NOx吸收量推定装置和NOx吸收量推定方法转让专利

申请号 : CN201680016635.8

文献号 : CN107407180B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 中田辉男坂本隆行长冈大治

申请人 : 五十铃自动车株式会社

摘要 :

包括:催化剂推定温度运算部(72),其取得NOx吸收还原型催化剂(32)的催化剂温度;暂定NOx吸收量运算部(75),其基于根据引擎运转状态推定的催化剂入口NOx量及催化剂温度,来运算从引擎排出并被NOx吸收还原型催化剂(32)吸收的NOx量,作为暂定NOx吸收量;稀燃时NOx放出量运算部(77),其基于在稀燃运转时由催化剂推定温度运算部(72)取得的催化剂温度,来运算在该稀燃运转时从NOx吸收还原型催化剂(32)脱离并被放出的稀燃时NOx放出量;以及NOx吸收量推定值运算部(78),其通过从暂定NOx吸收量减去稀燃时NOx放出量,从而运算已被NOx吸收还原型催化剂(32)吸收的实际NOx吸收量。

权利要求 :

1.一种NOx吸收还原型催化剂的NOx吸收量推定装置,上述NOx吸收还原型催化剂被设置在引擎的排气通道中并净化排气中的NOx;

上述NOx吸收量推定装置包括:

催化剂温度取得部件,其取得上述NOx吸收还原型催化剂的催化剂温度,吸收容量运算部件,基于催化剂入口NOx量以及催化剂温度,运算催化剂的NOx吸收容量,吸收级别运算部件,基于由上述吸收容量运算部件运算出的NOx吸收容量,运算NOx吸收级别,暂定NOx吸收量运算部件,其基于根据上述引擎的运转状态推定的催化剂入口NOx量及由上述催化剂温度取得部件取得的催化剂温度,来运算从上述引擎排出并被上述NOx吸收还原型催化剂吸收的NOx量,作为暂定NOx吸收量,NOx放出量运算部件,其基于在上述引擎的稀燃运转时由上述催化剂温度取得部件取得的催化剂温度、由上述吸收级别运算部件运算出的NOx吸收级别、以及NOx放出速度,来运算在该稀燃运转时从上述NOx吸收还原型催化剂脱离并被放出的稀燃时NOx放出量,以及实际NOx吸收量运算部件,其通过从上述暂定NOx吸收量减去上述稀燃时NOx放出量,从而运算已被上述NOx吸收还原型催化剂吸收的实际NOx吸收量。

2.如权利要求1所述的NOx吸收量推定装置,其中,

上述NOx吸收还原型催化剂是在排气稀燃状态下吸收排气中的NOx并且在排气浓燃状态下将已被吸收的NOx还原净化的NOx吸收还原型催化剂;

上述NOx吸收量推定装置还包括NOx还原量运算部件,上述NOx还原量运算部件基于由上述催化剂温度取得部件取得的催化剂温度,来运算在排气浓燃状态下被从上述NOx吸收还原型催化剂还原净化的NOx还原量;

上述实际NOx吸收量运算部件通过从上述暂定NOx吸收量减去上述稀燃时NOx放出量和上述NOx还原量,从而运算上述实际NOx吸收量。

3.如权利要求1或2所述的NOx吸收量推定装置,还包括:

吸收容量运算部件,其基于上述催化剂入口NOx量及上述催化剂温度来运算上述催化剂的NOx吸收容量,以及NOx放出效率运算部件,其基于根据上述NOx吸收容量及上述实际NOx吸收量求出的当前的NOx吸收级别、和上述催化剂温度,来运算上述催化剂的NOx放出效率;

上述NOx放出量运算部件通过对上述实际NOx吸收量乘以上述NOx放出效率,从而运算上述稀燃时NOx放出量。

4.一种NOx吸收还原型催化剂的NOx吸收量推定方法,上述NOx吸收还原型催化剂被设置在引擎的排气通道中并净化排气中的NOx;

上述NOx吸收量推定方法执行以下的处理:

催化剂温度取得处理,取得上述NOx吸收还原型催化剂的催化剂温度,

吸收容量运算处理,基于催化剂入口NOx量以及催化剂温度,运算催化剂的NOx吸收容量,吸收级别运算处理,基于由上述吸收容量运算处理运算出的NOx吸收容量,运算NOx吸收级别,暂定NOx吸收量运算处理,基于根据上述引擎的运转状态推定的催化剂入口NOx量及由上述催化剂温度取得处理取得的催化剂温度,来运算从上述引擎排出并被上述NOx吸收还原型催化剂吸收的NOx量,作为暂定NOx吸收量,NOx放出量运算处理,基于在上述引擎的稀燃运转时由上述催化剂温度取得处理取得的催化剂温度、由上述吸收级别运算处理运算出的NOx吸收级别、以及NOx放出速度,来运算在该稀燃运转时从上述NOx吸收还原型催化剂脱离并被放出的稀燃时NOx放出量,以及实际NOx吸收量运算处理,通过从上述暂定NOx吸收量减去上述稀燃时NOx放出量,从而运算已被上述NOx吸收还原型催化剂吸收的实际NOx吸收量。

说明书 :

NOx吸收量推定装置和NOx吸收量推定方法

技术领域

[0001] 本发明涉及NOx吸收量推定装置和NOx吸收量推定方法,尤其涉及NOx吸收还原型催化剂的NOx吸收量的推定。

背景技术

[0002] 以往,作为对从内燃机排出的排气中的NOx进行还原净化的催化剂,已知NOx吸收还原型催化剂。NOx吸收还原型催化剂在排气为稀燃环境时吸收排气中含有的NOx,并且,在排气是浓燃环境时用排气中含有的烃通过还原净化将已吸收了的NOx无害化并排放。因此,在催化剂的NOx吸收量达到了预定量的情况下,为了使NOx吸收能力恢复,需要定期地进行通过排气管喷射或远后喷射来使排气成为浓燃状态的所谓NOx净化(例如,参照专利文献1、2)。
[0003] 现有技术文献
[0004] 专利文献
[0005] 专利文献1:日本特开2008-202425号公报
[0006] 专利文献2:日本特开2007-016713号公报

发明内容

[0007] 发明要解决的课题
[0008] 为了提高NOx净化的控制性,需要高精度地推定NOx吸收还原型催化剂的NOx吸收量。作为推定NOx吸收量的方法,可以想到如下方法:基于被从引擎排出并流入到催化剂中的催化剂入口NOx量或催化剂温度等来运算能被催化剂吸收的总NOx吸收量,并且,从该总NOx吸收量减去通过NOx净化而被还原的NOx还原量。
[0009] 但是,即使在NOx净化以外的稀燃运转时,例如在过滤器强制再生时等,有时已被吸收的NOx的一部分或全部由于排气温度的上升而从催化剂脱离并被放出。若不考虑这样的NOx放出量而推定NOx吸收量,则会基于比实际的NOx吸收量多的推定值来实施NOx净化,存在导致因徒劳的燃料消耗而使燃料经济性恶化的问题。
[0010] 本公开的NOx吸收量推定装置和NOx吸收量推定方法的目的在于,通过在NOx吸收量推定中考虑稀燃运转时的NOx放出量,从而有效地提高NOx吸收量的推定精度。
[0011] 用于解决课题的手段
[0012] 本公开的NOx吸收量推定装置是被设置在引擎的排气通道中并净化排气中的NOx的NOx吸收量推定装置,包括:催化剂温度取得部件,其取得上述NOx吸收还原型催化剂的催化剂温度,暂定NOx吸收量运算部件,其基于根据上述引擎的运转状态推定的催化剂入口NOx量及由上述催化剂温度取得部件取得的催化剂温度,来运算从上述引擎排出并被上述NOx吸收还原型催化剂吸收的NOx量,作为暂定NOx吸收量,NOx放出量运算部件,其基于在上述引擎的稀燃运转时由上述催化剂温度取得部件取得的催化剂温度来运算在该稀燃运转时从上述NOx吸收还原型催化剂脱离并被放出的稀燃时NOx放出量,以及实际NOx吸收量运算部件,其通过从上述暂定NOx吸收量减去上述稀燃时NOx放出量,从而运算已被上述NOx吸收还原型催化剂吸收的实际NOx吸收量。
[0013] 此外,本公开的NOx吸收量推定方法是被设置在引擎的排气通道中并净化排气中的NOx的NOx吸收还原型催化剂的NOx吸收量推定方法;上述NOx吸收量推定方法执行以下的处理:
[0014] 催化剂温度取得处理,取得上述NOx吸收还原型催化剂的催化剂温度,
[0015] 暂定NOx吸收量运算处理,基于根据上述引擎的运转状态推定的催化剂入口NOx量及由上述催化剂温度取得处理取得的催化剂温度,来运算从上述引擎排出并被上述NOx吸收还原型催化剂吸收的NOx量,作为暂定NOx吸收量,
[0016] NOx放出量运算处理,基于在上述引擎的稀燃运转时由上述催化剂温度取得处理取得的催化剂温度,来运算在该稀燃运转时从上述NOx吸收还原型催化剂脱离并被放出的稀燃时NOx放出量,以及
[0017] 实际NOx吸收量运算处理,通过从上述暂定NOx吸收量减去上述稀燃时NOx放出量,从而运算已被上述NOx吸收还原型催化剂吸收的实际NOx吸收量。
[0018] 发明效果
[0019] 根据本公开的NOx吸收量推定装置和NOx吸收量推定方法,通过在NOx吸收量推定中考虑稀燃运转时的NOx放出量,从而能够有效地提高NOx吸收量的推定精度。

附图说明

[0020] 图1是表示本实施方式的排气净化系统的整体构成图。
[0021] 图2是说明本实施方式的NOx净化控制的时序图。
[0022] 图3是本实施方式的NOx净化稀燃控制所使用的MAF目标值的设定处理的框图。
[0023] 图4是表示本实施方式的NOx净化浓燃控制所使用的目标喷射量的设定处理的框图。
[0024] 图5是说明本实施方式的NOx吸收量的推定处理的框图。
[0025] 图6是表示本实施方式的缸内喷射器的喷射量学习校正的处理的框图。
[0026] 图7是说明本实施方式的学习校正系数的运算处理的流程图。
[0027] 图8是表示本实施方式的MAF校正系数的设定处理的框图。

具体实施方式

[0028] 以下,基于附图来说明本公开的一实施方式的NOx吸收量推定装置及应用了该装置的排气净化系统。
[0029] 如图1所示,在柴油引擎(以下,简称为引擎)10的各气缸中,分别设置有将由未图示的共轨(Common Rail)蓄压的高压燃料向各气缸内直接喷射的缸内喷射器11。这些各缸内喷射器11的燃料喷射量或燃料喷射定时根据从电子控制单元(以下,称为ECU)50输入的指示信号而被控制。
[0030] 在引擎10的进气歧管10A上连接有导入新气的进气通道12,在排气歧管10B上连接有将排气向外部导出的排气通道13。在进气通道12中,从进气上游侧起依次设置有空气过滤器14、吸入空气量传感器(以下,称为MAF传感器)40、可变容量型增压器20的压缩机20A、中冷器15、进气节气门16等。在排气通道13中,从排气上游侧起依次设置有可变容量型增压器20的涡轮20B、排气后处理装置30等。另外,在引擎10中,安装有引擎转速传感器41、油门开度传感器42、增压压力传感器46。
[0031] EGR(Exhaust Gas Recirculation:排气再循环)装置21包括:EGR通道22,其连接排气歧管10B和进气歧管10A;EGR冷却器23,其冷却EGR气体;以及EGR阀24,其调整EGR量。
[0032] 排气后处理装置30是通过在外壳30A内从排气上游侧起依次配置氧化催化剂31、NOx吸收还原型催化剂32、颗粒过滤器(以下,简称为过滤器)33而构成的。此外,在比氧化催化剂31靠上游侧的排气通道13中设置有排气喷射器34,该排气喷射器34根据从ECU50输入的指示信号来向排气通道13内喷射未燃燃料(主要是烃(HC))。
[0033] 氧化催化剂31例如是通过在蜂窝结构体等陶瓷制承载体表面承载氧化催化剂成分而形成的。若通过排气喷射器34的排气管喷射或缸内喷射器11的远后喷射对氧化催化剂31供给未燃燃料,则氧化催化剂31将该未燃燃料氧化而使排气温度上升。
[0034] NOx吸收还原型催化剂32例如是通过在蜂窝结构体等陶瓷制承载体表面承载碱金属等而形成的。该NOx吸收还原型催化剂32在排气空燃比为稀燃状态时吸收排气中的NOx,并且,在排气空燃比为浓燃状态时用排气中含有的还原剂(HC等)来对已吸收的NOx进行还原净化。
[0035] 过滤器33例如是通过将由多孔质性的分隔壁划分的多个单元沿着排气的流动方向配置并将这些单元的上游侧和下游侧交替地孔封闭而形成的。过滤器33在分隔壁的细孔、表面捕集排气中的颗粒状物质(PM),并且,若PM堆积推定量达到预定量,则执行将其燃烧除去的所谓过滤器强制再生。通过利用排气管喷射或远后喷射向上游侧的氧化催化剂31供给未燃燃料,并将流入到过滤器33的排气温度升温到PM燃烧温度,从而进行过滤器强制再生。
[0036] 第1排气温度传感器43被设置在比氧化催化剂31靠上游侧的位置,对流入到氧化催化剂31中的排气温度进行检测。第2排气温度传感器44被配置在NOx吸收还原型催化剂32与过滤器33之间,检测向过滤器33流入的排气温度。NOx/λ传感器45被设置在比过滤器33靠下游侧的位置,对通过了NOx吸收还原型催化剂32的排气的NOx值及λ值(以下,也称为空气过剩率)进行检测。
[0037] ECU50进行引擎10等的各种控制,被构成为包括公知的CPU、ROM、RAM、输入接口、输出接口等。为了进行这些各种控制,传感器类40~45的传感器值被输入到ECU50中。此外,ECU50中作为其一部分的功能要素而具有NOx净化控制部60、NOx吸收量推定部70、MAF追随控制部80、喷射量学习校正部90、以及MAF校正系数运算部95。这些各功能要素作为被包含在作为一体硬件的ECU50中的要素来说明,但是,还能够将这些之中的任何一部分设置为单独的硬件。
[0038] [NOx净化控制]
[0039] NOx净化控制部60是本公开的催化剂再生部件,执行催化剂再生处理(以下,将该控制称为NOx净化控制),在该催化剂再生处理中,通过使排气成为浓燃状态以通过还原净化将已被NOx吸收还原型催化剂32吸收的NOx无害化并放出,从而使NOx吸收还原型催化剂32的NOx吸收能力恢复。
[0040] 在由后述细节的NOx吸收量推定部70推定的NOx吸收还原型催化剂32的NOx吸收量推定值str_est超过预定的阈值的情况下,或者根据从引擎10的运转状态推定的催化剂上游侧的NOx排出量、和由NOx/λ传感器45检测的催化剂下游侧的NOx量来运算NOx吸收还原型催化剂32的NOx净化率,且该NOx净化率比预定的判定阈值低的情况下,通过激活NOx净化标志FNP从而开始NOx净化控制(参照图2的时刻t1)。
[0041] 在本实施方式中,NOx净化控制下的排气的浓燃化是通过并用NOx净化稀燃控制和NOx净化浓燃控制从而实现的,在该用NOx净化稀燃控制中,利用空气系统控制使空气过剩率从正常运转时(例如,约1.5)降低到比理论空燃比相当值(约1.0)靠稀燃侧的第1目标空气过剩率(例如,约1.3),在该NOx净化浓燃控制中,利用喷射系统控制使空气过剩率从第1目标空气过剩率降低到浓燃侧的第2目标空气过剩率(例如,约0.9)。以下,说明这些NOx净化稀燃控制、及NOx净化浓燃控制的细节。
[0042] [NOx净化稀燃控制]
[0043] 图3是表示由NOx净化稀燃控制部60A进行的MAF目标值MAFNPL_Trgt的设定处理的框图。第1目标空气过剩率设定图表61是基于引擎转速Ne及油门开度Q而被参照的图表,预先基于实验等设定有与这些引擎转速Ne及油门开度Q对应的NOx净化稀燃控制时的空气过剩率目标值λNPL_Trgt(第1目标空气过剩率)。
[0044] 首先,将引擎转速Ne及油门开度Q作为输入信号而从第1目标空气过剩率设定图表61读取NOx净化稀燃控制时的空气过剩率目标值λNPL_Trgt,并输入到MAF目标值运算部62。进一步,在MAF目标值运算部62中,基于以下的算式(1)来运算NOx净化稀燃控制时的MAF目标值MAFNPL_Trgt。
[0045] MAFNPL_Trgt=λNPL_Trgt×Qfnl_corrd×RoFuel×AFRsto/Maf_corr…(1)[0046] 在算式(1)中,Qfnl_corrd表示后述的被学习校正后的缸内喷射器11的燃料喷射量(除了远后喷射之外),RoFuel表示燃料比重,AFRsto表示理论空燃比,Maf_corr表示后述的MAF校正系数。
[0047] 若NOx净化标志FNP变成激活(参照图2的时刻t1),则将MAF目标值运算部62运算出的MAF目标值MAFNPL_Trgt输入到斜度处理部63。斜度处理部63将引擎转速Ne及油门开度Q作为输入信号而从各斜度系数图表63A、63B读取斜度系数,并且,将附加有该斜度系数的MAF目标斜度值MAFNPL_Trgt_Ramp输入到阀控制部64。
[0048] 阀控制部64为了使得从MAF传感器40输入的实际MAF值MAFAct达到MAF目标斜度值MAFNPL_Trgt_Ramp,而执行将进气节气门16向闭侧节流,并且,将EGR阀24向开侧打开的反馈控制。
[0049] 这样,在本实施方式中,NOx净化稀燃控制部60A基于从第1目标空气过剩率设定图表61读取的空气过剩率目标值λNPL_Trgt、和各缸内喷射器11的燃料喷射量来设定MAF目标值MAFNPL_Trgt,并基于该MAF目标值MAFNPL_Trgt来反馈控制空气系统动作。由此,不必在NOx吸收还原型催化剂32的上游侧设置λ传感器,或者,即使在NOx吸收还原型催化剂32的上游侧设置有λ传感器的情况下,也不必使用该λ传感器的传感器值,就能够有效地使排气降低到NOx净化稀燃控制所需的期望的空气过剩率。
[0050] 此外,通过将学习校正后的燃料喷射量Qfnl_corrd用作各缸内喷射器11的燃料喷射量,从而能够用前馈控制来设定MAF目标值MAFNPL_Trgt,能够有效地排除各缸内喷射器11的经年劣化或特性变化等的影响。
[0051] 此外,通过对MAF目标值MAFNPL_Trgt附加根据引擎10的运转状态而设定的斜度系数,从而能够有效地防止因吸入空气量的急剧变化而导致的引擎10的失火或因力矩变动而导致的驾驶性的恶化等。
[0052] [NOx净化浓燃控制的燃料喷射量设定]
[0053] 图4是表示由NOx净化浓燃控制部60B进行的排气管喷射或远后喷射的目标喷射量QNPR_Trgt(每单位时间的喷射量)的设定处理的框图。第2目标空气过剩率设定图表65是基于引擎转速Ne及油门开度Q而被参照的图表,预先基于实验等设定有与这些引擎转速Ne及油门开度Q对应的NOx净化浓燃控制时的空气过剩率目标值λNPR_Trgt(第2目标空气过剩率)。
[0054] 首先,将引擎转速Ne及油门开度Q作为输入信号而从第2目标空气过剩率设定图表65读取NOx净化浓燃控制时的空气过剩率目标值λNPR_Trgt并输入到喷射量目标值运算部66。
进一步,在喷射量目标值运算部66中,基于以下的算式(2)来运算NOx净化浓燃控制时的目标喷射量QNPR_Trgt。
[0055] QNPR_Trgt=MAFNPL_Trgt×Maf_corr/(λNPR_Trgt×RoFuel×AFRsto)-Qfnl_corrd…(2)[0056] 在算式(2)中,MAFNPL_Trgt是NOx净化稀燃MAF目标值,被从上述的MAF目标值运算部62输入。此外,Qfnl_corrd表示后述的被学习校正后的MAF追随控制应用前的缸内喷射器11的燃料喷射量(除了远后喷射之外)、RoFuel表示燃料比重,AFRsto表示理论空燃比,Maf_corr表示后述的MAF校正系数。
[0057] 若NOx净化标志FNP变成激活,则将由喷射量目标值运算部66运算的目标喷射量QNPR_Trgt作为喷射指示信号发送到排气喷射器34或各缸内喷射器11(图2的时刻t1)。持续进行该喷射指示信号的发送,直到NOx净化标志FNP由于后述的NOx净化控制的结束判定而被关闭(图2的时刻t2)为止。
[0058] 这样,在本实施方式中,NOx净化浓燃控制部60B基于从第2目标空气过剩率设定图表65读取的空气过剩率目标值λNPR_Trgt、和各缸内喷射器11的燃料喷射量来设定目标喷射量QNPR_Trgt。由此,不必在NOx吸收还原型催化剂32的上游侧设置λ传感器,或者,即使在NOx吸收还原型催化剂32的上游侧设置有λ传感器的情况下,也不必使用该λ传感器的传感器值,就能够有效地使排气降低到NOx净化浓燃控制所需的期望的空气过剩率。
[0059] 此外,通过将学习校正后的燃料喷射量Qfnl_corrd用作各缸内喷射器11的燃料喷射量,从而能够用前馈控制来设定目标喷射量QNPR_Trgt,能够有效地排除各缸内喷射器11的经年劣化或特性变化等的影响。
[0060] [NOx净化控制的结束判定]
[0061] (1)从NOx净化标志FNP的激活起累计排气管喷射或远后喷射的喷射量,且该累计喷射量达到了预定的上限阈值量的情况、(2)从NOx净化控制的开始起计时的经过时间达到了预定的上限阈值时间的情况、(3)由NOx吸收量推定部70推定的NOx吸收量推定值str_est降低到表示NOx除去成功的预定的阈值的情况中的任何一个条件成立,则关闭NOx净化标志FNP而结束NOx净化控制(参照图2的时刻t2)。
[0062] [NOx吸收量推定]
[0063] 图5是说明由NOx吸收量推定部70进行的NOx吸收量推定值str_est的推定处理的框图。
[0064] 引擎排出NOx量运算部71运算从引擎10排出并流入到NOx吸收还原型催化剂32的NOx量(以下,称为催化剂入口NOx量In_NOx)。催化剂入口NOx量In_NOx例如根据基于引擎转速Ne或油门开度Q而被参照的图表或模型公式等来运算即可。
[0065] 催化剂推定温度运算部72运算NOx吸收还原型催化剂32的催化剂推定温度Temp_LNT。催化剂推定温度Temp_LNT例如基于由第1排气温度传感器43检测的氧化催化剂31的入口温度、在氧化催化剂31及NOx吸收还原型催化剂32的内部的HC、CO发热量、向外气的放热量等来运算即可。
[0066] 催化剂吸收容量运算部73运算根据催化剂入口NOx量In_NOx或催化剂推定温度Temp_LNT而变化的NOx吸收还原型催化剂32的NOx吸收容量str_vol。NOx吸收容量str_vol例如基于包含催化剂入口NOx量In_NOx或催化剂推定温度Temp_LNT作为输入值的模型公式或图表等来运算即可。
[0067] NOx吸收级别运算部74运算相对于NOx吸收容量str_vol的当前的NOx吸收级别str_lvl。NOx吸收级别str_lvl是通过对从NOx吸收容量str_vol减去由后述的NOx吸收量推定值运算部78运算的NOx吸收量推定值str_est之后的值除以NOx吸收容量str_vol从而求出的(str_lvl=(str_vol-str_est)/str_vol)。
[0068] 暂定NOx吸收量运算部75运算未将后述细节的NOx还原量rel_NP_ut或稀燃时NOx放出量rel_lean_ut考虑在内的,从引擎10排出并能被NOx吸收还原型催化剂32吸收的总NOx量(以下,称为暂定NOx吸收量abs_ut)。暂定NOx吸收量abs_ut基于包含催化剂入口NOx量In_NOx、催化剂推定温度Temp_LNT、NOx吸收级别str_lvl、由MAF传感器40检测的吸入空气量等作为输入值的模型公式或图表来运算。
[0069] NOx还原量运算部76运算通过实施NOx净化控制而被还原的NOx还原量rel_NP_ut。NOx还原量rel_NP_ut基于包含催化剂推定温度Temp_LNT、NOx吸收级别str_lvl、由MAF传感器
40检测的吸入空气量、由NOx/λ传感器45检测的排气λ值等作为输入值的模型公式或图表来运算。
[0070] 稀燃时NOx放出量运算部77运算在没有实施NOx净化控制的稀燃运转时(例如,过滤器再生时等排气温度上升时)从NOx吸收还原型催化剂32脱离并被放出的稀燃时NOx放出量rel_lean_ut。稀燃时NOx放出量rel_lean_ut是通过对基于催化剂推定温度Temp_LNT及NOx吸收级别str_lvl而被参照的放出效率图表的图表值rel_map乘以NOx吸收量推定值str_est,进一步乘以根据NOx放出速度而设定的预定的常数C,从而运算的(rel_lean_ut=rel_map×str_est×C)。
[0071] NOx吸收量推定值运算部78运算已被NOx吸收还原型催化剂32吸收的NOx吸收量推定值str_est。NOx吸收量推定值str_est基于对从暂定NOx吸收量abs_ut减去NOx还原量rel_ut及稀燃时NOx放出量rel_lean_ut之后的每单位时间的值求总和的以下的算式(3)来运算。
[0072] str_est=Σ(abs_ut-rel_NP_ut-rel_lean_ut)…(3)
[0073] 催化剂出口NOx量运算部79运算通过了NOx吸收还原型催化剂32的排气气体中的NOx量(以下,称为催化剂出口NOx量Out_NOx)。催化剂出口NOx量Out_NOx基于对从催化剂入口NOx量In_NOx减去NOx吸收量推定值str_est之后的值加上稀燃时NOx放出量rel_lean_ut的以下的算式(4)来运算。
[0074] NOx_out=NOx_in-str_est+rel_lean_ut…(4)
[0075] 在本实施方式中,通过这样将在稀燃运转时由于排气温度的上升等而从NOx吸收还原型催化剂32脱离并被放出的稀燃时NOx放出量rel_lean_ut考虑在内,并推定运算NOx吸收量推定值str_est或催化剂出口NOx量Out_NOx,从而能够可靠地提高它们的推定精度。
[0076] [MAF追随控制]
[0077] MAF追随控制部80在(1)从通常运转的稀燃状态向NOx净化控制下的浓燃状态的切换期间、及(2)从NOx净化控制下的浓燃状态向通常运转的稀燃状态的切换期间,执行根据MAF变化来对各缸内喷射器11的燃料喷射定时及燃料喷射量进行校正的MAF追随控制。
[0078] [喷射量学习校正]
[0079] 如图6所示,喷射量学习校正部90具有学习校正系数运算部91、以及喷射量校正部92。
[0080] 学习校正系数运算部91在引擎10的稀燃运转时基于由NOx/λ传感器45检测的实际λ值λAct与推定λ值λEst的误差Δλ来运算燃料喷射量的学习校正系数FCorr。在排气为稀燃状态时,由于排气中的HC浓度非常低,所以,在氧化催化剂31中因HC的氧化反应而导致的排气λ值的变化小到能够忽视的程度。因此,认为通过了氧化催化剂31并由下游侧的NOx/λ传感器45检测的排气中的实际λ值λAct、与从引擎10排出的排气中的推定λ值λEst一致。即,在这些实际λ值λAct与推定λ值λEst产生了误差Δλ的情况下,能够假定为是因对各缸内喷射器11的指示喷射量与实际喷射量之差而导致的误差。以下,基于图7的流程来说明由学习校正系数运算部91进行的使用了该误差Δλ的学习校正系数的运算处理。
[0081] 在步骤S300中,基于引擎转速Ne及油门开度Q,判定引擎10是否处于稀燃运转状态。如果处于稀燃运转状态,则为了开始学习校正系数的运算,进入步骤S310。
[0082] 在步骤S310中,通过对从推定λ值λEst减去由NOx/λ传感器45检测的实际λ值λAct后的误差Δλ,乘以学习值增益K1及校正灵敏度系数K2,从而运算学习值FCorrAdpt(FCorrAdpt=(λEst-λAct)×K1×K2)。推定λ值λEst是根据与引擎转速Ne、油门开度Q相应的引擎10的运转状态而推定运算的。此外,校正灵敏度系数K2是将由NOx/λ传感器45检测的实际λ值λAct作为输入信号而从图6所示的校正灵敏度系数图表91A读取的。
[0083] 在步骤S320中,判定学习值FCorrAdpt的绝对值|FCorrAdpt|是否处于预定的校正极限值A的范围内。在绝对值|FCorrAdpt|超过校正极限值A的情况下,本控制被返回而中止本次的学习。
[0084] 在步骤S330中,判定学习禁止标志FPro是否关闭。作为学习禁止标志FPro,例如有引擎10的过渡运转时、NOx净化控制时(FNP=1)等。原因在于,在这些条件成立的状态下,误差Δλ由于实际λ值λAct的变化而变大,不能进行准确的学习。关于引擎10是否处于过渡运转状态,例如基于由NOx/λ传感器45检测的实际λ值λAct的时间变化量,在该时间变化量大于预定的阈值的情况下判定为过渡运转状态即可。
[0085] 在步骤S340中,将基于引擎转速Ne及油门开度Q而被参照的学习值图表91B(参照图6)更新为在步骤S310中运算出的学习值FCorrAdpt。更详细而言,在该学习值图表91B上设定有根据引擎转速Ne及油门开度Q划分的多个学习区域。这些学习区域优选越是使用频度多的区域则其范围被设定得越窄,越是使用频度少的区域则其范围被设定得越宽。由此,能够在使用频度较多的区域中提高学习精度,能够在使用频度较少的区域中有效地防止未学习。
[0086] 在步骤S350中,通过对将引擎转速Ne及油门开度Q作为输入信号而从学习值图表91B读取的学习值加上“1”,从而运算学习校正系数FCorr(FCorr=1+FCorrAdpt)。将该学习校正系数FCorr输入到图6所示的喷射量校正部92。
[0087] 喷射量校正部92通过对引燃喷射QPilot、预喷射QPre、主喷射QMain、后喷射QAfter、远后喷射QPost的各基本喷射量乘以学习校正系数FCorr,从而执行这些燃料喷射量的校正。
[0088] 这样,通过用与推定λ值λEst同实际λ值λAct的误差Δλ相应的学习值来对各缸内喷射器11校正燃料喷射量,从而能够有效地排除各缸内喷射器11的经年劣化或特性变化、个体差等的偏差。
[0089] [MAF校正系数]
[0090] MAF校正系数运算部95运算在NOx净化控制时的MAF目标值MAFNPL_Trgt或目标喷射量QNPR_Trgt的设定中所使用的MAF校正系数Maf_corr。
[0091] 在本实施方式中,各缸内喷射器11的燃料喷射量被基于由NOx/λ传感器45检测的实际λ值λAct与推定λ值λEst的误差Δλ而校正。但是,由于λ是空气与燃料之比,所以,误差Δλ的原因不一定仅限于对各缸内喷射器11的指示喷射量与实际喷射量之差的影响。即,对于λ的误差Δλ,不仅各缸内喷射器11而且MAF传感器40的误差也可能有影响。
[0092] 图8是表示由MAF校正系数运算部95进行的MAF校正系数Maf_corr的设定处理的框图。校正系数设定图表96是基于引擎转速Ne及油门开度Q而被参照的图表,预先基于实验等设定有表示与这些引擎转速Ne及油门开度Q对应的MAF传感器40的传感器特性的MAF校正系数Maf_corr。
[0093] MAF校正系数运算部95将引擎转速Ne及油门开度Q作为输入信号从校正系数设定图表96读取MAF校正系数Maf_corr,并且,将该MAF校正系数Maf_corr发送到MAF目标值运算部62及喷射量目标值运算部66。由此,能够在NOx净化控制时的MAF目标值MAFNPL_Trgt或目标喷射量QNPR_Trgt的设定中有效地反映MAF传感器40的传感器特性。
[0094] [其它]
[0095] 另外,本发明不限定于上述的实施方式,能够在不脱离本发明的主旨的范围内适当变形而实施。
[0096] 本申请基于2015年03月20日申请的日本专利申请(特愿2015-057084),将其内容作为参照援引于此。
[0097] 工业实用性
[0098] 本发明具有能够有效地提高NOx吸收量的推定精度这种效果,对于NOx吸收量推定装置等有用。
[0099] 附图标记的说明
[0100] 10 引擎
[0101] 11 缸内喷射器
[0102] 12 进气通道
[0103] 13 排气通道
[0104] 16 进气节气门
[0105] 24 EGR阀
[0106] 31 氧化催化剂
[0107] 32 NOx吸收还原型催化剂
[0108] 33 过滤器
[0109] 34 排气喷射器
[0110] 40 MAF传感器
[0111] 45 NOx/λ传感器
[0112] 50 ECU