基于矩阵转换器的整流器快速换向的装置和方法转让专利

申请号 : CN201680016423.X

文献号 : CN107408895B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 赵涛许德伟贾汉吉尔·阿夫沙里安龚冰杨志华

申请人 : 株式会社村田制作所

摘要 :

矩阵整流器中从有效矢量到零矢量的换向方法包括两个步骤。矩阵整流器中从零矢量到有效矢量的换向方法包括三个步骤。

权利要求 :

1.一种执行矩阵整流器中从有效矢量到零矢量的换向的方法,所述矩阵整流器包括:第一相、第二相、第三相;以及

单向开关Sij,其中i=1,2且j=1,2,3,4,5,6,并且其中单向开关S1j和S2j连接在一起以限定第一、第二、第三、第四、第五和第六双向开关;其中第一、第三和第五双向开关的第一端连接在一起以提供正电压节点;

第二、第四和第六双向开关的第一端连接在一起以提供负电压节点;

第一和第四双向开关的第二端连接到第一相;

第三和第六双向开关的第二端连接到第二相;

第五和第二双向开关的第二端连接到第三相;

通过下述方式定义零矢量:使单向开关S1m和S1n导通或使单向开关S2m和S2n导通,其中(m,n)=(1,4),(3,6),(5,2),以及使所有其他单向开关Spq截止,其中p≠m和q≠n;以及通过下述方式定义有效矢量:使单向开关S1m和S1n导通或使单向开关S2m和S2n导通,其中m=1,3,5;n=2,4,6;并且m,n不连接到同一相,以及使所有其他单向开关Spq截止,其中p≠m和q≠n;

通过使用(a,b)=(1,6),(1,2),(3,2),(3,4),(5,4)和(5,6)的有效矢量来定义扇区I,II,III,IV,V和VI;

所述方法包括:

步骤(a):

对于单向开关S1m和S1n导通的有效矢量,在扇区I、III、V中,导通单向开关S1x,其中x被选择为使得(m,x)=(1,4),(3,6),(5,2);

以及

在扇区II、IV、VI中,导通单向开关S1x,其中x被选择为使得(x,n)=(1,4),(3,6),(5,

2);或者

对于单向开关S2m和S2n导通的有效矢量,在扇区I、III、V中,导通单向开关S2y,其中y被选择为使得(y,n)=(1,4),(3,6),(5,2);

以及

在扇区II、IV、VI中,导通单向开关S2y,其中y被选择为使得(m,y)=(1,4),(3,6),(5,

2);

步骤(b):

对于单向开关S1m和S1n初始导通的有效矢量,在扇区I、III、V中,截止单向开关S1n;以及在扇区II、IV、VI中,截止单向开关S1m;或者对于单向开关S2m和S2n初始导通的有效矢量,在扇区I、III、V中,截止单向开关S2m;

在扇区II、IV、VI中,截止单向开关S2n。

2.根据权利要求1所述的方法,其中在不测量输出电流或输入电压的情况下执行换向。

3.一种操作矩阵整流器的方法,包括:使用权利要求1的方法执行从有效矢量到零矢量的换向;以及基于空间矢量调制来调制第一、第二、第三、第四、第五和第六双向开关。

4.根据权利要求3所述的方法,其中通过以下方式产生施加到单向开关Sij的选通信号sij:确定空间矢量调制扇区;以及

产生载波信号;

基于空间矢量调制扇区的相应零矢量和两个有效矢量的停留时间,产生第一、第二和第三比较信号;

基于载波信号与第一、第二和第三比较信号的比较,产生对应于第一、第二、第三、第四、第五和第六双向开关的调制信号sj,其中j=1,2,3,4,5,6;

基于输出的是正电压还是负电压,产生第一转换器选择信号SelectCon1和第二转换器选择信号SelectCon2;其中基于以下方式生成所述选通信号sij:s1j=sj×SelectCon1(j=1,3,5,4,6,2)s2j=sj×SelectCon2(j=1,3,5,4,6,2)。

5.一种执行矩阵整流器中从零矢量到有效矢量的换向的方法,所述矩阵整流器包括:第一相、第二相、第三相;以及

单向开关Sij,其中i=1,2且j=1,2,3,4,5,6,并且其中单向开关S1j和S2j连接在一起以限定第一、第二、第三、第四、第五和第六双向开关;其中第一、第三和第五双向开关的第一端连接在一起以提供正电压节点;

第二、第四和第六双向开关的第一端连接在一起以提供负电压节点;

第一和第四双向开关的第二端连接到第一相;

第三和第六双向开关的第二端连接到第二相;

第五和第二双向开关的第二端连接到第三相;

通过下述方式定义零矢量:使单向开关S1m和S1n导通或使单向开关S2m和S2n导通,其中(m,n)=(1,4),(3,6),(5,2),以及使所有其他单向开关Spq截止,其中p≠m和q≠n;

通过下述方式定义有效矢量:使单向开关S1m和S1n导通或使单向开关S2m和S2n导通,其中m=1,3,5;n=2,4,6;并且m,n不连接到同一相,以及使所有其他单向开关Spq截止,其中p≠m和q≠n;以及通过使用(a,b)=(1,6),(1,2),(3,2),(3,4),(5,4)和(5,6)的有效矢量来定义扇区I,II,III,IV,V和VI;

所述方法包括:

步骤(a):

对于单向开关S1m和S1n导通的零矢量,在扇区I、III、V中,导通单向开关S1x,其中x=1,3,5并且x被选择为使得在正电压节点处提供负电压;以及在扇区II、IV、VI中,导通单向开关S1x,其中x=2,4,6并且x被选择为使得在负电压节点处提供正电压;或者对于单向开关S2m和S2n导通的零矢量,在扇区I、III、V中,导通单向开关S2y,其中y=2,4,6并且y被选择为使得在负电压节点处提供正电压;以及在扇区II、IV、VI中,导通单向开关S2y,其中y=1,3,5并且y被选择为使得在正电压节点处提供负电压;

步骤(b):

对于单向开关S1m和S1n初始导通的零矢量,在扇区I、III、V中,截止单向开关S1m;以及在扇区II、IV、VI中,截止单向开关S1n;或者对于单向开关S2m和S2n初始导通的零矢量,在扇区I、III、V中,截止单向开关S2n;以及在扇区II、IV、VI中,截止单向开关S2m;以及步骤(c):

对于单向开关S1m和S1n初始导通的零矢量,在扇区I、III、V中,截止单向开关S1x和S1n并导通单向开关S2x和S2n;以及在扇区II、IV、VI中,截止单向开关S1x和S1m并导通单向开关S2x和S2m;或者对于单向开关S2m和S2n初始导通的零矢量,在扇区I、III、V中,截止单向开关S2m和S2y并导通单向开关S1m和S1y;以及在扇区II、IV、VI中,截止单向开关S2n和S2y,并导通单向开关S1n和S1y。

6.根据权利要求5所述的方法,其中在不测量输出电流或输入电压的情况下执行换向。

7.根据权利要求5所述的方法,其中在步骤(a)中:对于单向开关S1m和S1n初始导通的零矢量,没有电流通过单向开关S1x;或者对于单向开关S2m和S2n初始导通的零矢量,没有电流通过单向开关S2y。

8.根据权利要求5所述的方法,其中,步骤(b)一直持续到通过所述正电压节点或所述负电压节点的电流达到零。

9.根据权利要求5所述的方法,还包括连接到正电压节点和负电压节点的变压器;其中步骤(b)的保持时间Δt由下式提供:其中I1max是矩阵转换器的最大电流,U1min是矩阵转换器的最小输出电压,Lo是变压器的漏电感。

10.一种操作矩阵整流器的方法,包括:使用根据权利要求5所述的方法,执行从零矢量到有效矢量的换向;以及基于空间矢量调制来调制第一、第二、第三、第四、第五和第六双向开关。

11.根据权利要求10所述的方法,其中通过以下方式产生施加到单向开关Sij的选通信号sij:确定空间矢量调制扇区;

产生载波信号;

基于空间矢量调制扇区的相应零矢量和两个有效矢量的停留时间,产生第一、第二和第三比较信号;

基于载波信号与第一、第二和第三比较信号的比较,产生对应于第一、第二、第三、第四、第五和第六双向开关的调制信号sj,其中j=1,2,3,4,5,6;以及基于输出的是正电压还是负电压,产生第一转换器选择信号SelectCon1和第二转换器选择信号SelectCon2;其中基于以下方式产生所述选通信号sij:s1j=sj×SelectCon1(j=1,3,5,4,6,2)s2j=sj×SelectCon2(j=1,3,5,4,6,2)。

说明书 :

基于矩阵转换器的整流器快速换向的装置和方法

技术领域

[0001] 本发明涉及矩阵转换器。更具体地,本发明涉及矩阵转换器的整流器的快速换向(commutation)。

背景技术

[0002] 图1A是示出3相到1相矩阵转换器的拓扑的电路图,图1B是图1A所示的3相到1相矩阵转换器的一部分的等效电路图。图1A和图1B中所示的电路中的每一个可以与本节中讨论的已知换向方法或与下面在具体实施方式部分中讨论的根据本发明的优选实施方式的新型换向方法一起使用。
[0003] 在图1A中,“线路侧”是指变压器Tr左侧的电路部分,其连接到针对相A、B、C中每一个的线路电压ua、ub、uc;“负载侧”是指变压器Tr的右侧的电路部分,其连接到输出电压uo(即负载)。在线路侧,将三相交流(AC)电流组合为单相交流电流,而在负载侧,单相交流电流由二极管D1至D4整流以提供直流电流。
[0004] 图1A的隔离矩阵整流器包括:限定降低总谐波失真(THD)的线路侧滤波器的滤波电感器Lf和滤波电容器Cf,布置在作为3相到1相矩阵转换器的桥中的双向开关S1至S6,在线路侧电路和负载侧电路之间提供高电压隔离的变压器Tr,布置在桥中以提供输出整流的四个二极管D1至D4,限定用于输出电压的负载侧滤波器的输出电感器Lo和输出电容器Co。在该隔离矩阵整流器中使用双向开关S1到S6,以便在任一方向上打开或闭合电流路径。如图1A所示,双向开关S1至S6包括并联连接的两个单向开关。因此,图1A中的开关Si对应于图1B中的开关S1i和S2i,其中i=1,2,3,4,5,6。
[0005] 如图1A所示,矩阵转换器的整流器优选地包括两部分:(1)3相到1相矩阵转换器,和(2)二极管整流器。矩阵转换器和二极管整流器通过高频变压器Tr隔离。如图1B所示,矩阵转换器可以被认为是标记为转换器#1和转换器#2的两个电流源整流器的反向并联连接。转换器#1可以提供正电压脉冲,可以称为正整流器,转换器#2可以提供负电压脉冲,可以称为负整流器。
[0006] 矩阵转换器的控制器将开关S1至S6导通和截止以产生所需的输出电压uo。用于确定开关S1至S6何时导通以及导通多长时间的一种方法是空间矢量调制(SVM)。SVM是用于开关S1至S6的脉宽调制(PWM)的算法。也就是说,SVM用于确定双向开关S1至S6应该何时导通和截止。双向开关S1至S6由数字信号(例如一或零)控制。通常,一意味着开关导通,零表示开关截止。在PWM中,导通信号的宽度控制开关导通(即调制)多长时间。在美国申请No.62/069,815中公开了SVM的实现,其全部内容通过引用并入本文。
[0007] 对于图1A所示的矩阵转换器,开关函数Si可以被定义为
[0008]
[0009] 其中Si是第i个开关的开关函数。例如,如果S1=1,则开关S1导通,而如果S1=0,则开关S1截止。
[0010] 在图1A中,只有两个开关可以同时导通以限定单个电流路径。例如,如果开关S1和S6导通,则限定了相A和相B之间通过变压器Tr的单个电流路径。如果只有两个开关可以同时导电,其中一个开关(S1,S3,S5)在桥的上半部分,另一开关(S2,S4,S6)在桥的下半部分,那么存在如表1和表2所示的九个可能的开关状态,包括六个有效(active)开关状态和三个零(zero)开关状态。在表1中,线路电流ia、ib、ic分别是A、B、C相中的电流,线路侧电流ip是通过变压器Tr的初级绕组的电流。在表2中,变压器匝数比k被假设为1,使得电感器电流iL等于线路侧电流ip。
[0011] 表1:空间矢量、开关状态和相电流
[0012]
[0013]
[0014] 表2:空间矢量、开关状态和相电流
[0015]
[0016] 矩阵转换器的控制器确定参考电流 并计算开关S1至S6的导通和截止时间以接近参考电流 从而产生线路侧电流ia、ib、和ic。参考电流 优选地是具有固定频率和固定幅度的正弦波: 固定频率优选地与三相ia(t)、ib(t)、和ic(t)中每一相的固定频率相同,以减少有害反射。控制器确定参考电流 的幅度,以实现所需的输出电压uo。也就是说,控制器通过改变参考电流 的幅度来调节输出电压uo。改变参考电流 的幅度将改变开关S1至S6的导通和截止时间。
[0017] 参考电流 移动通过图14所示的α-β平面。角度θ被定义为α轴与参考电流 之间的夹角。因此,随着角度θ的变化,参考电流 扫过不同的扇区I-VI。
[0018] 参考电流 可以通过使用有效矢量和零矢量的组合来合成。如本文所用,“合成”是指参考电流 可以表示为有效矢量和零矢量的组合。有效矢量和零矢量是静止的,并且不在如图14所示的α-β平面中移动。用于合成参考电流 的矢量根据参考电流 位于哪个扇区而改变。有效矢量通过定义扇区的有效矢量来选择。针对每个扇区,通过下述方式来选择零矢量:确定两个有效矢量共同具有的导通开关(on switch),以及选择也包括所述导通开关的零矢量。使用零矢量可以调整线路侧电流ip的幅度。
[0019] 例如,考虑电流参考 在扇区I中的情况。有效矢量 和 定义扇区I。对于两个有效矢量 和 开关S1都导通。零矢量 也使开关S1导通。因此,当参考电流 应于扇区I中时,有效矢量 和 以及零矢量 用于合成参考电流 其提供以下等式,其中等式的右边来自矢量 是具有零幅度的零矢量:
[0020]
[0021] 其中T1、T2和T0是对应的有效(active)开关的停留时间,Ts是抽样周期。
[0022] 停留时间是相应开关的导通时间。例如,针对有效矢量 T1是开关S1和S6的导通时间。由于针对矢量 和 中的每一个,开关S1是导通的,所以开关S1在整个抽样周期Ts期间是导通的。比率T1/Ts是在抽样周期Ts期间开关S6的占空比。
[0023] 抽样周期Ts通常被选择为使得参考电流 在每个扇区被多次合成。例如,参考电流 可以每个扇区合成两次,使得参考电流 每个循环合成十二次,其中一个完整的循环是参考电流 通过扇区I-VI的时间。
[0024] 可以使用安培-秒平衡原理计算停留时间,即参考电流 和抽样周期Ts的乘积等于各电流矢量乘以合成空间矢量的时间间隔的积的和。假设抽样周期Ts足够小,则在抽样周期Ts期间,参考电流 可以被认为是恒定的。参考电流 可以由两个相邻的有效矢量和零矢量合成。例如,当参考电流 在扇区I中时,参考电流 可以通过矢量 和合成。因此,安培-秒平衡等式由下式给出:
[0025]
[0026] Ts=T1+T2+T7
[0027] 其中T1、T2和T7是针对矢量 和 的停留时间,Ts是抽样时间。那么停留时间由下式给出:
[0028] T1=mTssin(π/6-θ)
[0029] T2=mTssin(π/6+θ)
[0030] T7=Ts-T1-T2
[0031] 其中
[0032]
[0033] θ是电流参考Iref和图5所示的α轴之间的扇形角,k是变压器匝数比。
[0034] 由于变压器提供的隔离,矩阵转换器输出电压u1(t)必须以高频率在正和负之间交替,以维持电压-秒平衡。因此,每个抽样周期Ts中的优选矢量序列被划分为八段其中矢量 和 是有效矢量,而 是零矢量。例如,在扇区I中,矢量 和 是有效矢量 和 而矢量 是零矢量 当转换器#1有效时,可以使用
正矢量,当转换器#2有效时,可以使用负矢量。
[0035] 在一个抽样周期Ts内矩阵转换器输出电压u1(t)和矩阵转换器输出电流ip(t)的波形如图5所示。在图5中,矩阵转换器输出电压u1(t)具有三种极性:
[0036] (1)u1(t)在时刻t0和t1之间以及时刻t4和t5之间具有正极性。这些时间间隔可以称为P间隔。P间隔中的电流矢量可以称为P矢量。在P矢量的作用下,矩阵转换器输出电流ip(t)增大。
[0037] (2)u1(t)在时刻t2和t3之间以及时刻t6和t7之间具有负极性。这些时间间隔可以称为N间隔。N间隔中的电流矢量可以称为N矢量。在N矢量的作用下,矩阵转换器输出电流ip(t)减小。
[0038] (3)u1(t)在时刻t1和t2之间、时刻t3和时刻t4之间、时刻t5和t6之间以及时刻t7和t8之间是0。这些时间间隔可以称为Z间隔。Z间隔中的电流矢量可以称为Z矢量。在Z矢量的作用下,矩阵转换器输出电流ip(t)的绝对值最多减少为零,矩阵转换器输出电流ip(t)的方向在Z间隔期间不变。
[0039] 在一个抽样周期Ts中,八个间隔是顺序的:P间隔、Z间隔、N间隔、Z间隔、P间隔、Z间隔、N间隔、Z间隔。如图5所示,在不同间隔之间存在换向。
[0040] 换向是指使开关导通和截止以从一个矢量切换到另一个矢量。矩阵转换器的已知换向方法是或者基于输出电流或者基于输入电压的4步换向方法。这些已知的换向方法非常复杂,需要精确地测量输出电流或输入电压。
[0041] (1)已知的基于电流的4步换向
[0042] 基于电流的4步换向测量输出电流方向。图2中的两相到单相矩阵转换器示出了基于电流的换向的问题。所有重要的换向可以在图2所示的电路中看到。
[0043] 作为示例,假设开关S11和S21初始导通,而开关S13和S23初始截止,使得电流可以在图2的左侧的双向开关中的任一方向上流动,并且假设我们想要截止图2左侧的双向开关,并导通图2右侧的双向开关。如图3A所示,当电流i>0时,可以使用以下四步:
[0044] (1)开关S11截止;
[0045] (2)开关S23导通;
[0046] (3)开关S21截止;
[0047] (4)开关S13导通。
[0048] 如图3B所示,当电流i<0时,以下四步换向方法是可能的:
[0049] (1)开关S21截止;
[0050] (2)开关S13导通;
[0051] (3)开关S11截止;
[0052] (4)开关S23导通。
[0053] (2)已知的基于电压的4步换向
[0054] 已知的基于电压的4步换向类似于基于电流的换向。假定开关S11和S21导通并且开关S13和S23截止,使得电流可以在图2左侧的双向开关中的任一方向流动,并假定图2左侧的双向开关截止,并且图2右侧的双向开关导通。如图4A所示,当电压ua>电压ub时,可以使用以下四步:
[0055] (1)开关S23导通;
[0056] (2)开关S21截止;
[0057] (3)开关S13导通;
[0058] (4)开关S11截止。
[0059] 如图4B所示,当电压ua<电压ub时,可以使用以下四步:
[0060] (1)开关S13导通;
[0061] (2)开关S11截止;
[0062] (3)开关S23导通;
[0063] (4)开关S21截止。
[0064] 基于电流和电压的换向方法都存在问题,如花费很长时间来完成换向,需要复杂的逻辑电路来实现换向方法,以及需要精确的电流测量或电压测量。使用这些已知的换向方法的频率受到限制,因为完成换向所需的时间长。

发明内容

[0065] 为了克服上述问题,本发明的优选实施例提供快速换向。本发明的优选实施例提供了实现以下优点中的一个或多个优点的2步或3步换向:
[0066] (1)缩短完成换向的时间。
[0067] (2)不需要测量输出电流或输入电压,原因是在基于整流器的矩阵转换器中,由于输入功率因子是一致的(即线路侧电流和电压同相),变压器的初级电流ip被良好地定义。
[0068] (3)比已知的4步换向方法更容易实现。
[0069] (4)适用于高频应用。
[0070] 可以与本发明的优选实施例一起使用的矩阵整流器包括第一相、第二相和第三相;以及,单向开关Sij,其中i=1,2和j=1,2,3,4,5,6,其中单向开关S1j和S2j连接在一起以限定第一、第二、第三、第四、第五和第六双向开关。第一、第三和第五双向开关的第一端连接在一起以提供正电压节点。第二、第四和第六双向开关的第一端连接在一起以提供负电压节点。第一和第四双向开关的第二端连接到第一相。第三和第六双向开关的第二端连接到第二相。第五和第二双向开关的第二端连接到第三相。通过下述方式定义零矢量:使单向开关S1m和S1n导通或使单向开关S2m和S2n导通,其中(m,n)=(1,4),(3,6),(5,2);并且使所有其他单向开关Spq截止,其中p≠m和q≠n。通过下述方式定义有效矢量:使单向开关S1m和S1n导通或使单向开关S2m和S2n导通,其中m=1,3,5;n=2,4,6,并且m,n不连接到同一相;以及使所有其他单向开关Spq截止,其中p≠m和q≠n。通过使用(a,b)=(1,6),(1,2),(3,2),(3,4),(5,4)和(5,6)的有效矢量来定义扇区I,II,III,IV,V和VI。
[0071] 根据本发明的优选实施例,在矩阵整流器中执行从有效矢量到零矢量的换向的方法包括
[0072] 步骤(a):
[0073] 对于单向开关S1m和S1n导通的有效矢量,
[0074] 在扇区I,III,V中,导通单向开关S1x,其中选择x使得(m,x)=(1,4),(3,6),(5,2);以及
[0075] 在扇区II,IV,VI中,导通单向开关S1x,其中x被选择为使得(x,n)=(1,4),(3,6),(5,2);或者
[0076] 对于单向开关S2m和S2n导通的有效矢量,
[0077] 在扇区I,III,V中,导通单向开关S2y,其中y被选择为使得(y,n)=(1,4),(3,6),(5,2);以及
[0078] 在扇区II,IV,VI中,导通单向开关S2y,其中y被选择为使得(m,y)=(1,4),(3,6),(5,2);
[0079] 步骤(b):
[0080] 对于单向开关S1m和S1n初始导通的有效矢量,
[0081] 在扇区I,III,V中,截止单向开关S1n;以及
[0082] 在扇区II,IV,VI中,截止单向开关S1m;或者
[0083] 对于单向开关S2m和S2n初始导通的有效矢量,
[0084] 在扇区I,III,V中,截止单向开关S2m;
[0085] 在扇区II,IV,VI中,截止单向开关S2n。
[0086] 优选地在不测量输出电流或输入电压的情况下执行换向。
[0087] 根据本发明的优选实施例,一种操作矩阵整流器的方法包括使用根据本发明的各种其它优选实施例的换向方法执行从有效矢量到零矢量的换向,并基于空间矢量调制来调制第一、第二、第三、第四、第五和第六双向开关。
[0088] 根据本发明的优选实施例,执行矩阵整流器中从零矢量到有效矢量的换向的方法包括:
[0089] 步骤(a):
[0090] 对于单向开关Sxm和S1n导通的零矢量,
[0091] 在扇区I,III,V中,导通单向开关S1x,其中×=1,3,5并且x被选择为使得在正电压节点处提供负电压;以及
[0092] 在扇区II,IV,VI中,导通单向开关S1x,其中x=2,4,6并且x被选择为使得在负电压节点处提供正电压;或者
[0093] 对于单向开关S2m和S2n导通的零矢量,
[0094] 在扇区I,III,V中,导通单向开关S2y,其中y=2,4,6并且y被选择为使得在负电压节点处提供正电压;以及
[0095] 在扇区II,IV,VI中,导通单向开关S2y,其中y=1,3,5并且y被选择为使得在正电压节点处提供负电压;
[0096] 步骤(b):
[0097] 对于单向开关S1m和S1n初始导通的零矢量,
[0098] 在扇区I,III,V中,截止单向开关S1m;以及
[0099] 在扇区II,IV,VI中,截止单向开关S1n;或者
[0100] 对于单向开关S2m和S2n初始导通的零矢量,
[0101] 在扇区I,III,V中,截止单向开关S2n;以及
[0102] 在扇区II,IV,VI中,截止单向开关S2m;以及
[0103] 步骤(c):
[0104] 对于单向开关S1m和S1n初始导通的零矢量,
[0105] 在扇区I,III,V中,截止单向开关S1x和S1n并导通单向开关S2x和S2n;以及[0106] 在扇区II,IV,VI中,截止单向开关S1x和S1m并导通单向开关S2x和S2m;或者[0107] 对于单向开关S2m和S2n初始导通的零矢量,
[0108] 在扇区I,III,V中,截止单向开关S2m和S2y并导通单向开关S1m和S1y;以及[0109] 在扇区II,IV,VI中,截止单向开关S2n和S2y,并导通单向开关S1n和S1y。
[0110] 优选地在不测量输出电流或输入电压的情况下执行换向。优选地,在步骤(a)中,对于单向开关S1m和S1n初始导通的零矢量,没有电流通过单向开关S1x;或者,对于单向开关S2m和S2n初始导通的零矢量,没有电流通过单向开关S2y。优选地,步骤(b)一直持续到通过正电压节点或负电压节点的电流到达零。该方法优选还包括变压器连接到正电压和负电压节点,其中步骤(b)的保持时间Δt由下式提供:
[0111]
[0112] 其中I1max是矩阵转换器的最大电流,U1min是矩阵转换器的最小输出电压,Lo是变压器的漏电感。
[0113] 根据本发明的优选实施例,一种操作矩阵整流器的方法包括使用根据本发明的各种其它优选实施例的换向方法执行从零矢量到有效矢量的换向,并基于空间矢量调制来调制第一、第二、第三、第四、第五和第六双向开关。
[0114] 优选地,通过下述方式来产生施加到单向开关Sij的选通信号sij:
[0115] 确定空间矢量调制扇区;以及
[0116] 产生载波信号;
[0117] 基于空间矢量调制扇区的相应零矢量和两个有效矢量的停留时间,产生第一、第二和第三比较信号;
[0118] 基于载波信号与第一、第二和第三比较信号的比较,产生对应于第一、第二、第三、第四、第五和第六双向开关的调制信号si,其中i=1,2,3,4,5,6;
[0119] 基于输出的是正电压还是负电压,产生第一转换器选择信号SelectCon1和第二转换器选择信号SelectCon2;其中
[0120] 所述选通信号sij基于以下方式产生:
[0121] s1i=si×SelectCon1(j=1,3,5,4,6,2)
[0122] s2i=si×SelectCon2(j=1,3,5,4,6,2)。
[0123] 根据以下参考附图对本发明的优选实施例的详细描述,本发明的上述和其它特征、要素、特性、步骤和优点将变得更加明显。

附图说明

[0124] 图1A和图1B是矩阵转换器的电路图。
[0125] 图2是两相到单相矩阵转换器的电路图。
[0126] 图3A和图3B示出了基于电流的换向的步骤。
[0127] 图4A和图4B示出了基于电压的换向的步骤。
[0128] 图5示出了矩阵转换器的整流器的波形。
[0129] 图6示出了扇区I中的一个抽样周期中的八个开关模式。
[0130] 图7A和图7B示出了扇区I中的正电流从有效矢量到零矢量的两步换向。
[0131] 图8A和图8B示出了从零矢量到有效矢量的3步换向。
[0132] 图9是选通信号发生器的框图。
[0133] 图10示出了在一个抽样周期中的SVM调制和换向信号。
[0134] 图11示出扇区I中的一个抽样周期中的选通信号。
[0135] 图12示出了在时刻t2的两步换向。
[0136] 图13示出了在时刻t3的3步换向。
[0137] 图14示出了电流空间矢量六边形。
[0138] 图15示出了扇区I中的负电流从有效矢量到零矢量的两步换向。
[0139] 图16示出了扇区I中的负电流从零矢量到有效矢量的三步换向。
[0140] 图17示出了扇区II中的正电流从有效矢量到零矢量的两步换向。
[0141] 图18示出了扇区II中的正电流从零矢量到有效矢量的三步换向。
[0142] 图19示出了扇区II中的负电流从有效矢量到零矢量的两步换向。
[0143] 图20示出了扇区II中的负电流从零矢量到有效矢量的三步换向。

具体实施方式

[0144] 本发明的优选实施方案改进了已知的四步换向方法。电流换向可确保运行可靠。因为与已知的3相到3相矩阵转换器的整流器相比,3相到1相矩阵转换器的整流器具有不同的结构,因此3相到1相矩阵转换器的整流器可以使用不同的基于电流的换向方法,如下所述。
[0145] 如图5所示,矩阵转换器输出电流ip(t)在相邻的P和Z间隔中除换向区域之外的部分中为正;矩阵转换器输出电流ip(t)在相邻的N和Z间隔中除换向区域之外的部分中为负。在相邻的P和Z间隔期间,转换器#1工作正常而转换器#2停止工作,相反,在相邻的N和Z间隔期间,转换器#2工作正常而转换器#1停止工作。因此,如图6所示,在一个抽样周期中除换向区域之外的部分,存在八个开关模式。在一个抽样周期中,存在两种类型的基于电流的换向:(1)有效矢量(即,P矢量或N矢量)到零矢量,以及(2)零矢量到有效矢量。下面讨论有效矢量到零矢量的两步换向和零矢量到有效矢量的三步换向。
[0146] (1)有效矢量到零矢量(P矢量到Z矢量或N矢量到Z矢量)
[0147] 如图5和图6所示,有效矢量到零矢量的换向包括:从模式1(P矢量)到模式2(Z矢量)的换向、从模式3(N矢量)到模式4(Z矢量)的换向、从模式5(P矢量)到模式6(Z矢量)的换向、以及从模式7(N矢量)到模式8(Z矢量)的换向。在有效矢量到零矢量的换向期间,矩阵转换器的整流器的输出电流方向不变。因此,正如与电流源逆变器的换向方法一样,有效矢量向零矢量的换向仅仅增加重叠时间。增加重叠时间以确保电流可以从一个开关顺利过渡到另一个开关,并且在此转换期间不会引起过电压(overvoltage)。重叠时间由这两个开关的“导通”和“截止”速度确定。例如,如图7A和图7B所示,从模式1到模式2的换向只有两个步骤:
[0148] (1)开关S14导通,和
[0149] (2)开关S16截止。
[0150] 因此,实现了从有效矢量到零矢量的换向。图7A和图7B示出了扇区I中的正电流从有效矢量到零矢量的2步换向的示例。在扇区III和V中执行类似的换向步骤。
[0151] 图15示出了扇区I中的负电流从有效矢量到零矢量的2步换向。换向步骤包括:
[0152] (1)开关S21导通,和
[0153] (2)开关S23截止。
[0154] 在扇区III和V中执行类似的换向步骤。
[0155] 图17示出了扇区II中的正电流从有效矢量到零矢量的2步换向。换向步骤包括:
[0156] (3)开关S15导通,和
[0157] (4)开关S11截止。
[0158] 在扇区IV和VI中执行类似的换向步骤。
[0159] 图19示出了扇区II中的负电流从有效矢量到零矢量的2步换向。换向步骤包括:
[0160] (1)开关S22导通,和
[0161] (2)开关S24截止。
[0162] 在扇区IV和VI中执行类似的换向步骤。
[0163] (2)零矢量到有效矢量(Z矢量到P矢量或Z矢量到N矢量)
[0164] 如图5和图6所示,零矢量到有效矢量的换向包括:从模式2(Z矢量)到模式3(N矢量)的换向、从模式4(Z矢量)到模式5(P矢量)的换向、从模式6(Z矢量)到模式7(N矢量)的换向、以及从模式8(Z矢量)到下一个抽样周期的模式1(P矢量)的换向。在零矢量到有效矢量的换向期间,矩阵转换器的整流器的输出电流的方向发生变化。因此,零矢量到有效矢量的换向需要额外的步骤。例如,如图8A和图8B所示,扇区I中从模式2到模式3的换向包括三个步骤:
[0165] (1)开关S15导通。此步骤的目的是为下一步提供电流路径。虽然在该步骤中开关S15导通,但由于电压ua大于电压uc,并且因为与开关S15串联的二极管被反向偏置,所以没有电流通过开关S15。输出矢量仍然是Z矢量。该步骤维持的时间跨度Δt1可以根据电流源逆变器的重叠时间来决定。考虑到开关S11和S15的选通信号之间的延迟,增加该重叠时间以确保在开关S11截止之前开关S15导通。
[0166] (2)开关S11截止。截止开关S11后,输出矢量基本上为N矢量,因此输出电流将急剧下降,并迅速降到零。这一步应该持续足够长的时间,以确保电流达到零。该步骤的保持时间Δt2可以通过矩阵转换器的最大电流I1max、矩阵转换器的最小输出电压U1min和变压器的漏电感Lo来估计:
[0167]
[0168] 为了简单起见,可以根据等式(1),将保持时间Δt2选择为固定值。保持时间Δt2由输出电流达到零所需的过渡时间确定。基于等式(1)的保持时间Δt2足够长,以确保在所有条件下电流达到零。
[0169] (3)开关S15和S14截止,并且开关S24和S24导通。
[0170] 因此,实现从零矢量到有效矢量的换向。图8A和图8B示出了扇区I中的正电流从零矢量到有效矢量的3步换向的示例。在扇区III和V中执行类似的换向步骤。
[0171] 图16示出了扇区I中的负电流从零矢量到有效矢量的3步换向。换向步骤包括:
[0172] (1)开关S22导通,
[0173] (2)开关S24截止,以及
[0174] (3)开关S21和S22截止,并且开关S11和S12导通。
[0175] 在扇区III和V中执行类似的换向步骤。
[0176] 图18示出了扇区II中的正电流从零矢量到有效矢量的3步换向。换向步骤包括:
[0177] (1)开关S16导通,
[0178] (2)开关S12截止,以及
[0179] (3)开关S15和S16截止,并且开关S25和S26导通。
[0180] 在扇区IV和VI中执行类似的换向步骤。
[0181] 图20示出了扇区II中的负电流从零矢量到有效矢量的3步换向。换向步骤包括:
[0182] (1)开关S23导通,
[0183] (2)开关S25截止,以及
[0184] (3)开关S23和S22截止,并且开关S13和S12导通。
[0185] 在扇区IV和VI中执行类似的换向步骤。
[0186] 如图10所示,仅转换器#1接通的时间段(或图10中的“生效区域”)和仅转换器#2接通的时间段彼此分离。在图10中,当转换器#1接通时(即转换器#1的生效区域),信号SelectCon1为1;当转换器#1关断时(即转换器#2的生效区域),信号SelectCon1为0。类似地,转换器#2接通时(即转换器#2的生效区域),信号SelectCon2为1;当转换器#2关断时(即转换器#1的生效区域),信号SelectCon2为0。如图9所示,可以使用以下三个步骤来实现调制和换向。
[0187] (1)产生信号Si(i=1,2,3,4,5,6)
[0188] 因此,使用载波信号和三个比较值信号CMP0、CMP1、CMP2来产生SVM PWM信号Si’(i=1,2,3,4,5,6)。比较值信号CMP0、CMP1、CMP2由每个矢量的停留时间决定。在信号Si′的下降沿的保持时间Δt1过去之后,可以产生信号Si(i=1,2,3,4,5,6)。与信号Si′相比,信号Si的下降沿被延迟保持时间Δt1。正如与电流源逆变器的换向方法一样,向信号S1,S3,S5以及S4,S6,S2添加重叠时间。例如,在扇区I中,信号S1,S3,S5以及S4,S6,S2如图10中所示。
[0189] (2)产生信号SelectConl和信号SelectCon2
[0190] 在载波信号和CMP1以及上升沿和下降沿的延迟Δt进行比较之后,可以产生信号SelectCon1,如图9和图10所示。固定的延迟时间Δt基于零矢量到有效矢量换向的三个步骤。所以延迟时间Δt可以由等式(2)确定。
[0191] Δt=Δt1+Δt2   (2)
[0192] 其中Δt1是重叠时间,Δt2通过等式(1)进行估计。
[0193] (3)产生转换器#1的选通信号Si1和转换器#2的选通信号Si2
[0194] 转换器#1的选通信号S1i可以由等式(3)产生,并且转换器#2的选通信号S2i可以由等式(4)产生:
[0195] S1j=Sj×SelectConl(j=1,3,5,4,6,2)   (3)
[0196] S2j=Sj×SelectCon2(j=1,3,5,4,6,2)   (4)
[0197] 例如,在扇区I中,针对转换器#1产生选通信号S11,S13,S15,S14,S16,以及S12,针对转换器#2产生选通信号521,S23,S22,S24,526,以及S22,如图10所示。
[0198] 图11-13示出了使用现场可编程门阵列(FPGA)产生的选通信号以实现上述方法。图11示出扇区I中,开关S1至S6的选通信号。从时刻t1到时刻t9的时间段是一个抽样周期Ts。
时刻t2,t4,t6,和t8使用两步换向,而时刻t1,t2,t3,t7,和t9使用三步换向。
[0199] 例如,在时刻t2,如图7所示,从模式1到模式2的换向(从有效矢量到零矢量)分为两个步骤。2步换向波形如图12所示。在时刻t3,如图8所示,从模式2到模式3的换向(从零矢量到有效矢量)分为三个步骤。3步换向波形如图13所示。
[0200] 应当理解,前面的描述仅仅是对本发明的说明性描述。在不脱离本发明的情况下,本领域技术人员可以设想出各种备选和修改。因此,本发明旨在包括落在所附权利要求的范围内的所有这样的替代、修改和变化。