内燃机转让专利

申请号 : CN201710160616.9

文献号 : CN107339149B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : H·布拉西尔M·邦斯

申请人 : 马勒动力系统有限责任公司

摘要 :

内燃机(1),包括至少一个气缸(2)和活塞(3),所述活塞(3)被支撑用于在气缸(2)中重复往复运动,以便限定发动机缸径(A‑A)的燃烧室(21),内燃机(1)还包括点火装置(4),所述点火装置(4)布置在所述气缸(2)中,具有均布置在预燃室(41)中的点火器部分(42)和燃料喷射器(43),其中预燃室(41)包括多个孔(44),用于在所述预燃室(41)和燃烧器(21)之间提供流体连通,并且其中多个孔(44)具有总孔面积,使得总孔面积与发动机缸径(A‑A)之间的比率在0.01‑0.2mm的范围内。

权利要求 :

1.内燃机(1),包括至少一个气缸(2)和活塞(3),所述活塞(3)被支撑以在所述气缸(2)中重复往复运动,从而限定发动机缸径(A-A)的燃烧室(21),所述内燃机(1)还包括布置在所述气缸(2)中的点火装置(4),所述点火装置(4)具有均布置在预燃室(41)中的点火器部分(42)和燃料喷射器(43),其中所述预燃室(41)包括多个孔(44),用于在所述预燃室(41)和所述燃烧室(21)之间提供流体连通,并且其中所述多个孔(44)具有总外孔面积,使得所述总外孔面积和所述发动机缸径(A-A)之间的比在0.062831853-0.071807832mm范围内。

2.根据权利要求1所述的内燃机(1),其中所述孔(44)的数量在4-8范围内,并且其中所述孔(44)的直径在1-1.55mm范围内。

3.根据权利要求1所述的内燃机(1),其中每个孔(44)具有面向所述预燃室(41)的第一表面区域(441)和面向所述燃烧室(21)的第二表面区域(442),并且其中所述第一表面区域(441)的尺寸和所述第二表面区域(442)的尺寸的比率在0.5-2范围内。

4.根据权利要求1所述的内燃机(1),其中所述预燃室(41)的内容积小于所述燃烧室(21)最小容积的4%。

5.根据权利要求4所述的内燃机(1),其中所述预燃室(41)的内容积是在所述燃烧室(21)最小容积的0.3%-3%的范围内。

6.根据权利要求1所述的内燃机(1),其中这样的孔(44)布置在所述预燃室(41)中,使得所述孔的中心线(C-C)相对于预燃室的中心轴线(B-B)具有50°-60°范围内的角度。

7.根据权利要求1所述的内燃机(1),其中所述燃料喷射器(43)布置在所述预燃室(41)中,使得燃料喷射的中心线(D-D)相对于预燃室的中心轴线(B-B)具有20°-60°范围内的角度。

8.根据权利要求1所述的内燃机(1),其中所述点火装置(4)包括控制单元,所述控制单元能够使所述燃料喷射器(43)以这样的方式将燃料喷射脉冲喷射到所述预燃室(41)内,使得在单个循环期间喷射多于一个的燃料喷射脉冲,在所述点火器部分(42)附近和所述预燃室(41)的壁附近提供最佳的空气燃料混合物。

9.根据权利要求1所述的内燃机(1),其中所述点火装置(4)包括控制单元,所述控制单元能够使所述燃料喷射器(43)能够以这样的方式将燃料喷射脉冲喷射到所述预燃室(41)内,使得在连续的燃料喷射脉冲之间,所述点火器部分(42)提供至少两个火花。

说明书 :

内燃机

技术领域

[0001] 本发明涉及根据独立权利要求的内燃机。

背景技术

[0002] 本发明涉及利用火花点火的内燃机领域。已经证明,与具有较低λ的燃烧相比,λ在大约1<λ<1.5的范围内的稀薄燃烧增加了净热效率,然而其也增加了NOx排放,从而需要催化转化器。具有λ>1.5的超稀薄燃已经证明了同时提高净热效率和显着减少NOx排放的能力。超稀薄燃系统的主要限制是混合物的不良点火性质,其导致λ值的“稀薄极限”,高于这些λ值,内燃机不点燃。
[0003] 已知在那些内燃机中,通过使用湍流喷射点火(TJI)(一种高能量点火源)来处理超稀薄空气燃料混合物的低点火性质。用于TJI的内燃发动机包括具有至少一个预燃室的点火系统,所述预燃室具有布置在其中的燃料喷射器和点火装置。所述点火装置能够进行湍流喷射点火,其通过利用从预燃室排出的自由湍流喷射能够进行超稀薄操作,以为主室提供点火源。
[0004] 预燃室与主室的容积相比较小,并且具有多个孔以在整个主室中产生多个分布的点火位置。所述孔具有小尺寸,以允许当燃烧产物从预燃室排出进入主燃烧室时进行火焰熄灭。然后燃烧产物与主燃料进料反应,并在主燃烧室中的多个位置处通过化学、热和湍流效应在与预燃室喷嘴相距一定距离处开始燃烧。化学效应由存在于射流中的自由基物质引起,所述自由基物质是高反应性的,以便能够点燃主室中存在的空气-燃料混合物。热效应由部分或完全燃烧的燃烧产物引起,这些燃烧产物以能够触发主室燃烧的升高温度进入主室。湍流效应确保湍流射流和主室中的进料之间相互作用。
[0005] 在US 2012103302 A1中示出了现有技术中具有布置在其中的这种点火系统的内燃机。所述内燃机具有带有一个或多个气缸的发动机缸体。每个气缸具有与主燃烧室接壤的气缸盖,主空气燃料进料在该主燃烧室中被点燃。邻近燃烧室设置有活塞,该活塞通过杆连接在曲轴处,以便允许往复运动。每个气缸盖限定进气口和排气口。进气和排气口经由凸轮驱动阀打开和关闭,以在气缸和进气歧管和排气歧管之间提供流体连通。内燃机还包括安装在进气歧管中的燃料喷射器,作为通过进气口将主燃料/空气进料引入燃烧室的装置。点火装置具有布置成面向内预燃室容积的点火器部分和喷射器。
[0006] 对预燃室进行成形,以便形成喷嘴,所述喷嘴具有彼此间隔开设置的多个孔并且在预燃室和燃烧室之间提供流体连通。点火器部分点燃预燃室中的燃料。当燃烧产物从预燃室排出进入主燃烧室时,孔直径保持较小以促进火焰熄灭。火焰熄灭意味着部分燃烧的预燃室产物被迫通过预燃室的小孔。燃烧产物熄灭,但是通过主燃烧室分散,然后与主燃料进料反应,并且通过远离预燃室喷嘴一定距离的化学、热和湍流效应在多个位置处点燃主燃料室中的燃烧。
[0007] 在US 20150068489 A1中公开了一种能够产生反应射流的改进的点火装置。点火装置的预燃室包括多个孔,以在预燃室容积和主室容积之间提供流体连通。为了确保湍流射流深入穿透到主室内,孔被限制在特定的最大和最小直径范围内,同时预燃室容积保持在特定的范围内。
[0008] 这种设计仅仅用于适当地瞄准喷嘴特性,例如相对于预燃室容积的孔直径、孔数量。已知设计相关的缺点是其仅涉及物理射流性质,例如速度、穿透和点火位置分布到一系列预燃室容积。需要指定预燃室和喷嘴几何特征之间的关系以及由气缸内径尺寸所描述的发动机气缸的尺寸。

发明内容

[0009] 因此,本发明的目的是提供一种具有提高的热效率的内燃机,并且相对于内燃机的缸径,考虑了主燃烧室的设计(即尺寸),尤其是孔的设计(即尺寸)。
[0010] 该目的是通过根据独立权利要求的内燃机实现的。本发明的具体方面形成相应从属权利要求的主题。
[0011] 本发明包括内燃机,该内燃机具有至少一个气缸和活塞,该活塞被支撑用于在气缸中重复往复运动,以便限定发动机孔直径(A-A)的燃烧室。内燃机还包括布置在所述气缸中的点火装置,所述点火装置具有均布置在预燃室中的点火器部分和燃料喷射器,其中预燃室包括多个孔,用于在所述预燃室和所述燃烧室之间提供流体连通。多个孔具有总孔面积,使得总孔面积和发动机缸径(A-A)之间的比在0.01mm-0.2mm的范围内。
[0012] 由于总孔面积尺寸和发动机缸径之间的比在0.01mm-0.2mm的范围内,实现了净热效率的最大化。这种关系使得预燃室和喷嘴的可扩展性达到发动机尺寸的范围。净热效率定义为发动机的功除以燃料能量,其中发动机的功是燃烧功和泵送功,并且其中燃料能量是燃料流量乘以燃料热值。因此,特定的孔面积和发动机缸径尺寸的比值实现了净热效率的最大化。考虑到现有技术出版物,这是意想不到的,而现有技术出版物指出峰值净热效率随着喷嘴孔面积的减小而最大化。技术上对于给定的发动机缸径尺寸,大的孔面积由于低的喷射速度降低了净热效率,而小的孔面积降低了净热效率,由于扼流降低了喷射的温度,从而降低了点火所需的热效应。预燃室喷嘴中的总孔面积尺寸是每个单独喷嘴孔的面积之和(对于圆形孔,A=πr2)。换句话说,发动机缸直径是发动机的缸径或气缸的直径。
[0013] 根据特定方面,总孔面积尺寸与发动机缸径之间的比在0.016-0.16mm(即从0.05-0.09mm)的范围内。特别优选地,总孔面积尺寸和发动机缸径之间的比为0.06mm。这些范围表示在实验测量中最佳的结果,其显示出净热效率的最大值。
[0014] 另一个优选的方面涉及孔的数量在4-8范围内,并且其中孔的直径在0.7-1.55mm范围内。给定值与具有87.5mm的发动机缸径(A-A)的内燃机结合是特别有意义。
[0015] 有利地,每个孔具有面向预燃室的第一表面区域和面向燃烧室的第二表面区域,并且其中第一表面区域的尺寸和第二表面区域的尺寸的比率在0.5-2的范围内。改变比率允许改变从孔发出的射流的形式,即,表面区域减小导致会聚射流,而表面区域增加导致发散射流。
[0016] 此外,如果预燃室的内容积小于燃烧室最小容积的5%,特别是在0.3%-3%范围内则是优选的。测量显示,比该容积更大的预燃室容积导致净热效率的降低。
[0017] 另一个优选方的面涉及,这样的孔布置在预燃室中,使得孔的中心线(C-C)相对于预燃室的中心轴线(B-B)具有50°-60°范围内的角度。进一步优选地,将孔布置在多个平行平面中(例如,在第一平面中的第一数量的孔(例如,在六孔喷嘴中的三个)和在第二平面中的第二数量的孔(例如三个)在孔中心线和预燃室中心轴线之间的相应角度为50°和60°。这些角度提供了良好的燃烧效率。将角度从50°改变为60°已经表明允许稀薄极限从1.7λ增加到2.1λ。
[0018] 优选地,燃料喷射器布置在预燃室中,使得燃料喷射的中心线(D-D)相对于预燃室的中心轴线(B-B)具有20°-60°范围内的角度。这允许空气和燃料在预燃室中良好的混合,即燃料喷雾与经由孔进入预燃室的空气进料相互作用。小于20°的燃料喷射中心线角将导致燃料直接冲击火花塞,从而阻碍点火。大于60°的燃料喷射中心线角度将导致燃料直接冲击孔并通过那些孔离开,从而在点燃之前离开预燃室。
[0019] 根据有利的方面,点火装置包括控制单元,该控制单元能够使燃料喷射器以这样的方式将燃料喷射脉冲喷射到预燃室中,使得浓燃料混合物存在于预燃室的壁附近,并且浓混合物存在于火花塞电极附近的区域中。这确保了当由火花塞感应时,在预燃室中发生点火,并且从火花塞发出的燃烧火焰前缘被迫在预燃室壁附近行进,同时其朝孔前进,然后通过孔离开。优选地,火焰靠近预燃室的壁行进,以避免空气进料进入预燃室,从而使火焰速度最大化并使喷射速度最大化。
[0020] 根据本发明的另一方面,点火装置包括控制单元,该控制单元能够使燃料喷射器能够以这样的方式将燃料喷射脉冲喷射到预燃室中,使得在连续的燃料喷射脉冲之间,至少两个火花由点火器部分提供。进一步的点火火花允许预燃室中的内容物更完全的燃烧,从而在预燃室燃烧期间在预燃室中增加释放的能量的量并增加喷射速度。

附图说明

[0021] 在下文中,将参照附图更详细地解释本发明。在所有附图中,相同的附图标记表示相似的特征。在图中是:
[0022] 图1是根据本发明实施例的内燃机的垂直剖视图;
[0023] 图2是图1的点火装置的垂直剖视图;
[0024] 图3表示净热效率相对于总孔面积与发动机孔直径比的曲线图;和[0025] 图4表示净热效率相对预燃室容积的曲线图。

具体实施方式

[0026] 图1示出了包括一个汽缸2(例如四个)的内燃机1。气缸2在发动机缸体21中形成,并且气缸盖22布置在气缸上。具有单独的主燃料喷射器5的入口221和用于排出燃烧产物的出口222布置在气缸盖21中。活塞3被支撑(在曲轴处-未示出),用于在气缸2中重复往复运动,以便限定(与气缸盖一起)燃烧室21具有在所示示例中为87.5mm的发动机孔直径(AA)。
[0027] 内燃机1还包括布置在所述气缸2中的点火装置4(用于湍流喷射点火),所述点火装置4具有点火器部分42和燃料喷射器43(与主燃料喷射器分开),它们均面向预燃室41布置。预燃室41在所示示例中包括六个孔44,用于提供从预燃室41内部到燃烧室21的流体连2
通。孔44具有5.70mm的总孔面积(所有单个孔面积的总面积),使得总孔面积与发动机孔直径(A-A)之间的比为0.065mm。在预燃室44中的总孔面积尺寸是六个孔的数量乘以单个孔面积5.70mm2。在本示例中发动机孔直径中是87.5mm。实现的净热效率为42.1%。考虑到现有技术出版物,该净热效率的最大值是意想不到的,因为现有技术出版物指出净热效率随着喷嘴孔面积的减小而最大化。净热效率由发动机的功除以燃料能量计算,其中发动机的功是燃烧功和泵送功,并且其中燃料能量是燃料流量乘以燃料热值。该尺寸提供了足够小的孔面积以避免低喷射速度,并且该尺寸足够大以避免阻塞流动,因此降低喷射流的温度。预燃室中的总孔面积尺寸是孔44的数量乘以相应面积(对于圆形孔,A=πr2)。
[0028] 为了在预燃室41中实现最佳(完全)的点火和随后的火焰行进,在本示例中点火装置4包括控制单元(未示出),所述控制单元能够控制燃料喷射器43,以便在给定的循环中将多个燃料喷射脉冲喷射到预燃室41,使得在点火器部分42附近存在浓混合物,并且在预燃室的壁附近存在浓混合物。
[0029] 在另一个操作模式中,点火装置4包括控制单元(未示出),所述控制单元能够控制燃料喷射器43,使得其以这样的方式将燃料喷射脉冲喷射到预燃室41中,使得多于一个燃料喷射脉冲注入由点火器部分42提供的连续火花之间。
[0030] 在图2中给出了预燃室设计更详细的视图,其中预燃室41布置在内燃机的气缸盖22中的燃烧室(主室)的顶部。预燃室41包括多个孔44,其中每个孔44具有面向预燃室41的第一(内)表面区域441和面向燃烧室的第二(外)表面区域442。在所示实例中,第一表面区域441的尺寸和第二表面区域442的尺寸的比率为1,这意味着两个区域具有相同的尺寸。由于该比率与产生的射流形式相关,因此在该示例中的射流(比率为1)(理想地)是平行的。
[0031] 每个孔口44布置在预燃室41中,使得孔的中心线C-C相对于预燃室的中心轴线B-B具有60°的角度(B-B和C-C之间的下角)。燃料喷射器43布置在预燃室41中,并且被设计成使得燃料喷射的中心线D-D相对于预燃室的中心轴线B-B具有20°的角度(B-B和D-D之间的上角)。
[0032] 图3提供了净热效率相对于如下表所提供的具体尺寸的示例的总孔比率的测量的曲线图。
[0033]
[0034] 计算包括两个方程:
[0035]
[0036]
[0037] 现有技术指出净热效率随着喷嘴孔面积的减小而最大化,因此净热效率的最大化是不能被预料的。
[0038] 图4是预燃室的内部容积相对于净热效率的示意图,其中预燃室容积小于燃烧室最小容积的5%,特别是在0.3%-3%的范围。最小容积用于布置在上部死点的活塞。对更大的预燃室容积的测量导致净热效率的降低。所示的测量值表示净热效率相对于最小主室燃烧容积%的预燃室容积,其中曲线1是1500rpm/3.9barlMPEg/L2,曲线2是1500rpm/3.9barlMPEg/L1.9,曲线3是1500rpm/3.9barlMPEg/L1.8,曲线4是4000rpm/7,87barlMPEg/L1.5。