一离合器158及第二离合器162 的断接来调整左右后轮46a、46b的转矩差ΔT。由此,能够通过第一离合 器158及第二离合器162的连接及切断来调整左右后轮46a、46b的转矩 差ΔT。因此,能够以高的响应性产生转矩差ΔT。
[0143] [A-3.第三变形例]
[0144] 图8是本发明的第三变形例的车辆10C的一部分的简要结构图。与第 二变形例的车辆10B的驱动系统12b同样,在车辆10C的驱动系统12c 中,将来自发动机20的驱动力(驱动力Feng)向前轮42a、42b及后轮 46a、46b传递。由此,除了前轮42a、42b(主驱动轮)以外,还将后轮 46a、46b(副驱动轮)作为驱动轮。对与车辆10B相同的构成要素标注同 一参照符号并省略说明。需要说明的是,也可以与上述实施方式(图1) 同样地在发动机20上连接有马达22。
[0145] 车辆10C除了传递离合器150、传动轴152、差速器齿轮154、差速器 齿轮输出轴156a、156b(输出轴156a、156b)、左输出轴160及右输出轴 164以外,还具有第一再分配机构
170及第二再分配机构172。
[0146] 第一再分配机构170在车辆10C左转弯时,将从差速器齿轮154分配 或分支给左后轮46a用的驱动力的一部分或全部向右后轮46b传递。第一 再分配机构170具备左转弯离合器、左后轮46a用太阳齿轮、三联小齿轮 及右后轮46b用太阳齿轮(均未图示)。
[0147] 第二再分配机构172在车辆10C右转弯时,将从差速器齿轮154分配 或分支给右后轮46b用的驱动力的一部分或全部向左后轮46a传递。第二 再分配机构172具备右转弯离合器、右后轮46b用太阳齿轮、三联小齿轮 及左后轮46a用太阳齿轮(均未图示)。
[0148] 需要说明的是,第一再分配机构170的左转弯离合器及第二再分配机 构172的右转弯离合器不仅能够进行连接状态与切断状态的简单的切换, 还能够调整滑动程度而将连接状态或切断状态切换为多个阶段。
[0149] 通过上述那样的结构,在车辆10C中,能够独立地调整后轮46a、46b 的驱动力。
[0150]
[0151] 在上述实施方式中,使第一~第三行驶马达22、24、26为三相交流无 刷式,但不限定于此。例如,也可以使第一~第三行驶马达22、24、26为 三相交流电刷式、单相交流式或直流式。
[0152] 在上述实施方式中,第一~第三行驶马达22、24、26由高电压蓄电池 28供给电力,但除此以外,还可以由燃料电池供给电力。
[0153]
[0154] [C-1.EPS装置14的整体结构]
[0155] 上述实施方式的EPS装置14是EPS马达70向转向轴62传递转向附 加力Fad的结构(所谓的转向柱辅助式EPS装置)(图1)。然而,只要产 生转向附加力Fad,则EPS装置14的结构就不限定于此。例如,也可以 是小齿轮辅助式EPS装置、双小齿轮辅助式EPS装置、齿条辅助式EPS 装置及电动液压动力转向装置中的任一方。需要说明的是,在电动液压动 力转向装置中,由电动泵产生液压,通过该液压生成转向附加力Fad。
[0156] 在上述实施方式中,是将驾驶员施加的转向转矩Tst直接向前轮42a、 42b传递的结构(以下,也称作“直接传递方式”),但也可以适用于线控 转向式的EPS装置。在线控转向式的EPS装置的情况下,驾驶员的转向 转矩Tst不向转向轮(前轮42a、42b)传递,EPS装置生成转向力自身。 换言之,在线控转向式的EPS装置中,代替转向附加力Fad而将转向力(转 向转矩Tst)自身向车辆10的转向系统施加。
[0157] [C-2.EPS马达70]
[0158] 在上述实施方式中,使EPS马达70为三相交流无刷式,但不限定于 此。例如,也可以使马达70为三相交流电刷式、单相交流式或直流式。
[0159]
[0160] [D-1.整体]
[0161] 在上述实施方式中,分别进行了转向角比例FF控制、EPS马达速度 FF控制及FB控制(参照图2)。然而,例如若着眼于EPS马达速度FF控 制,则也可以省略转向角比例FF控制及FB控制中的一方或两方。
[0162] 在上述实施方式中,假想基于搭乘于车辆10的驾驶员(转向主体) 对加速踏板的操作来控制前轮驱动装置44及后轮驱动装置48的转矩的情 况。然而,例如从控制前轮驱动装置44及后轮驱动装置48的转矩的观点 出发,则不限定于此。例如,还能够将本发明适用于在车辆10中自动地 控制前轮驱动装置44及后轮驱动装置48的转矩的结构(进行所谓的自动 驾驶的结构)。需要说明的是,此处所说的自动驾驶可以不限定于前轮驱 动装置44及后轮驱动装置48的转矩,转向也自动地进行。另外,还能够 将本发明适用于驾驶员从车辆10的外部进行远程操作的结构。
[0163] 在上述实施方式中,驱动ECU38进行了以前轮驱动装置44及后轮驱 动装置48的转矩自身为运算对象的控制(图2)。然而,例如从控制前轮 驱动装置44及后轮驱动装置48的转矩(驱动动力量)的观点出发,则不 限定于此。例如,驱动ECU38也可以进行代替转矩而以能够与转矩换算 的输出或驱动力为运算对象的控制。
[0164] [D-2.EPS马达速度FF控制]
[0165] 在上述实施方式中,将基于转向角θst及车轮速度Vw的映射和EPS 马达速度ω用于EPS马达速度转矩Tff2的算出(选择)(图4的S2、S3)。 然而,例如若着眼于转矩Tff2的利用,则不限定于此。例如,也可以预先 设置规定EPS马达速度ω与转矩Tff2的关系的单一的映射,使用该单一 的映射来选择或算出转矩Tff2。换言之,在图4中,也可以省略步骤S2 而保留步骤S3。
[0166] 在上述实施方式中,对左右后轮46a、46b中的外轮施加转矩Tff2,从 内轮减去转矩Tff2(换言之,施加了-Tff2)。然而,例如若从除了转向角 θst以外还基于EPS马达速度ω来调整左后轮46a(左驱动轮)与右后轮 46b(右驱动轮)的转矩差ΔT(动力差)的观点出发,则不限定于此。例 如,也可以形成为仅对外轮施加转矩Tff2的结构或仅从内轮减去转矩Tff2 的结构。
[0167] 在上述实施方式中,在EPS马达速度ω快的情况下,增大转矩差ΔT (图4的S3)。然而,相反也可以在EPS马达速度ω快的情况下,减小转 矩差ΔT。由此,例如容易防止在雪道等中进行了急转舵的情况下的车辆 10的滑移。
[0168] [D-3.EPS马达速度ω]
[0169] 在上述实施方式中,根据解析器72所检测出的电角θe直接算出EPS 马达速度ω[rad/sec]。然而,例如从使用EPS马达70的旋转速度的观点 出发,则不限定于此。例如也可以根据电角θe求出EPS马达70的机械角, 并根据机械角来算出EPS马达速度ω。
[0170] [D-4.其他]
[0171] 在上述实施方式中,直接使用根据EPS马达速度ω而使转矩Tff2变 化的EPS马达速度FF控制(图4)。然而,例如从基于马达速度ω来设定 转矩Tff2(规定左右转矩差ΔT的转矩)的观点出发,则不限定于此。例 如,也可以根据EPS马达速度ω的时间微分值(马达加速度)来修正基 于EPS马达速度ω而算出的转矩Tff2。
[0172] 在上述实施方式中,在EPS马达速度FF控制中,根据EPS马达速度 ω而使左右后轮46a、46b的转矩差ΔT变化(图4的S3)。然而,例如从 根据EPS马达速度ω而使左右后轮46a、
46b的转矩变化的观点出发,则 不限定于此。例如,也可以是除了转矩差ΔT的调整以外或代替转矩差ΔT 的调整,根据EPS马达速度ω来增加或减少FF合计转矩Tff_total(例如 转矩Tff2)。例如,在EPS马达速度ω增加了的情况下,能够使FF合计 转矩Tff_total增加。
[0173] 上述实施方式的后轮驱动装置48(驱动装置)能够控制作为左驱动力 与右驱动力的差异即左右驱动力差的左右转矩差ΔT,但不限定于此。例 如,后轮驱动装置48也可以除了左右驱动力差以外,还控制左驱动力与 右驱动力之和即左右驱动力和。
[0174] III.符号说明
[0175] 10、10A、10B、10C…车辆
[0176] 24、24a…左马达(左旋转电力机械)
[0177] 26、26a…右马达(右旋转电力机械)
[0178] 38…驱动ECU(驱动控制装置)
[0179] 42a…左前轮(转向轮)
[0180] 42b…右前轮(转向轮)
[0181] 44、44a…前轮驱动装置(驱动装置)
[0182] 46a…左后轮
[0183] 46b…右后轮
[0184] 48、48a…后轮驱动装置(驱动装置)
[0185] 52…转向角传感器(转向量取得机构)
[0186] 70…EPS马达(旋转电力机械)
[0187] 72…解析器(旋转速度取得机构的一部分)
[0188] 76…EPS ECU(旋转速度取得机构的一部分)
[0189] Fad…转向附加力
[0190] Tmot2…第二马达转矩(左马达转矩)
[0191] Tmot3…第三马达转矩(右马达转矩)
[0192] Vw…车轮速度
[0193] ΔT…左右转矩差(左右驱动力差)
[0194] θst…转向角(转向量)
[0195] ω…EPS马达速度(旋转速度)