一种探针载体和葡萄糖探针及其制备方法与应用转让专利

申请号 : CN201710391035.6

文献号 : CN107255662B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 崔小强李威威张雷

申请人 : 吉林大学

摘要 :

本发明公开一种探针载体和葡萄糖探针及其制备方法与应用。探针载体包括不锈钢针和包覆不锈钢针的纳米金层;所述纳米金层的表层具有三维连续纳米孔道结构。这种一次性纳米多孔金针相对传统的纯金线、金箔等制备的多孔金同时具有较低的成本、更高的机械强度、多孔金的性质、更适于工业化生产等优点,可作为一种一次性可植入人体的生物传感器的微型电极载体应用。数据表明这种一次性纳米多孔金针提高了NiCo2O4的导电性和电化学活性面积,从而有效的提高了NiCo2O4的葡萄糖传感性能。

权利要求 :

1.一种葡萄糖探针的制备方法,其特征在于,包括以下步骤:

(1)取不锈钢针,电镀15 μm 20 μm厚的纳米金层;

~

(2)将无水ZnCl2在60 ℃水浴条件下溶解在苯甲醇BA中,得到浓度为1.5 M 的ZnCl2/BA电解液;

(3)以步骤( 1) 获得的探针为工作电极,Zn片为对电极,Zn线为参比电极,组装成三电极电化学体系,在120 ℃条件下将步骤(2)得到的电解液进行扫描循环电化学刻蚀,电化学窗口:-0.72 V 1. 88 V,扫描速率:10 mV/s,经过40圈合金/去合金化循环过程,金层表面~得到刻蚀,表面形成多孔结构;

(4)将步骤( 3) 处理后的探针依次利用丙酮、乙醇和去离子水清洗,然后再在硝酸溶液里浸泡,硝酸和去离子水体积比为1:4,最后用去离子水清洗干净;

(5)将Co(NO3)2·6H2O和Ni(NO3)2·6H2O分别以10mM、5mM充分溶解在去离子水中,搅拌均匀作为电解液,对步骤( 4) 处理后的探针进行电沉积,沉积电压为-0.8 V ,vs. SCE,电沉积420 s后在纳米金层的孔结构表面上得到Ni/Co双金属氢氧化物;

(6)将步骤( 5) 中所得样品在马弗炉中以1 ℃/min 升温速率升温到300 ℃,保温2 h,冷却到室温即得到一次性纳米多孔金针/NiCo2O4异质结电极材料;

所述NiCo2O4纳米片仅负载于纳米金层表层的三维连续纳米孔道结构的内壁。

2.一种权利要求1所述方法制备的葡萄糖探针的应用,其特征在于,以植入式葡萄糖探针为工作电极,Pt片为对电极,SCE为参比电极,利用循环伏安法对葡萄糖浓度进行测试。

说明书 :

一种探针载体和葡萄糖探针及其制备方法与应用

技术领域

[0001] 本发明属于生物传感技术领域,具体涉及一种探针载体和葡萄糖探针及其制备方法与应用。

背景技术

[0002] 随着人们生活水平的提高,糖尿病发病率呈逐年升高且有年轻化趋势,已成为仅次于心血管病、癌症的第三大疾病,而体内血糖浓度的实时监测对于糖尿病的诊断和控制是至关重要的,因此许多研究使用具有巨大潜力的纳米技术来取代传统的有酶型葡萄糖传感器以期待提高葡萄糖生物传感器的性能。过渡金属氧化物、硫化物、磷化物等纳米材料逐步有了深入的研究。其中,尖晶石型NiCo2O4作为一种混合型过渡金属氧化物相对单金属氧化物具有较高的催化活性、抗干扰能力和导电性等,然而NiCo2O4低的固有导电率阻碍了其实际应用,与导电性好的基底材料复合是提高它们导电性的主要方法之一。而纳米多孔金作为一种三维纳米多孔金属因具有较好的导电性和较高的比表面积而在传感器上表现出了独有的优势。但是传统用纯金线或金箔做的多孔金具有非常昂贵的价格而不能工业化生产以及纯金较低的机械强度使其无法作为可植入人体进行实时监测体内葡萄糖浓度的电极载体材料。

发明内容

[0003] 本发明针对现有技术的不足,提供了一种植入式探针载体和植入式葡萄糖探针及其制备方法与应用。
[0004] 本发明的目的是通过以下技术方案实现的:一种探针载体,包括不锈钢针和包覆不锈钢针的纳米金层;所述纳米金层的表层具有三维连续纳米孔道结构。
[0005] 一种葡萄糖探针,包括权利要求1所述的植入式探针载体和NiCo2O4纳米片,所述NiCo2O4纳米片仅负载于纳米金层表层的三维连续纳米孔道结构的内壁,与纳米金层形成异质结。
[0006] 一种葡萄糖探针的制备方法,包括以下步骤:
[0007] (1)取不锈钢针,电镀15μm~20μm厚的纳米金层。
[0008] (2)将无水ZnCl2在60℃水浴条件下溶解在苯甲醇中,得到浓度为1.5M的ZnCl2/BA电解液;
[0009] (3)以步骤1获得的探针为工作电极,Zn片为对电极,Zn线为参比电极,组装成三电极电化学体系,在120℃条件下进行扫描循环电化学刻蚀,电化学窗口:-0.72V~1.88V,扫描速率:10mV/s,经过40圈合金/去合金化循环过程,金层表面得到刻蚀,表面形成多孔结构。
[0010] (4)将步骤3处理后的探针依次利用丙酮、乙醇和去离子水清洗,然后再在硝酸溶液里(硝酸和去离子水体积比为1:4)浸泡,最后用去离子水清洗干净。
[0011] (5)将Co(NO3)2·6H2O和Ni(NO3)2·6H2O分别以10mM、5mM充分溶解在去离子水中,搅拌均匀作为电解液,对步骤4处理后的探针进行电沉积,沉积电压为-0.8V(vs.SCE),电沉积420s后在纳米金层的孔结构表面上得到Ni/Co双金属氢氧化物;
[0012] (6)将步骤5中所得样品在马弗炉中以1℃/min升温速率升温到300℃,保温2h,冷却到室温即得到一次性纳米多孔金针/NiCo2O4异质结电极材料。
[0013] 进一步地,所述生物传感器以植入式探针为工作电极,Pt片为对电极,SCE为参比电极,利用循环伏安法对葡萄糖浓度进行测试。
[0014] 上述技术方案带来的有益效果在于:本发明通过改进传统的电极结构,用不锈钢针来取代金线等内部的不起催化作用的金来大大减少电极的成本,增强电极的机械强度,这样就可以使多孔金电极工业化生产,同时,纳米金层的表层具有三维连续纳米孔道结构不仅提供的高比表面积,且极利于不同活性材料的表面负载。
[0015] 另一方面,本发明通过电沉积及退火后处理的方式使混合型金属氧化物与纳米多孔金三维纳米孔道结构内形成异质结,通过控制反应条件,成功地将NiCo2O4纳米片沉积在三维连续纳米孔道内表面,并保持三维纳米多孔结构和孔道外壁原有的金活性位点,提高其比表面积及导电性,增强其电子和溶质传输能力,使其电催化性能得到改善,表现出了高催化活性、抗干扰性好、响应快、线性范围宽等优越性能。

附图说明

[0016] 图1、纳米多孔金针新型结构载体及其与NiCo2O4纳米片复合电极材料的制备过程,其中:a)金针(外层电镀上约15μm厚金层的不锈钢针);b)纳米多孔金针;c)纳米多孔金针/钴酸镍复合结构材料
[0017] 图2、纳米多孔金针截面扫描电镜图,插图:多孔金针直径表征
[0018] 图3、微结构和成分表征,其中:a)多孔金扫描电镜图;b)多孔金/NiCo2O4扫描电镜图;c)多孔金/NiCo2O4复合材料投射电镜图;d)NiCo2O4的选区电子衍射图;
[0019] 图4、不同沉积时间下的扫描电镜图及对应的CV曲线。
[0020] 图5、葡萄糖传感性能表征,其中:(a)SS/NiCo2O4、Au/NiCo2O4和NPG/NiCo2O4复合电极I-T曲线;(b)校准曲线;(c)抗干扰性能测试;(d)血清检测曲线。

具体实施方式

[0021] 下面结合实施例对本发明作进一步说明,所举实例只用于解释本发明,并非用于限定本发明范围。
[0022] 实施例1:本实施例制备一种探针载体,具体包括以下步骤:
[0023] a、将直径约为300μm的金针(外层电镀上约15μm厚金层的不锈钢针)依次利用丙酮、乙醇和去离子水清洗,干燥后作为工作电极待用。
[0024] b、将无水ZnCl2在60℃水浴条件下溶解在苯甲醇中得到浓度为1.5M的ZnCl2/BA电解液;
[0025] c、分别以金针为工作电极,Zn片为对电极,Zn线为参比电极,组装成三电极电化学体系,在120℃条件下进行扫描循环电化学刻蚀(电化学窗口:-0.72V~1.88V,扫描速率:10mV/s),经过40圈合金/去合金化循环过程,便得到由外到内依次是多孔金层、实体金层、不锈钢的一次性纳米多孔金针微电极新型载体;
[0026] d、将所得一次性多孔金针依次利用丙酮、乙醇和去离子水清洗,然后再在硝酸溶液里(硝酸和去离子水体积比为1:4)浸泡,最后用去离子水清洗干净。
[0027] 图2为多孔金针表征图,从图中可看出多孔金针长和直径大约为3.5cm和0.3mm,金层厚度约15μm,表层的纳米多孔金层约1.5μm厚,得到的金针具很好的韧性。从图3a中可以看出,表面粗糙具有三维连续纳米孔道结构,经测试,其孔道直径在60-400nm之间,与实体金针相比大大提高了其比表面积。
[0028] 实施例2:本实施例采用实施例1制备出的一次性纳米多孔金针制备NPG/NiCo2O4异质结电极材料,包括以下步骤:
[0029] a、将以浓度比例为2:1的Co(NO3)2·6H2O和Ni(NO3)2·6H2O充分溶解在去离子水中,浓度分别为10mM、5mM,搅拌均匀作为电解液;
[0030] b、用自制金属板将一定长度的权利要求1所述的一次性纳米多孔金针固定在所配溶液中,使其能够充分接触电解溶液,在-0.8V(vs.SCE)电位下,电沉积420s后在纳米多孔金针上得到Ni/Co双金属氢氧化物;
[0031] c、将b中所得样品在马弗炉中以1℃/min升温速率升温到300℃,保温2h,冷却到室温即得到一次性纳米多孔金针/NiCo2O4异质结电极材料。
[0032] 图3为对本发明所制备材料的微结构及成分表征,从a)和b)扫描图可看出多孔金为表面粗糙的三维连续纳米孔道结构,与实体金针相比大大提高了其比表面积,NiCo2O4以纳米片的形式与多孔金形成异质结,这样就既可以提高NiCo2O4的导电性,又可以提高其比表面积,c)多孔金/NiCo2O4复合材料透射电镜图,说明多孔金与NiCo2O4很好的接触,形成异质结,有利于提高NiCo2O4的导电性。d)NiCo2O4的选区电子衍射图,进一步证实所制备材料为NiCo2O4。
[0033] 不同电沉积时间下得到的多孔金针/NiCo2O4异质结电极材料的扫描见图4,从图中可以看出,在沉积300s时,只有少量的NiCo2O4纳米片在多孔金内壁上生长,420s时制备得到的产物具有杂化表面,NiCo2O4纳米片仅负载于纳米金层表层的三维连续纳米孔道结构的内壁,因此,该材料同时具有金活性位点和NiCo2O4活性位点;随着沉积时间的增加,NiCo2O4纳米片逐渐增多,到达540s时,纳米片已经把多孔金纳米孔道全部封闭,甚至全面覆盖金活性位点;从图4的CV曲线可以看出,420s时制备得到的杂化表面对于电化学活性面积的提高具有极大的帮助。
[0034] 实施例3:本实施例用纳米多孔金针/NiCo2O4异质结电极材料(沉积时间为420s)作为葡萄糖生物传感器的应用,主要步骤如下:
[0035] a、分别以纳米多孔金针/NiCo2O4异质结电极材料为工作电极,Pt片为对电极,SCE为参比电极,组装成三电极电化学体系进行测试;
[0036] b、循环伏安测试时,电化学窗口选为-0.2V~0.55V,扫速为50mV/s;I-T曲线电压选为0.45V,背景电流经过10min达到稳态后,用移液枪不断添加不同浓度葡萄糖溶液和血清进行搅拌测试,得到不同葡萄糖浓度下电流响应值即阶梯曲线和校正曲线;
[0037] c、在0.45V下,用移液枪不断添加干扰物质(麦芽糖、果糖、木糖、甘露糖、乳糖、蔗糖、氯化钠、抗坏血酸、尿素、AP、尿酸、多巴胺)进行搅拌干扰性测试。
[0038] 图5为葡萄糖传感性能表征,从a)和b)中可看出NPG/NiCo2O4异质结电极比SS/NiCo2O4和Au/NiCo2O4电极的灵敏度及线性范围都明显增加,主要原因是纳米多孔金针高导电性和比表面积。从c)和d)图可看出NPG/NiCo2O4异质结电极具有好的抗干扰性能、重复性和稳定性。