具有双基极双极结型晶体管的优化操作的电路、方法和系统转让专利

申请号 : CN201580059244.X

文献号 : CN107371382B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 威廉·C·亚历山大

申请人 : 理想能量有限公司

摘要 :

本申请特别教示用于操作B‑TRAN(双基极双向双极结型晶体管)的方法和电路。示范性基极驱动电路将高阻抗驱动提供到那一瞬间作为集电极操作的侧面装置上的基极接触区域。(B‑TRAN受所施加的电压控制,而不是受所施加的电流控制。)电流信号操作驱动电路的优选实施方案以提供二极管模式接通和预切断操作以及具有低电压降的硬接通状态(“晶体管接通”状态)。在一些实施例中,自同步整流器电路提供栅极驱动电路的可调整的低电压。在一些优选实施例中,用于驱动c基极区域(在集电极侧上)的基极驱动电压变化,同时监视此端子处的基极电流,以使得不施加不必要的基极电流。这解决了优化B‑TRAN中的基极驱动的困难挑战。

权利要求 :

1.一种操作双向双极晶体管的方法,所述双向双极晶体管具有处于由块体第二传导类型基极区域隔开的不同位置中的第一个第一传导类型发射极/集电极区域和第二个第一传导类型发射极/集电极区域,并且所述双向双极晶体管还具有在分别接近第一个第一传导类型发射极/集电极区域和第二个第一传导类型发射极/集电极区域但不相互接近的相互隔开的位置中连接到所述块体第二传导类型基极区域的两个不同的第二传导类型基极接触区域,所述方法包括以下动作:a)当需要低接通状态电阻时,相对于集电极电压将基极驱动电压施加到当时处于所述双向双极晶体管的集电极侧上的那一基极接触区域;以及b)在监视基极电流的同时改变所述基极驱动电压,以由此寻找目标基极驱动电压,在所述目标基极驱动电压下,随着增大基极驱动电压,所述集电极侧上的那一基极接触区域的微分电导在预设的敏感度阈值之上变得可检测;以及在所述目标基极驱动电压下操作所述双向双极晶体管。

2.根据权利要求1所述的方法,其中所述第一个第一传导类型发射极/集电极区域和所述第二个第一传导类型发射极/集电极区域位于第二传导类型半导体管芯的相对表面上。

3.根据权利要求1所述的方法,其中所述基极电流最初是以零的基极驱动电压测量的。

4.根据权利要求1所述的方法,其中在所述双向双极晶体管接通时,所述改变步骤重复多次。

5.一种用于功率切换的系统,包括:

双向双极晶体管,具有由块体第二传导类型基极区域隔开的两个第一传导类型发射极/集电极区域,以及在相互隔开的位置中连接到所述块体第二传导类型基极区域的两个不同的第二传导类型基极接触区域;以及一对晶体管模式驱动电路,分别独立地连接到第一个所述第二传导类型基极接触区域和第二个所述第二传导类型基极接触区域;其中在所述两个第一传导类型发射极/集电极区域之间需要低电压降的晶体管接通状态期间,根据外部电压极性,所述驱动电路中的一个被配置成:相对于相应的发射极/集电极电压,将可调整的电压施加到选定的一个基极接触区域,并且使所述可调整的电压抖动,以因此寻找操作点电压,在所述操作点电压下,随着增大所施加的电压,所述选定的基极接触区域处的微分电导在预设敏感度阈值之上变得可检测,并接着将所述可调整的电压保持在所述操作点电压。

说明书 :

具有双基极双极结型晶体管的优化操作的电路、方法和系统

[0001] 以及
[0002] 可变电压自同步整流器电路、方法和系统
[0003] 以及
[0004] 通过双基极触点双向双极结型晶体管电路、方法和系统进行的操作点优化[0005] 交叉引用
[0006] 本申请主张第62/076,320号美国申请(IPC-225.P)、第62/100,301号美国申请(IPC-234.P)、第62/130,470号美国申请(IPC-242.P)、第62/162,907号美国申请(IPC-248-P)、第62/182,878号美国申请(IPC-257-P)、第62/194,167号美国申请(IPC-257-P.1)和第62/185,543号美国申请(IPC-258-P)的优先权,所述美国申请全部以引用方式并入本文中。

背景技术

[0007] 本申请涉及功率切换方法,并且明确地说涉及用于操作具有两个不同且独立的基极连接的双极功率开关晶体管的操作的电路和方法。
[0008] 应注意,下文所论述的要点可反映从所公开的发明得到的领悟,并且未必被认为是现有技术。
[0009] 所公开的US 2014-0375287美国申请(所述美国申请以引用方式并入本文中)公开具有两个基极端子的全双向双极晶体管。这些晶体管被称为“B-TRAN”。晶体管优选将半导体管芯的块体用作基极区域,并在管芯的相对两个面上具有两个发射极/集电极区域。还设置两个不同基极接触区域——管芯的每一面上一个。因此,例如,在p型半导体管芯的情况下,每一面将包含n+发射极/集电极区域以及p型基极接触区域。优选还包含隔离沟槽和外围场限环,但本质上这是四端子三层装置。
[0010] 此种所公开的结构的实例大体上图示在图6中。在此图中,半导体管芯610的两个面带有发射极/集电极区域622,其中发射极/集电极区域622与块体衬底610形成结。基极接触区域632也存在于两个面上。此实例示出npn结构,因此发射极/集电极区域622是n型,并且基极接触区域632是p型。浅n+接触掺杂624提供从单独端子EC1和EC2(在此实例中,处于半导体管芯的两个相对面上)到区域622的欧姆接触,并且浅p+接触掺杂部634提供从单独端子B1和B2(处于管芯的两个相对面上)到区域632的欧姆接触。在此实例中,介电质填充的沟槽640在基极接触区域632与发射极/集电极区域622之间提供横向分离。(应注意,可添加p型扩散区域以减小发射极到基极结与基极接触之间的串联电阻)B-TRAN可提供比现有静态转换开关通常可获得的效率明显更高的效率;例如,1200V的B-TRAN具有99.9%的预期系统效率。
[0011] US 2014-0375287号申请还描述此种装置的操作的一些令人吃惊的方面。应注意:1)当装置接通时,所述装置优选首先仅作为二极管而操作,并且接着施加基极驱动以减小接通状态电压降。2)基极驱动优选施加至最接近发射极/集电极区域将作为集电极的那个区域的基极(如装置端子处所看到的外部电压所确定)。这非常不同于典型双极晶体管操作,其中在典型双极晶体管操作中,基极接触(通常)紧密连接到集电极-基极结。3)优选使用两阶段切断序列。在切断的第一阶段中,晶体管脱离全双极传导,但仍连接以作为二极管操作;在切断的最终状态中,二极管传导也被阻断。4)在切断状态中,(在每一侧上的)基极-发射极电压受与所述基极-发射极结并联的外部低电压二极管限制。这防止基极-发射极结中的任一个接近正向偏压,并且避免原本可能发生的击穿电压的劣化。
[0012] 因为B-TRAN是完全对称装置,所以在两个发射极/集电极区域之间不存在差异。然而,在描述装置的操作的过程中,外部施加的电压将确定哪一侧(在那一瞬间)充当发射极,并且哪一侧充当集电极。两个基极接触端子因此被称为“e基极”和“c基极”,其中c基极端子处于装置碰巧在给定时刻作为集电极侧的一侧上。
[0013] 图3A到3F(取自所公开的第2014-0375287号申请)示出如所述申请所公开的操作序列的实例。
[0014] 图3A示出一个示范性NPN BTRAN的示例等效电路。体二极管312A和312B可例如分别对应于上部P-N结和下部P-N结。例如,这些可对应于发射极/集电极区域与基极区域之间的结。开关314A和314B可将相应基极端子108A和108B短接到相应发射极/集电极端子106A和106B。
[0015] 在一个示例实施例中,BTRAN可在每一方向上具有六个操作阶段,如下。
[0016] 1)最初,如图3B中所见,发射极/集电极端子T1上的电压相对于发射极/集电极端子T2是正的。开关314A和316A断开,从而保持基极端子B1断开。开关314B闭合,从而将基极端子B2短接到发射极/集电极端子T2。这转而在功能上将体二极管312B旁路。在此状态下,装置切断。由于装置的上侧处的反向偏压的P-N结(由体二极管312A表示),在此状态下,没有电流流动。
[0017] 2)如图3C中所见,发射极/集电极端子T1上的电压相对于发射极/集电极端子T2呈现为负的。P-N二极管结312A现被正向偏压,并且现在开始将电子注入到漂移区域中。对于正向偏压的二极管来说,电流流动。
[0018] 在短时间(例如,几毫秒)之后,漂移层良好带电。正向电压降较低,但量值大于0.7V(典型硅二极管电压降)。在一个示例实施例中,例如200A/cm2的典型电流密度下的典型正向电压降(Vf)可具有例如1.0V的量值。
[0019] 3)为了进一步减小正向电压降Vf,漂移区域的导电率增大,如同例如在图3D中。为了将较多电荷载流子(例如,空穴)注入到漂移区域中,因而增大其导电率并减小正向电压降Vf,基极端子B2通过将开关314B断开而与端子T2断开。基极端子B2接着由开关316B连接到正电荷源。在一个示例实施例中,正电荷源可以是例如充电到+1.5VDC的电容器。因此,浪涌电流将流动到漂移区域中,因此注入空穴。这将转而导致上部P-N二极管结312A将更多电子注入到漂移区域中。这显著增大漂移区域的导电率,并且将正向电压降减小到例如0.1V到0.2V,从而使装置饱和。
[0020] 4)继续图3D的示例实施例,电流继续穿过基极端子B2流动到漂移区域中以维持低正向电压降Vf。必要电流量值是通过例如等效NPN晶体管318的增益来确定。因为在高水平注入方案中驱动装置,所以此增益是通过例如表面复合速率等高水平复合因素来确定,而不是通过例如基极/漂移区域的厚度以及基极/漂移区域内的载流子寿命等低水平方案因素来确定。
[0021] 5)为了切断装置,如同在图3E中,基极端子B2与正电力供应器断开,而改为连接到发射极端子T2,从而断开开关316B并闭合开关314B。此举导致大电流从漂移区域流出,这转而使装置快速脱离饱和。闭合开关314A将基极端子B1连接到集电极端子T1,从而在上部P-N结312A处停止电子注入。这两个动作从漂移区域迅速移除电荷载流子,同时仅略微增大正向电压降Vf。因为两个基极端子由开关314A和314B短接到相应发射极/集电极端子,所以体二极管312A和312B两者在功能上被旁路。
[0022] 6)最终,在最佳时间(例如,对于1200V装置来说例如是名义2μs),可发生完全切断,如例如在图3F中可见。完全切断可通过断开开关314B而开始,从而将基极端子B2与对应端子T2断开。这导致随着下部P-N二极管结312B经历反向偏压由下部P-N二极管结312B形成耗尽区域。任何剩余电荷载流子复合或被收集在上部基极处。装置停止传导并阻断正向电压。
[0023] 步骤1到6的过程,当被适当地修改时,用于在相反方向上操作装置。步骤1到6还可被修改以操作PNP BTRAN(例如,通过颠倒所有相关极性)。

发明内容

[0024] 本申请特别教示用于操作B-TRAN的方法和电路以及纳入有这些创新中的一些或全部的模块和系统。
[0025] 本发明人已惊奇地发现,当B-TRAN正在完全接通晶体管模式中操作(例如,在低电压降和高电流的情况下)时,集电极侧基极接触(即,“c基极”)具有高阻抗,直到c基极上的电流开始显著增大的点。此时,晶体管已在极低电压降的情况下操作,并且增大的c基极电流将使增益降级,而电压降没有大的改进。
[0026] 优选基极驱动电路作为对c基极(即,在给定时刻装置的作为集电极操作的那一侧上的基极接触)的电压源驱动而操作。驱动电路的优选实施方案由控制信号操作,以便还提供二极管模式接通和预切断操作。
[0027] 在一些但未必全部的优选实施例中,在基极中的每一个上使用两个独立子电路,以在不同模式中进行驱动:一个子电路在完全接通晶体管模式中为c基极驱动提供可调整电压,并且另一子电路在二极管接通模式中或在预切断模式中将一个或两个基极箝位到对应发射极/集电极区域。
[0028] 在一些但未必全部的优选实施例中,基极驱动电路的功率由自同步整流器电路提供。
[0029] 并且,在一些但未必全部的优选实施例中,用于驱动c基极区域(在集电极侧上)的基极驱动电压变化,同时此端子处的基极电流被监视,以使得不再施加不必要的基极电流。这避免减小的增益,并且解决在B-TRAN中优化基极驱动的困难挑战。

附图说明

[0030] 现将参照附图来描述本发明,附图示出重要的示例实施例,并以引用方式并入本说明书中,其中:
[0031] 图1A示出根据本发明的基极驱动电路的一个示范性实施例。
[0032] 图1B示出根据本发明的基极驱动电路的一个示例实施例。
[0033] 图1C示出图1A的实施例的操作期间的示范性波形。
[0034] 图2示出可变电压自同步整流器的一个示例实施例。
[0035] 图3A、图3B、图3C、图3D、图3E和图3F示出各种操作阶段中的示范性B-TRAN的示例等效电路。
[0036] 图4示出根据本发明的一个示例实施例的部分装置模型。
[0037] 图5示出在各种操作条件下c基极上的基极电流ICB如何随着c基极偏压VCB变化。
[0038] 图6示出B-TRAN的一个示例实施例。

具体实施方式

[0039] 将特别参考当前优选的实施例来描述本申请的各种创新教示(以实例方式,并且不作为限制)。本申请描述若干发明,并且下文的陈述不应视为总体上对权利要求书构成限制。
[0040] 所公开的第WO2014/210072号PCT申请(所述PCT申请以引用方式并入本文中)特别公开被称为“B-TRAN”的新颖双向双极晶体管。如上文所论述,B-TRAN的操作循环相继包含“二极管接通”(或二极管ON)状态、低Vce或“晶体管接通”状态、“预切断”状态和“主动切断”状态。优选的是,B-TRAN还具有“被动切断”状态,其中所述“被动切断”状态在未发生正常操作时将B-TRAN的阻断电压保持较高。
[0041] 本申请描述这些装置的操作方面的改进。一个改进之处在于完全接通状态(“晶体管接通”状态)。B-TRAN的重要优点是其在完全接通时的低电压降VCE。然而,希望维持装置增益的高值。还希望将装置的开关速度和反向恢复保持快速。这些改进已通过完全接通状态下的装置表现的较好理解来实现。
[0042] 为了简单起见,以下描述将假设使用NPN B-TRAN。在此状况下,物理基极由p型半导体管芯的块体提供,并且基极接触区域是p型(具有p+接触掺杂部)。两个发射极/集电极区域是n+,并且观察到较正的外部电压的发射极/集电极区域将是集电极侧。(对于PNP B-TRAN装置来说,操作原理相同,而极性相反;在这些装置中,观察到较负的外部电压的一侧将是集电极侧。)
[0043] 集电极侧上的基极接触区域将被称为“c基极”,并且另一基极接触区域(在发射极侧上)将被称为“e基极”。这些基极接触区域在物理上是不同的,并且当存在外部施加的电压时,以非常不同的方式表现。
[0044] 完全接通状态(晶体管接通)是通过将升高的驱动电压施加到c基极来达到的。这会以良好增益提供低接通状态电压降,而不减小击穿电压。装置增益是作为β(即,发射极电流与基极电流的比)来测量,并且晶体管在c基极驱动下的表现与其它功率双极结型晶体管的表现有很大的不同。
[0045] 图4通过c基极偏压VCB以及外部端子两侧的对应电压降VCE的值的表来示出部分装置模型。在此图中,假设图的顶部的集电极/发射极端子是集电极(即,连接到较正的外部电压),因此被示出为连接到可变电压源的基极触点是c基极。
[0046] 图5示出在操作条件下c基极上的基极电流ICB如何随着c基极偏压VCB变化。应注意,在VCB的广泛值范围上,电流ICB几乎平坦。
[0047] 图4和图5的组合示出重要操作特征。当c基极偏压VCB升高到其最佳操作点(如下文所述而定义)时,装置的电压降VCE将下降到其期望的低值,但随着c基极偏压增大到此点,c基极上的电流却保持几乎恒定。换句话说,c基极端子具有极高阻抗,直到其偏压增大到阻抗降低的点为止。此时,视需要,装置的串联电阻较低。
[0048] 在晶体管接通状态中,e基极基本上处于恒定电压——从低驱动到高驱动条件,仅变化约0.1V。相比之下,即使随着电压从比集电极高0V变化为比集电极高约0.6V,c基极也是几乎是恒定的电流驱动。不是c基极电流随着c基极电压改变,而是VCE改变。在0V的c基极偏压下(c基极短接到集电极),存在取决于发射极电流密度的某增益,并且Vce在电流密度的大范围上是名义上0.9V。将c基极偏压提高到比集电极高0.1V不会改变增益,但名义上将Vce降低0.1V。将c基极偏压提高到0.6V使Vce下降到约0.2V或0.3V。因此,当驱动c基极时,较为有利地使用电压源,如同在图1A的示例实施例中,而不是使用电流源。
[0049] 这相对于正常驱动BJT的方式(从电流源到基极中)存在极其显著的差异。
[0050] c基极自身的差分阻抗(以dv/di来表示)较高。相比c基极到集电极电压VCB,c基极驱动电流在广泛值范围上改变极少,直到VCB接近使集电极/基极结正向偏压(在硅中,在25℃下,超过0.6V)为止。这是需要电压源型驱动的原因。c基极电流ICB随着发射极电流改变,从而即使在VCB保持恒定时,也随着发射极电流增大而增大,但不随着VCB改变而改变很多(一直到ICB开始不合需地增大时的VCB值为止)。
[0051] e基极的阻抗极低,这是因为虽然c基极电流变化,但e基极保持几乎恒定的电压。
[0052] 图1A示出完整开关100的第一实例,包含NPN B-TRAN晶体管106以及二极管模式驱动电路110和晶体管模式驱动电路130。页面的上半部将被假设是集电极侧,即,被视为所施加的电压的正侧。
[0053] 图1C示出图1A的电路的操作期间的波形的实例。最初,在二极管接通阶段中,NMOSS12的栅极为低,并且NMOS S13的栅极为高。这会实现例如所公开的第US2014-0375287号申请所述的二极管接通模式。NMOS晶体管S22和S23保持切断。在这段时间,跨越发射极/集电极端子的电流IT快速接通,并且被假设为已在外部驱动下斜升的跨越发射极/集电极端子的电压VCE下降到大约二极管压降(加上某一欧姆压降,在硅中,总计约0.8V)。
[0054] 接着,在晶体管接通阶段中,S12接通,而S13切断。S12连接到可变电压源190,其如下所述源自集电极端子。c基极处的此电压将晶体管驱动到其低电压降状态,其中电压降VCE是0.3V或更小。只要需要驱动电流,此阶段便继续。
[0055] 在预切断阶段中,开关S12切断,并且开关S13和S23两者接通。这立即使电压降窜升到二极管压降,但装置电流IT保持在发射极电流密度所确定的电平。如果此电流不足以将外部负载的电压箝位,那么所施加的电压将如图1C所示而增大。
[0056] 最终,在主动切断阶段中,开关S13切断,而开关S23保持接通。这会截断装置电流IT,并且装置上的电压上升到外部连接所规定的任何电压。
[0057] 应注意,在如图1C所示的各阶段的序列期间,开关S22绝不接通。当外部电压已反转时,此开关将接通以达到晶体管接通模式(以使得处于页面的顶部的发射极/集电极端子节点是发射极侧而不是集电极侧)。
[0058] 图2示出可变电压自同步整流器的一个示例实施例,其中所述可变电压自同步整流器可有利地用在图1A的示例实施例中。可变电压供应器210(在所示出的实施例中是简单降压转换器)将可调整供电电压提供给振荡器220。振荡器驱动变压器230的第一绕组232。第一二次绕组234提供与振荡器220的转变同步的互补输出A和B,加上因通过变压器230的耦合所致的相移。另一二次绕组236提供对应于振荡器220的输出(具有被移位的电压)的较高电流和较低电压波形。两个二次绕组的输出是同步的,以使得控制信号A和B可用于驱动同步逆变器240。控制信号A和B优选被缩放成提供适用于同步逆变器的四个晶体管的栅极电压,例如,5V。因此,24V DC供应器已有效地转化为电压可变化的极低电压DC输出。通过改变降压转换器的设定点电压,可调整施加到c基极端子的电压。
[0059] 现返回到图5,c基极端子上的偏压通过将该偏压调整到基极电流不再恒定的点而被优化。
[0060] 不同于e基极接触,c基极接触是高阻抗的,这意味当装置接通时进入到c基极的电流ICB名义上是恒定的,直到VCB接近使基极-集电极结正向偏压为止。此时,VCE大大低于二极管压降(名义上是0.2V),并且随着VCB的少量额外增大,ICB开始迅速增大,如下所示。
[0061] 本申请尤其教示VCB动态地变化或“抖动”以寻找最佳操作点。最佳操作点应落在这样的位置:在该位置,ICB已增大至比ICB/VCB曲线的平坦部分高出某一较小但可测量的量。这通过寻找曲线的斜率是某最佳值的VCB来实现。
[0062] 在一个示例实施例中,“跨导”的最佳值或最佳操作点是基极驱动电流比c基极到集电极短路条件VCB=0V时的基极驱动电流高出20%之时。在实践中,此点可通过任何数量的抖动序列来寻找;在一个实例中,基准可在二极管模式中寻找ICB的基准值,并且接着,例如是通过将基准电流值增大10%或20%或30%来计算目标值。电压VCB接着以小步幅(例如,以1%的增量)增大,直到所测量的集电极电流达到目标值为止。作为选择,可计算两个极限值,并且当在操作期间达到ICB的上限值时,控制电压VCB往回斜降。作为选择,当晶体管在较长时间段处于接通状态时,此抖动过程可按短间隔重复。
[0063] 图1B示出较完整的基极驱动电路的实例。这与图1A的驱动电路略微不同之处在于,反并联二极管与二极管模式驱动电路110的其中两个MOS晶体管中的体二极管连接。此外,图1B还示出形成被动切断保护电路120的JFET加肖特基支路,其中JFET加肖特基支路包含肖特基二极管122、JFET124等元件。并且,与图1A相同,图1B中的130也表示晶体管模式驱动电路。
[0064] 当e基极(发射极侧上的基极)短接到发射极,并且c基极(集电极侧上的基极)断开时,B-TRAN处于“主动切断状态”。在此状态中,在NPN B-TRAN的情况下,集电极是阳极(高电压侧),并且发射极是阴极(低电压侧)。
[0065] 当两个基极断开时,B-TRAN也切断,但由于此状态下B-TRAN的高增益,击穿电压较低。如先前所公开的,常通JFET以及附接在其相应发射极/集电极上的每一基极之间的肖特基二极管的串联组合将在此“被动切断状态”中显著增大阻断电压。JFET在正常操作期间切断。
[0066] 对于B-TRAN接通的一个当前优选的示例实施例是:藉由主动切断状态和阻断正向电压,同时地断开e基极到发射极短路并将c基极短接到集电极。这立即将电荷载流子引入到集电极/基极结周围的耗尽区的最高场区域中,以便取得用于硬切换的极快正向偏压接通,这非常类似于IGBT接通。
[0067] 另一有利的从主动切断状态的接通方法是在含有B-TRAN的电路使被施加到B-TRAN的电压的极性反转时发生,这产生硬接通方法中所述的相同基极状态,但是是在接近零的电压下产生。即,随着B-TRAN电压从主动切断状态极性反转,短接到发射极的e基极变为短接到集电极的c基极。同样,接通是快速的。
[0068] 在从主动切断状态的第三接通方法中,e基极与发射极断开,并且连接到具有为了将电荷载流子注入到基极区域中的足够电压的电流源或电压源。此方法可能较慢,这是因为电荷载流子刚好在耗尽区之下进入到基极中。另外,已知的是,到e基极中的载流子注入导致相对于到c基极中的载流子注入的较差增益。
[0069] 在通过使用c基极的方法中的任一种实现接通之后,Vce超过二极管压降。为了驱动低于二极管压降的VCE,接通进行到第二阶段,其中经由电压源或电流源将增加的电荷注入到c基极中。增加的电荷注入的量确定VCE多少程度地减小到二极管压降之下。到e基极中的注入也将减小VCE,但增益远低于c基极注入。
[0070] 切断可通过若干方法中的任一种来实现。最有利的方法是两步骤过程。在第一步骤中,c基极与载流子注入电力供应器断开并短接到集电极,而先前断开的e基极短接到发射极。此举导致每一基极与其发射极/集电极之间的大的电流流动,这迅速从漂移区域移除电荷载流子。这转而随着漂移区域的电阻率增大而导致上升的Vce。在基极短接之后的某最佳时间,c基极与集电极之间的连接断开,此后,随着耗尽区域在集电极/基极结周围形成,Vce迅速增大。
[0071] 或者,可通过简单地断开c基极并将e基极短接到发射极来实现切断,但这将导致较高切断损耗,这是因为漂移区域(基极)将在耗尽区形成的开始时具有高水平的电荷载流子。
[0072] 或者,切断可通过简单地断开c基极并保持e基极断开而实现,但这导致最高切断损耗,并且还导致低击穿电压。
[0073] 在一个示例实施例中,基极驱动仅使用N沟道MOSFET来驱动B-TRAN。这有利地使用低MOSFET输出电压(小于0.7V)。输入最优选是可变电压,其中所述可变电压与电流感测一起可用于确定最佳基极驱动电压。
[0074] 另一示例实施例可支持较高电压,但使用N沟道与P沟道MOSFET两者。
[0075] 优点
[0076] 在各种实施例中,所公开的创新提供至少以下优点中的一个或更多个。然而,并不是所有这些优点都源自所公开的创新中的每一个,并且此优点清单不对各种要求保护的发明构成限制。
[0077] ·高增益;
[0078] ·低接通状态电压降;
[0079] ·击穿的避免;
[0080] ·固有的电流限制;
[0081] ·简单的电路实施;
[0082] ·最小的功率消耗;
[0083] ·可调整的供电电压。
[0084] 根据一些但未必全部的实施例,这里提供:本申请特别教示用于操作B-TRAN(双基极双向双极结型晶体管)的方法和电路。描述了一种基极驱动电路,其将高阻抗驱动提供给基极接触区域,该基极接触区域位于装置的(在给定时刻)作为集电极操作的那一侧上。(不同于其他双极结型晶体管,B-TRAN受所施加的电压控制,而不是受施加的电流控制。)驱动电路的优选实施方案由控制信号操作以提供二极管模式接通和预切断操作以及具有低电压降的硬接通状态(“晶体管接通”状态)。在一些但未必全部的优选实施例中,栅极驱动电路的可调整的低电压由自同步整流器电路提供。并且,在一些但未必全部的优选实施例中,用于驱动c基极区域(在集电极侧上)的基极驱动电压变化,同时监视此端子处的基极电流,以使得不施加超出必要基极电流的基极电流。这解决了在B-TRAN中优化基极驱动的困难挑战。
[0085] 根据一些但未必全部的实施例,这里提供:一种用于功率切换的系统,包括:双向双极晶体管,具有由块体第二传导类型基极区域隔开的两个第一传导类型发射极/集电极区域,以及在相互隔开的位置中连接到所述块体基极区域的两个不同的第二传导类型基极接触区域;以及第一晶体管模式驱动电路和第二晶体管模式驱动电路,分别独立连接到所述第一基极接触区域和所述第二基极接触区域;其中每一驱动电路被配置为电压源以在所述对应基极接触区域与最接近所述基极接触区域的所述发射极/集电极区域之间可选择地施加可调整电压;以及第一二极管模式驱动电路和第二二极管模式驱动电路,分别独立连接到所述第一基极接触区域和所述第二基极接触区域;其中每一驱动电路被配置成将所述对应基极接触区域可选择地连接到最接近所述基极接触区域的所述发射极/集电极区域。
[0086] 根据一些但未必全部的实施例,这里提供:一种用于功率切换的系统,包括:双向双极晶体管,具有由块体第二传导类型基极区域隔开的两个第一传导类型发射极/集电极区域,以及在相互隔开的位置中连接到所述块体基极区域的两个不同的第二传导类型基极接触区域;以及一对晶体管模式驱动电路,分别独立连接到所述第一基极接触区域和所述第二基极接触区域,其中每一晶体管模式驱动电路是电压模式驱动电路;以及一对二极管模式驱动电路,分别独立连接到所述第一基极接触区域和所述第二基极接触区域;其中每一二极管模式驱动电路被配置成将所述对应基极接触区域可选择地连接到最接近所述基极接触区域的所述发射极/集电极区域。
[0087] 根据一些但未必全部的实施例,这里提供:一种用于功率切换的系统,包括:双向双极晶体管,具有由块体第二传导类型基极区域隔开的两个第一传导类型发射极/集电极区域,以及在相互隔开的位置中连接到所述块体基极区域的两个不同的第二传导类型基极接触区域;以及一对晶体管模式驱动电路,分别独立连接到所述第一基极接触区域和所述第二基极接触区域;其中每一驱动电路被配置为电压源以在所述对应基极接触区域与最接近所述基极接触区域的所述发射极/集电极区域之间以可选择的值可选择地施加可调整的电压。
[0088] 根据一些但未必全部的实施例,这里提供:一种用于功率切换的方法,包括:通过以下方式驱动双向双极晶体管,所述双向双极晶体管具有处于由块体第二传导类型基极区域隔开的不同位置中的两个第一传导类型发射极/集电极区域,以及在相互隔开的位置中连接到所述块体基极区域的两个不同的第二传导类型基极接触区域:在晶体管接通模式中,当需要最小电压降时,使用一对第一驱动电路中的一个将所选择的可调整的电压供应到其中一个基极接触区域,该基极接触区域最接近、被定位以充当集电极的那一发射极/集电极区域,哪个发射极/集电极区域充当集电极是由外部施加的电压极性所定义的;以及在二极管接通模式中,当跨越所述装置的二极管压降可接受时,使用一对第二驱动电路中的一个将所述基极接触区域中的一个箝位到所述发射极/集电极区域中的相应最接近的一个;以及在预切断模式中,使用所述一对第二驱动电路将所述基极接触区域中的每一个箝位到所述发射极/集电极区域中的相应最接近的一个。
[0089] 根据一些但未必全部的实施例,这里提供:一种用于功率切换的方法,包括:通过以下方式驱动双向双极晶体管,所述双向双极晶体管具有处于由块体第二传导类型基极区域隔开的不同位置中的两个第一传导类型发射极/集电极区域,以及在相互隔开的位置中连接到所述块体基极区域的两个不同的第二传导类型基极接触区域:在晶体管接通模式中,当需要最小电压降时,使用一对第一驱动电路中的一个将所选择的可调整的电压供应到其中一个基极接触区域,该基极接触区域最接近被定位以充当集电极的那一发射极/集电极区域,哪个发射极/集电极区域充当集电极是由外部施加的电压极性所定义的;以及在二极管接通模式中,当跨越所述装置的二极管压降可接受时,使用一对第二驱动电路中的一个将所述基极接触区域中的一个箝位到所述发射极/集电极区域中的相应最接近的一个。
[0090] 根据一些但未必全部的实施例,这里提供:一种用于功率切换的方法,包括:通过以下方式驱动双向双极晶体管,所述双向双极晶体管具有处于由块体第二传导类型基极区域隔开的不同位置中的两个第一传导类型发射极/集电极区域,以及在相互隔开的位置中连接到所述块体基极区域的两个不同的第二传导类型基极接触区域:在晶体管接通模式中,当需要最小电压降时,使用一对第一驱动电路中的一个将所选择的可调整的电压供应到其中一个基极接触区域,该基极接触区域最接近被定位以充当集电极的那一发射极/集电极区域,哪个发射极/集电极区域充当集电极是由外部施加的电压极性所定义的。
[0091] 根据一些但未必全部的实施例,这里提供:一种提供可变电压低压输出的方法,包括以下动作:a)提供可调整的电压以向振荡器供应;b)使用所述振荡器以将AC波形施加到变压器的初级绕组;c)在所述变压器的一个次级绕组处,产生互补控制信号;以及d)使用所述互补控制信号以操作被连接到同一变压器的另一次级绕组的同步整流器,以因此提供低电压输出。
[0092] 根据一些但未必全部的实施例,这里提供:一种可变电压低压功率电路,包括:可调整的电压供应电路,被连接成提供可调整的电压;振荡器电路,被连接成接收所述可调整的电压作为供电电压,并被连接成以AC波形驱动变压器的初级绕组;所述变压器的第一次级绕组,被连接成输出互补控制信号;以及所述变压器的第二次级绕组,具有比所述第一次级绕组更少的匝数;以及同步整流器,包含由所述互补控制信号选通并以桥接配置连接的至少四个晶体管,所述至少四个晶体管被连接成将所述次级绕组的输出整流;其中所述第二次级绕组的所述输出在由所述同步整流器整流之后提供小于二极管压降的实质上DC输出。
[0093] 根据一些但未必全部的实施例,这里提供:一种操作双向双极晶体管的方法,所述双向双极晶体管具有处于由块体第二传导类型基极区域隔开的不同位置中的第一个第一传导类型发射极/集电极区域和第二个第一传导类型发射极/集电极区域,并且还具有在分别接近第一发射极/集电极区域和第二发射极/集电极区域而不相互接近的相互隔开的位置中连接到所述块体基极区域的两个不同的第二传导类型基极接触区域,所述方法包括以下动作:a)当需要低接通状态电阻时,将基极驱动电压施加到接着处于所述装置的集电极侧上的那一所述基极接触区域;以及b)在监视基极电流的同时改变所述基极驱动电压,以由此寻找目标基极驱动电压,在该目标基极驱动电压下,基极电流开始随着基极驱动电压而增大;以及在大约所述目标基极驱动电压下操作所述晶体管。
[0094] 根据一些但未必全部的实施例,这里提供:一种用于功率切换的系统,包括:双向双极晶体管,具有由块体第二传导类型基极区域隔开的两个第一传导类型发射极/集电极区域,以及在相互隔开的位置中连接到所述块体基极区域的两个不同的第二传导类型基极接触区域;以及一对晶体管模式驱动电路,分别独立连接到所述第一基极接触区域和所述第二基极接触区域;其中在需要低电压降的所述晶体管接通状态期间,所述驱动电路中的一个,如外部电压极性所确定的那样,被配置成将可调整的电压施加到基极接触区域中的选定的一个,并且使所述可调整的电压抖动,以由此寻找操作点电压,在所述操作点电压下,所述选定的基极触点处的电流开始随着所施加的电压增大,并接着将所述可调整的电压保持在大约所述操作点电压。
[0095] 修改和变化
[0096] 如本领域的技术人员所了解,本申请所述的创新概念可在极大范围的应用上修改和变化,并且因此专利主题的范围不受所给出的具体示范性教示中的任一个限制。希望涵盖落入随附权利要求书的精神和广泛范围内的所有这些替代、修改和变化。
[0097] 举一个例子,上文所述的主要实施例使用NPN B-TRAN晶体管。然而,相同原理适用于具有适当电压反转的PNP B-TRAN晶体管。
[0098] 举另一个例子,取决于需要什么阻断电压和电流容量,此处的教示可应用到各种大小的B-TRAN装置。
[0099] 举另一个例子,多种其它传感器和/或控制关系可添加到本申请所示的概念电路关系上。
[0100] 举另一个例子,在B-TRAN用作较大电路(例如,PPSA转换器)的部件的情况下,单个控制模块可选择地被连接成将适当控制信号施加到B-TRAN驱动电路中的每一个。
[0101] 举另一个例子,因为使用电压模式驱动,所以单个B-TRAN驱动电路可选择地用于并联地驱动多个B-TRAN。这对于其它双极结型晶体管是无法实现的。
[0102] 本申请中的描述的任何内容不应被解读为暗示任何特定元件、步骤或功能是必须包含在权利要求书范围中的基本元素。专利主题的范围仅由随附权利要求书界定。此外,权利要求书中任何内容不希望援引35USC 112的第六段,除非用词“用于……的构件”之后接着分词。
[0103] 所申请的权利要求书希望尽可能详尽,并且主题不希望被蓄意让出、捐赠或放弃。