在使用多个动力源的车辆中的动力优先化转让专利

申请号 : CN201710187123.4

文献号 : CN107284223B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : B·M·康伦S·H·斯威尔斯M·C·缪尔A·P·科塔里M·V·沃恩

申请人 : 通用汽车环球科技运作有限责任公司

摘要 :

优先车辆中的第一和第二动力源的动力输出的方法包括经由与卫星通信的控制器识别在特定道路路线上的车辆位置。该方法还包括接收关于来自两个动力源的动力总量的请求以及基于车辆位置确定第一动力源和可用第二动力源目标最大动力。该方法还包括基于车辆位置确定能量源的最小能量储备,该能量源配置为基于确定储备向第二动力源和可用第二动力源提供能量。该方法还包括将第一动力源从请求的动力总量中减去,以确定请求的第二动力源动力。此外,该方法包括比较第二动力源的可用动力和请求动力以及生成较小动力值,以最小化车辆经过道路路线的时间量。

权利要求 :

1.一种优先车辆中第一动力源和第二动力源的动力输出的方法,包括:

经由与地球轨道卫星通信的控制器识别道路路线和其上的所述车辆的当前位置;

经由所述控制器接收关于所述第一动力源和第二动力源的动力生产总量的请求;

经由所述控制器确定所述第一动力源的当前可用动力生产;

响应于所述车辆的所识别的当前位置,经由所述控制器确定所述第二动力源的最大目标动力生产;

响应于所述车辆的所识别的当前位置,经由所述控制器确定能量源的最小能量储备和所述能量源的充能状态,所述能量源配置为向所述第二动力源提供能量;

响应于所确定的最小能量储备和所述能量源的所述充能状态,经由所述控制器确定所述第二动力源的可用动力生产;

经由所述控制器将所述第一动力源的所述当前可用动力生产从所请求的动力生产总量中减去,以确定所述第二动力源的请求动力生产;

经由所述控制器比较所述第二动力源的所述可用动力生产和所述请求动力生产;以及经由所述控制器调节所述第二动力源,以由此生成所述可用动力生产和所述请求动力生产中的较小一个,以最小化所述车辆经过所述道路路线的时间量。

2.如权利要求1所述的方法,其中,所述车辆是具有第一组车轮和第二组车轮的全轮驱动车辆,并且其中,所述第一动力源可操作地连接至所述车辆的所述第一组车轮并且所述第二动力源可操作地连接至所述车辆的所述第二组车轮。

3.如权利要求2所述的方法,其进一步包括:在所述接收关于所述第一动力源和第二动力源的所述动力生产总量的所述请求之后,经由所述控制器评估限制所述第一动力源的所述当前可用动力生产的约束和限制所述第二动力源的所述可用动力生产的约束。

4.如权利要求3所述的方法,其中,限制所述第一动力源的所述当前可用动力生产的所述约束和限制所述第二动力源的所述可用动力生产的所述约束是在相应的第一组车轮和第二组车轮的其中一组处的牵引力限制。

5.如权利要求1所述的方法,其进一步包括:经由所述控制器确定所述道路路线上的所述车辆的道路速度,其中,响应于所述车辆的所确定的道路速度,所述确定所述第二动力源的所述最大目标动力生产被另外实现。

6.如权利要求5所述的方法,其进一步包括:经由所述控制器通过使用所述车辆的所确定的道路速度来更新所述道路路线上的所述车辆的当前位置。

7.如权利要求1所述的方法,其进一步包括:经由所述控制器评估限制所述第二动力源的动力生产的约束。

8.如权利要求7所述的方法,其中,响应于限制所述第二动力源的动力生产的所评估的约束,所述确定所述第二动力源的所述可用动力生产被另外实现。

9.如权利要求8所述的方法,其中,所述第一动力源是内燃机并且所述第二动力源是电动机。

10.如权利要求9所述的方法,其中,所述限制所述电动机的动力生产的所述约束是电池的温度、所述控制器的温度、所述电动机的温度和所述电动机的旋转速度中的其中一种。

说明书 :

在使用多个动力源的车辆中的动力优先化

技术领域

[0001] 本发明设计一种优先和控制由车辆中的多个动力源生成的动力的系统和方法。

背景技术

[0002] 机动车辆可采用单个或多个动力源。这种车辆既可以采用其中使用内燃机以推动车辆的动力系统,也可以采用其中使用两个或多个不同动力源以实现相同任务的混合动力系统。在具有多个动力源的轮式机动车辆中,可以使用独立动力源来为不同车轮提供动力。
[0003] 在这种混合动力系统中,内燃机可以用作主动力源,并且电动机可以用作辅助动力源。为最大化这种动力系统的燃料效率,当需要很小或者不需要动力系统扭矩用以驱动车辆时,可关闭至少一个动力源。当对象车辆保持稳定巡航速度、处于滑行减速模式(即当车辆从提高的速度减速时或者当车辆停止时)时,可能遭遇这种情况。
[0004] 除了诸如内燃机的主动力源之外,也可以操作诸如电动机的辅助动力源,以当可以有效使用这种增大输出来为车辆提供动力时选择性地最大化动力系统的输出。换言之,当保证存在诸如作用在车辆上的重力和道路条件或车轮牵引力的这种限制因素时,辅助动力源可以用于选择性地增加由主动力源生成的动力以提升车辆的加速度。

发明内容

[0005] 优先车辆中的第一和第二动力源的动力输出的方法包括经由与卫星通信的控制器识别在特定道路路线上的当前车辆位置。该方法另外包括接收针对第一和第二动力源的动力生产的总量的请求。该方法另外包括响应于识别的当前车辆位置,确定第一动力源的当前可用动力生产和第二动力源的目标最大动力。该方法还包括响应于识别的当前车辆位置,确定充能状态和配置为向第二动力源提供能量的能量源的最小能量储备。
[0006] 该方法另外包括响应于确定的最小能量储备和能量源充能状态,确定第二动力源的可用动力生产。该方法还包括从请求的动力生产总量中减去第一动力源的当前可用动力生产,以确定第二动力源的请求的动力生产。此外,该方法包括将第二动力源的可用动力与第二动力源的请求动力进行比较,以及生成可用动力和请求动力中较小的一个以最小化车辆经过整个道路路线的时间量。
[0007] 车辆可以是全轮驱动的。在这种情况下,第一动力源可以可操作地连接至车辆的第一组车轮,并且第二动力源可以可操作地连接至车辆的第二组车轮。在这种车辆结构中,第一和第二动力源可以独立地操作。
[0008] 该方法还可包括,在第一和第二动力源的动力生产总量的请求被接收之后,经由控制器评估约束的存在,该约束限制第一动力源的当前可用动力生产和第二动力源的可用动力生产。
[0009] 限制第一动力源的当前可用动力生产和第二动力源的可用动力生产的约束可以是相应第一组和第二组车轮中的一组处的牵引力限制。
[0010] 该方法还可包括经由控制器确定在道路路线上的车辆的道路速度。在这种情况下,响应于车辆的确定道路速度,确定第二动力源的最大目标动力生产的动作可以被另外实现。
[0011] 该方法可另外包括控制器使用车辆的确定道路速度更新在道路路线上的车辆的当前位置。
[0012] 该方法还可包括经由控制器评估限制第二动力源的动力生产的约束的存在。
[0013] 响应于评估的限制第二动力源的动力生产的约束,确定第二动力源的可用动力生产的动作可以被另外实现。
[0014] 根据本发明,第一动力源可以是内燃机,并且第二动力源可以是电动机。
[0015] 限制电动机的动力生产的约束可以是电池的温度、控制器的温度、电动机的温度或电动机的旋转速度。
[0016] 还公开了采用配置为执行上述方法的控制器的车辆。
[0017] 从以下结合附图和所附权利要求书对实施本发明的实施例和最佳方式的详细描述,本发明的上述特征和优点以及其它特征和优点将显而易见。

附图说明

[0018] 图1是根据本发明采用多个动力源的车辆的示意图。
[0019] 图2示意性地示出了定位在道路路线上的图1所示的车辆。
[0020] 图3示意性地示出了用于控制图1和图2所示车辆的操作的方法。

具体实施方式

[0021] 参照附图,其中类似元件始终采用相同标号标识,图1示出具有多个动力源的车辆10,多个动力源可操作地连接至独立组的从动轮,以提供按需全轮驱动推进。车辆10包括显示为内燃机12的第一动力源,内燃机12配置为生成发动机动力P1和扭矩T1以经由第一组车轮14驱动车辆。如图所示,第一组车轮14包括用于通过变速器16和第一轮轴18将发动机输出扭矩T1传输至道路表面13的第一或左侧车轮14-1和第二或右侧车轮14-2。
[0022] 如本文所关注的,变速器16可以是多速自动换挡变速器,其利用传动机构和多个扭矩传输装置以在变速器的输入部20和输出部22之间生成离散的传动比或生成连续可变变速器(CVT)。车辆10还包括配置为通过特定方向盘角度的输入经由转动第一组车轮14来控制车辆方向的方向盘23。尽管第一组车轮14在图1中描绘为一组前轮,但并不排除第一组车轮是车辆10中的后轮。
[0023] 如图所示,第一动力源12可以另外包括第一电动发电机24。在示例性实施例中,第一电动发电机24可配置为集成起动发电机(ISG)或12伏特停止-起动电动机。本文所关注的ISG是36伏特或更大伏特的电动发电机,其经由传动带26直接连接至发动机12,并从例如诸如一个或多个电池这样的能量存储装置的能量源27接收其电能。如图所示,第一电动发电机24被用于迅速地起动和旋转发动机12至操作速度,作为发动机停止-起动设定的一部分。在车辆10的某些实施例中,第一电动发电机24可以用于增加第一动力源12的动力P1和扭矩T1。另外,第一电动发电机24可用于生成电能,由车辆10的附件(未示出)使用,例如动力转向和加热通风和空气调节(HVAC)系统。如图1所示,能量存储装置27还提供电能以操作辅助流体泵25,以使用扭矩传输装置,以准备由第一电动发电机24重新起动的发动机12。
[0024] 车辆10另外包括第二轮轴28。第二轮轴28在操作上独立于发动机12、变速器16和第一电动发电机24。第二轮轴28包括配置为第二电动发电机30的第二动力源。第二电动发电机30配置为生成动力P2和扭矩T2以经由第二组车轮32驱动车辆10,第二组车轮32包括第一或左侧车轮32-1和第二或右侧车轮32-2。尽管第二组车轮32在图1中描绘为一组后轮,但并不排除第二组车轮是车辆10中的前轮。第二电动发电机30从能量存储装置27接收其电能。因此,第二电动发电机30配置为独立于包括发动机12和第一电动发电机24的第一动力源经由电动发电机输出动力P2和扭矩T2来驱动车辆10,以为车辆10提供按需电动轮轴驱动。如本领域技术人员理解的,由这种动力源12和30生成的动力量是相应动力源的所测量扭矩输出与瞬时旋转速度的乘积。相应的第一动力源12和第二动力源30的动力输出P1和动力输出P2以及下文将详细讨论的其置换未在图中特别示出。
[0025] 仅经由第二电动发电机30的车辆10的驱动导致车辆完全以电动车辆或“EV”模式操作。此外,当第一和第二轮轴18、28受其相应的动力源、发动机12和第二电动发电机30驱动时,车辆10实现全轮驱动。通常,具有其伴随的第一和第二轮轴18、28的车辆10的电动全轮驱动系统沿车辆轴线X纵向布置。因此,车辆10包括可经由独立操作的发动机12和第二电动发电机30提供的按需全轮驱动推进。尽管本发明的其余部分特别描述了使用发动机12和第二电动发电机30的车辆10,但车辆10并不局限于这种特定独立的第一和第二动力源。
[0026] 在操作期间,车辆10可在发动机12关闭且变速器16置于空档时仅由第二电动发电机30驱动,以节约燃料并改进车辆的操作效率。例如,发动机12可在车辆10保持稳定巡航速度时关闭,该巡航速度可仅由第二电动发电机30的动力P2和扭矩T2输出维持。另外,发动机12可在车辆10处在滑行减速模式(即当车辆从提高的速度减速时或者当车辆停止时)时关闭。在车辆10保持稳定巡航速度的情形中,发动机12可在任何时刻重新起动,以参与驱动车辆。为参与驱动车辆10,发动机12将被调用来生成适当水平的发动机扭矩T1,发动机扭矩T1将导致期望水平的变速器输出扭矩,即输出部22处的变速器扭矩。
[0027] 期望水平的变速器输出扭矩可以代表车辆10以电动全轮驱动模式或仅发动机驱动模式驱动。发动机重新起动之后,当车辆10将以电动全轮驱动模式被驱动时,期望水平的变速器输出扭矩被确定,响应于由车辆操作者生成的请求。例如,这种操作者请求可以由适当传感器33-1检测的车辆加速器踏板33的位置识别。一种情形可能在车辆10在一个或多个驱动轮处经受牵引力损耗时出现,牵引力损耗可能发生在第一组车轮14和/或第二组车轮32。这种牵引力损耗可能是诸如从停止快速加速或为转动提供动力的车辆操作者驾驶要求、和/或诸如恶劣天气或松软道路表面13的道路条件的结果,转动可能导致内侧车轮的卸载和打滑。因此,具有同时传输至第一和第二组车轮14、32的驱动扭矩对于满足操作者的要求来说可能是有利的。
[0028] 这种情形可能在能量存储装置27的充能状态低于足够操作第二电动发电机30的预定阀值时出现。例如,充能状态的这种预定最小值可为存储电荷最大量的10%。如本领域技术人员理解的,能量存储装置27可经由专用交流发电机(未示出)或经由再生制动即通过以能量发电模式操作第二电动发电机30再充能。另外,能量存储装置27还可以经由第一电动发电机24再充能。尽管图1示出了描绘车辆10的各种系统部件之间的特定连接的图表,还可以构想不背离本发明关注点的车辆的其它配置。
[0029] 车辆10还包括控制器34,其负责实现发动机12的快速起动以及发动机扭矩T1的逐渐运行,以驱动车辆。如本文所构想的,控制器34可包括用以调节和协调车辆10的混合推进的中央处理器(CPU),混合推进包括发动机12、变速器16和第一和第二电动发电机24、30的操作。控制器34还配置为优先发动机12和第二电动发电机30的动力生成,以在各种道路条件下更有效地推动车辆10。控制器34包括存储器,至少一些存储器是有形的和非瞬时的。存储器可以是参与提供计算机可读数据或过程指令的任何可记录介质。这种介质可以采用许多形式,包括但不限于非易失介质和易失介质。
[0030] 例如,用于控制器34的非易失介质可包括光盘或磁盘以及其它持久存储器。例如,易失介质可包括可构成主储存器的动态随机访问储存器(DRAM)。这种指令可以通过一个或多个传输介质传输,传输介质包括同轴电缆、铜线和光纤,包括电线(其包含联接至计算机的处理器的系统总线)。控制器34的存储器还可包括软盘、柔性盘、硬盘、磁带、任何其它磁性介质、CD-ROM、DVD和任何其它光学介质等。控制器34可配置或配备有其它所需计算机硬件,例如高速时钟、必需的模数转换(A/D)和数模转换(D/A)电路、任何必要的输入/输出电路和装置(I/O)以及适当的信号调节和/或缓冲电路。控制器34所需的或可获取的任何算法由此可存储在存储器中且自动地执行以提供所需的功能。
[0031] 控制器34配置为在车辆10仅由第二电动发电机30驱动时接收用于发动机12启动的请求。控制器34还被配置为控制发动机12,以根据车辆10是以电动全轮驱动模式驱动还是以仅发动机驱动模式驱动来生成期望水平的变速器输出扭矩。另外,控制器34被编程为控制锁止变速器16内的各个扭矩传输装置以将变速器置于特定的传动比所需要的流体压力的施加。控制器34还可被编程为根据期望水平的变速器输出扭矩来确定期望的发动机速度和变速器16中的传动比。例如,发动机12的期望速度和变速器16内的适当传动比可从映射数据表中选择,该映射数据在车辆10的测试和开发期间采集。这种映射数据表也可被编程到控制器34中,用于针对发动机12的扭矩曲线通过控制器交叉引用的期望水平的变速器输出扭矩、可允许的发动机速度以及车辆10当前速度下的变速器传动比。因此,响应于接收到的发动机12重新启动的请求,控制器34随后可选择传动比、发动机速度和发动机燃料消耗的最高效的组合,以生成用于驱动车辆10的期望水平的变速器输出扭矩。
[0032] 控制器34例如经由天线34-1与地球轨道卫星35通信。控制器34配置为或编程为实时识别诸如跑道的道路路线36(图2所示),道路路线36包括车辆正在行驶的道路表面13。控制器34还配置为,当车辆由第一动力源即发动机12产生的动力P1和扭矩T1驱动时,例如经由全球定位系统(GPS)坐标识别使用卫星35行驶在对象道路路线36上的车辆10的当前位置。在车辆10的操作过程中,控制器34监测能量源27的充能状态。控制器34还配置为响应于识别的车辆10的当前位置,确定第二动力源即第二电动发电机30的最大目标动力生产P2MAX。控制器34另外配置为确定需要在卫星35接收的识别当前位置向第二动力源30提供能量的能量源27的最小能量储备EMIN,以使用最小时间量来完成道路路线36的全搭接。
[0033] 上述最小能量储备EMIN是能量的阈值,在此处能量变得最佳以通过第二动力源30协助向车辆10提供动力。在道路路线36上的各个位置处,需要在于当前位置使用能量与保留能量以用于未来位置之间进行权衡,该权衡提供减少搭接时间的另外的机会。有了能量源27的更高SOC,由于未来位置处的返回减少,权衡变得更有利,直到某一时间,能量源的剩余能量超过当前位置与道路路线36末端之间的动力协助所需总能量。道路路线36上各个位置处的EMIN值在期望能量经由第二动力源30提升车辆10的加速度处代表能量源27的剩余能量的量,因为在搭接完成之前没有更好的位置来使用能量。换言之,EMIN代表用于在道路路线36上的所有点处在当前位置与路线末端之间协助向车辆10提供能量所需要的能量储备,其中这种动力协助将比在当前位置处更有效地有助于减少总搭接时间,即有助于减少每单位能量使用的总搭接时间。为最佳化特定道路路线36上的车辆10的搭接时间,控制器34还可编程为具有查找表50,查找表50可以配置为P2MAX和EMIN的地图或图表,作为车辆位置与对象道路路线的函数。
[0034] 控制器34还配置为基于能量源27的最小能量储备EMIN确定来自第二动力源30的可用动力量P2A。当能量源27的剩余充能状态小于EMIN值或者处于或低于第二动力源30的确定最大目标动力生产P2MAX时,这种可用动力P2A将变成零。控制器34可另外使用车辆10的诸如速度和/或加速度的测量数据,以结合从卫星35接收的位置数据更新位置信息。当卫星35信号由于阻塞或其它干扰临时不可用时,这种测量车辆10可以通过控制器34来使用以提高确定位置的精确性,并且还可用于确定或更新道路路线36上的车辆位置。
[0035] 控制器34另外配置为接收关于第一和第二动力源12和30的动力生产总量PT的操作者请求。例如,操作者请求的动力总量PT可被识别,响应于由传感器33-1检测的并且传递至控制器34的车辆加速器踏板33的位置。控制器34还配置为将第一动力源12产生的当前动力P1从请求的动力生产总量PT中减去,以确定第二动力源30的请求动力生产P2R。具体地说,响应于PT的目前正由第一动力源12产生的动力P1的量是从第一动力源当前可用的最大动力,其不超过PT。此外,控制器34配置为比较可用动力生产P2A和第二动力源30的确定请求动力生产P2R,并且调节第二动力源以由此生成可用动力生产和请求动力生产中较小的一个。为生成可用动力生产P2A和请求动力生产P2R中较小一个的第二动力源30的这种调节旨在最小化车辆10要求的完成道路路线36的全搭接的时间量。
[0036] 控制器34还可以配置为,在接收关于第一和第二动力源的动力生产总量的请求之后,评估约束的存在,该约束限制第一和第二动力源12、30的动力生产总量PT。例如,限制第一和第二动力源12、30的动力生产总量PT的代表性约束可以是在第一组车轮14和/或第二组车轮32处的牵引力限制。控制器34可以另外配置为评估约束的存在,该约束仅限制第二动力源30的动力生产P2。例如,限制第二动力源30的动力生产P2的量的代表性约束可以是能量存储装置27、第二电动发电机30和控制器34的操作温度或对象第二电动机的旋转速度。能量存储装置27的对象操作温度可以经由专用传感器(未示出)检测。并且可以传递至控制器34。限制第二动力源30的动力生产P2的这种评估约束可以特定地用作确定第二动力源的可用动力生产P2A的因素。
[0037] 控制器34可配置为,当车辆10由发动机12和第二电动发电机30中的至少一个驱动时,实时确定第一组车轮14的每个的相对于道路表面13的旋转速度,包括左侧车轮14-1和右侧车轮14-2的以及第二组车轮32的相对于道路表面13的各个旋转速度,包括左侧车轮32-1和右侧车轮32-2的相对于道路表面13的各个旋转速度。每一侧轮14-1、14-2、32-1和
32-2的旋转速度可经由位于相应车轮且将信号处理传递至控制器34的适当单个传感器37感测。控制器34还可以编程为确定在识别的道路路线36上的车辆10相对于道路表面13的道路速度,以及车辆加速度,包括纵向加速度即沿着车辆轴线X的方向上的加速度和侧向加速度即基本上横向于对象车辆轴线的方向上的加速度。控制器34可通过使用侧轮14-1、14-2、
32-1和32-2的感测旋转速度估计车辆10的速度。
[0038] 备选地,控制器34可配置为经由天线34-1接收来自卫星35的信号,其中信号将提供车辆10速度的更精确的确定。车辆10的纵向加速度可通过位于车辆10上的加速度计38被感测和传递至控制器34。车辆10的确定道路速度还可以用作确定能量源27的最小能量储备EMIN和第二动力源30的最大目标动力生产P2MAX的因素,即响应于确定道路速度。根据本发明,由于每个搭接开始处的能量源27的不同充能状态,控制器34编程为减少对象道路路线36上各个搭接之间的车辆10性能的变化。控制器34还配置为适应对能量存储装置27的用于搭接特定道路路线36的能量用量的变化,其由卫星35确定,导致各个搭接之间车辆10的性能变化减少。
[0039] 控制器34还可以编程为确定相对于道路表面13的车辆10的打滑。车辆10的打滑可包括测量第一和第二组车轮14、32在纵向方向40即沿着车辆轴线X的方向上打滑了多少。具体地说,纵向方向40上车辆10的打滑可包括测量各个侧轮14-1、14-2、32-1和32-2中的任何一个纵向打滑了多少,其由车辆的确定速度与每个特定车轮的对应旋转速度之间的差异识别。车辆10的打滑还可包括测量侧轮14-1、14-2、32-1和32-2中的任何在横向方向42即大致垂直于车辆轴线X的方向上打滑了多少,其识别了车辆偏离其沿着道路表面13的预期方向或路径。车辆10的预期方向可由方向盘角度识别,方向盘角度可以由可操作地连接至方向盘23的传感器44检测,传递至控制器34并且经由控制器与从卫星35接收位置信号相比较。
[0040] 控制器34另外编程为经由调节发动机12和第二电动发电机30的相应扭矩输出T1和T2中的至少一个来控制车辆10的相对于道路表面13的打滑。根据前述描述,控制车辆10的打滑包括控制第一和第二组车轮14、32中的至少一个的相对于道路表面13的打滑量。如上所述,第一和第二组车轮14、32的这种打滑可能在纵向方向40上相对于道路表面13发生。例如,当车辆10大致朝纵向方向40行进时,这种情形可能在发动机12或第二电动发电机30的驱动扭矩抑制相应组14、32的抓地时出现。同样如上所述,第一和第二组车轮14、32的打滑可在大致垂直于车辆轴线X的横向方向42上相对于道路表面13发生,例如在车辆10转弯期间。第一组车轮14或第二组车轮32在横向方向42上的打滑建立了车辆10的偏航旋转并且改变了车辆指向的方向——指向纵向方向40的左方或右方。如本领域技术人员理解的,车辆10的偏航率是偏航旋转的角速度,即航向角度θ的变化率,其可由位于车辆10上的偏航率传感器48检测。
[0041] 为控制车辆10的相对于道路表面13的打滑,控制器34可配置为经由与相应方向盘角度传感器44和偏航率传感器48通信确定车辆的方向盘角度和偏航率。此外,控制器34可编程为比较确定的方向盘角度和偏航率并且调节来自发动机12和第二电动发电机30的相应扭矩输出T1、T2以控制车辆10的偏航率。车辆10的偏航率的这种控制旨在使真实车辆航向返回至由操作者在方向盘23处命令的期望航向,期望航向大致上更接近纵向方向40。
[0042] 来自发动机12的扭矩输出T1的增加将倾向于生成“转向不足”或导致车辆10转向小于操作者在方向盘23处命令的量。另一方面,来自第二电动发电机30的扭矩输出T2的增加将倾向于生成“转向过度”或导致车辆10转向大于操作者在方向盘23处命令的量。因此,改变发动机12和第二电动发电机30的相应扭矩输出T1、T2将根据是否需要转向不足或转向过度以改变航向角度θ来调整车辆10的姿态,并且使车辆回到符合在方向盘23处命令的期望车辆航向的状态。为了调整车辆10的姿态,控制器34可另外配置为仲裁即评估、协调和调节第一和第二组车轮14、32之间的适当扭矩分配。第一和第二组车轮14、32之间的这种扭矩分配通常将为了车辆10的最有效推进被仲裁,最有效推进与这种诸如操作者对加速度和道路表面13的条件的请求的因素一致。
[0043] 和上述一致,第一和第二组车轮14、32之间的扭矩分配的仲裁经由调节发动机12和第二电动发电机30中的至少一个的扭矩输出即输出扭矩T1和/或输出扭矩T2实现,以控制车辆10的偏航率。为了实现第一和第二组车轮14、32之间的扭矩分配的对象仲裁,当发动机关闭车辆仅由第二电动发电机30驱动时,控制器34可配置为起动发动机12以控制车辆10的相对于道路表面13的打滑。例如,如果车辆10正经受过量的转向过度,这种情形可能出现,并且来自发动机12的驱动扭矩T1将可用于存储车辆姿态的期望动态平衡。
[0044] 如以上参照图1和图2所述,图3图示了优先第一和第二动力源12、30的动力输出以控制车辆10的操作的方法60。方法60开始于框62,经由第一动力源12产生的动力P1通过第一组车轮14驱动车辆10,然后进行至框64。在框64中,该方法包括通过使用建立的与地球轨道卫星35的连接识别道路路线36和其上车辆10的当前位置。在道路路线36和车辆10的当前位置在框64中被确定之后,该方法进行至框66,其中该方法包括接收关于第一和第二动力源12、30的动力生产总量PT的请求。
[0045] 在框66之后,该方法进行至框68,其中该方法包括确定响应于PT的目前正由第一动力源12产生的动力P1的量,该量等于从第一动力源当前可用的最大动力,最大动力不超过PT。在框68之后,该方法进入框70,其中该方法包括确定响应于车辆10的识别当前位置的第二动力源30的最大目标动力P2MAX生产。在框70之后,该方法进入框72,其中该方法包括确定响应于车辆10的识别当前位置的能量源27的最小能量储备EMIN,以及能量源27的充能状态。
[0046] 作为框70和框72的一部分,控制器34可使用查找表50,查找表50将包括用于特定道路路线36的第二动力源30的最大目标动力P2MAX生产和最小能量储备EMIN。查找表50可存储在控制器34的非易失存储器中,并且可分别地离线或在车辆10到达道路路线36之前计算,以促进在道路路线上特定点处来自能量源27的能量的最佳用量。来自能量源27的能量的这种最佳用量将反过来最小化车辆10的需要穿过整个道路路线36的时间量,即减少经过对象道路路线的总搭接时间。如参照图1所述,第二动力源30的最小能量储备EMIN和目标动力生产P2MAX的确定可以响应于即基于车辆10的确定道路速度实现。
[0047] 在框72之后,该方法进入框74,其中该方法包括基于能量源27的充能状态和EMIN确定第二动力源30的可用动力生产P2A。确定第二动力源30的可用动力生产P2A可以另外基于或响应于评估的约束实现,该约束限制第二动力源的动力生产。如以上参照图1所述,评估的约束可能是能量源27的温度、控制器34的温度以及温度或者是第二动力源30的旋转速度。
[0048] 在框66-72中的任何一个之后,该方法进行至框74。在框74中,该方法可包括评估限制动力生产总量PT的约束,该约束可能是在第一组车轮14处或在第二组车轮32处的瞬时牵引力限制。在框72或框74之后,该方法进入框76,其中该方法包括经由控制器34将第一动力源产生的动力P1从请求的动力生产总量PT减去,以确定第二动力源30的请求动力生产P2R。在框76之后,该方法进行至框78,其中该方法包括经由控制器34比较第二动力源30的可用动力生产P2A和请求动力生产P2R。然后,该方法移到框80。在框80中,该方法包括调节第二动力源30以生成可用动力生产P2A和请求动力生产P2R中较小的一个,以最小化道路路线36上的车辆10的搭接时间。在框80之后,该方法可循环回到框62。
[0049] 方法60旨在基于第二动力源30的可用动力生产P2A最佳化特定道路路线36上的能量源27的经由卫星35确定的能量排放,以最小化穿过整个道路路线的车辆10的搭接时间。由于能量源的不同初始充能状态,来自能量源27的能量排放的这种最佳化进一步旨在减少对象道路路线36上各个搭接之间的车辆10性能的变化。另外,在特定道路路线36的每个特定搭接期间,方法60可以分配来自能量源27的可用能量,使得能量源在对象搭接完成之前不会被车辆10耗尽。换言之,方法60可以根据各个搭接之间减少的车辆性能变化适应用于搭接特定道路路线36的车辆10的能量用量变化。
[0050] 详细描述和附图或图片是对本发明的支持和描述,但本发明的保护范围仅由权利要求来限定。尽管用于执行本发明的一些最佳模式和其它实施例已经详细地描述,存在用于实施所附权利要求中限定的本发明的各种替代设计和实施例。此外,附图中所示实施例或本说明书中提及的各种实施例的特点未必理解为彼此独立的实施例。而是,实施例的实例中描述的每个特点可以与来自其它实施例的一个或多个其它期望特点相结合,导致其它实施例未用文字描述或未参考附图。因此,这种其它实施例落在所附权利要求的保护范围的框架内。