一种缓释抗菌复合植骨材料及其制备方法转让专利

申请号 : CN201710680637.3

文献号 : CN107469155B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 周永春吕红斌胡建中陈灿

申请人 : 中南大学湘雅医院

摘要 :

本发明公开了一种缓释抗菌复合植骨材料及其制备方法。该缓释抗菌复合植骨材料主要由纳米银/TMC‑207缓释微球、纳米羟基磷灰石和磷酸钙骨水泥粉末混合制成。制备方法包括(1)通过O/O乳化‑溶剂挥发法制备纳米银/TMC‑207缓释微球,其中以PLGA为载体材料;(2)将纳米银/TMC‑207缓释微球、纳米羟基磷灰石与磷酸钙骨水泥粉末混合,所得混合物与去离子水调制成糊状物,经定型和干燥,得到缓释抗菌复合植骨材料。本发明的缓释抗菌复合植骨材料局部释药时间长、杀菌效果明显、且具有骨修复能力,制备方法操作简单方便、成本较低。

权利要求 :

1.一种缓释抗菌复合植骨材料,其特征在于,所述缓释抗菌复合植骨材料主要由纳米银/TMC-207缓释微球、纳米羟基磷灰石和磷酸钙骨水泥粉末混合制成,所述纳米银/TMC-

207缓释微球、纳米羟基磷灰石、磷酸钙骨水泥粉末的体积比为1~3∶1~3∶6;

所述纳米银/TMC-207缓释微球主要以纳米银和TMC-207为原料、以PLGA为载体材料、通过O/O乳化-溶剂挥发法制备得到,其中PLGA、纳米银、TMC-207的质量比为10~20∶1∶1。

2.根据权利要求1所述的缓释抗菌复合植骨材料,其特征在于,所述缓释抗菌复合植骨材料对耐多药结核菌的抑菌率为85%~99%,所述缓释抗菌复合植骨材料的弯曲强度为

20MPa~30MPa,弹性模量为5GPa~8GPa。

3.根据权利要求1所述的缓释抗菌复合植骨材料,其特征在于,所述纳米银/TMC-207缓释微球中纳米银的载药量为28%~35%,纳米银的包封率为83%~91%,所述纳米银/TMC-

207缓释微球中TMC-207的载药量为29%~40%,TMC-207的包封率为82%~92%;

所述纳米银/TMC-207缓释微球在体外释药的突释期内纳米银的释放度为12%~18%,前3天体外累计释放度为15%~19%,到42天体外累积释放度达到85%~95%;

所述纳米银/TMC-207缓释微球在体外释药的突释期内TMC-207的释放度为10%~

15%,前3天体外累计释放度为13%~19%,到48天体外累积释放度达到87%~97%。

4.根据权利要求1~3中任一项所述的缓释抗菌复合植骨材料,其特征在于,所述缓释抗菌复合植骨材料为用于治疗耐多药结核病的缓释抗菌复合植骨材料。

5.一种缓释抗菌复合植骨材料的制备方法,包括以下步骤:

(1)纳米银/TMC-207缓释微球的制备:以纳米银和TMC-207为原料,以PLGA作为载体材料,通过O/O乳化-溶剂挥发法制备纳米银/TMC-207缓释微球,其中,PLGA、纳米银和TMC-207的质量比为10~20∶1∶1;

(2)缓释抗菌复合植骨材料的制备:将步骤(1)制备的纳米银/TMC-207缓释微球、纳米羟基磷灰石和磷酸钙骨水泥粉末混合,其中,纳米银/TMC-207缓释微球、纳米羟基磷灰石、磷酸钙骨水泥粉末的体积比为1~3∶1~3∶6,所得混合物与去离子水按照质量比为2~6∶1混合调制成糊状物,所得糊状物经定型和干燥,得到缓释抗菌复合植骨材料。

6.根据权利要求5所述的缓释抗菌复合植骨材料的制备方法,其特征在于,所述步骤(1)的O/O乳化-溶剂挥发法具体包括以下步骤:首先将PLGA、纳米银及TMC-207加入丙酮中超声溶解,得内油相,将液体石蜡与Span80搅拌混合,液体石蜡与Span80的体积质量比为

8mL~10mL∶132mg~145mg,得外油相;采用注射器吸取内油相,于4℃~8℃下边滴加至外油相中边搅拌使乳化,滴加结束后,继续冰浴固化1.5h~2h,然后于25℃~30℃下固化2.5h~

3h,再去除残留的有机溶剂,经离心、过筛、洗涤后,将沉淀冻干,即得纳米银/TMC-207缓释微球。

7.根据权利要求5或6所述的缓释抗菌复合植骨材料的制备方法,其特征在于,所述糊状物的定型温度为25℃~30℃,所述糊状物的定型时间为4h~5h。

8.根据权利要求5或6所述的缓释抗菌复合植骨材料的制备方法,其特征在于,所述磷酸钙骨水泥粉末主要由磷酸四钙与磷酸氢钙以质量比1~2∶1混合制得。

说明书 :

一种缓释抗菌复合植骨材料及其制备方法

技术领域

[0001] 本发明属于外科手术用品领域,涉及一种外科用品的抗菌植骨材料及其制备方法,具体涉及一种缓释抗菌(特别是抗结核菌)复合植骨材料及其制备方法。

背景技术

[0002] 耐多药结核病(Multidrug-resistant tuberculosis,MDR-TB)近年来在全球范围内有蔓延趋势,我国是全球耐药结核病疫情较高的国家之一。MDR-TB治疗难度大、死亡率高、且预后较差。脊柱结核作为最常见的肺外结核同样面临耐多药问题,若治疗不当可导致疾病迁延复发,进展为严重后凸畸形及神经障碍。目前耐多药脊柱结核常规的治疗方案为二线抗结核药物全身化疗+局部病灶清除。脊柱结核由于局部病理结构的特殊性,病灶部位血运差,采用传统方法治疗病灶部位抗结核药物浓度低,不能抑制并杀死病灶部位的结核杆菌,而且长期全身化疗药物不良反应重。骨结核病灶清除后局部形成的骨缺损如不植骨,则骨缺损愈合时间较长,而且病灶部位不能承重,严重影响患者的日常生活;如取自体骨植骨或异体骨植骨,由于各自的局限性,限制了其在临床广泛应用。因此若能研制出一种既可以有局部持久的抗结核作用,又可以起骨填充作用的复合材料一定会有重要的临床使用价值。
[0003] 病灶部位药物浓度低是骨组织感染难于治疗的关键原因,同时也是细菌形成耐药的原因之一,而在病灶部位植入抗菌药物可在局部达到较高的药物浓度,能抑制并杀死病灶部位的细菌,对于治疗骨组织感染性疾病具有非常高的应用价值。局部抗生素缓释给药可在组织局部形成较高的药物浓度,使得通过局部植入抗菌药物来治愈骨组织感染成为可能。
[0004] 用于修复骨缺损的生物活性材料钙磷陶瓷磷酸钙骨水泥(calcium phosphate cement,CPC)与人骨的无机成分相似,可在体外塑型然后填充到骨缺损部位,能够与自体骨紧密结合。目前常用的CPC由磷酸四钙tetracalcium phosphate,TTCP)和磷酸氢钙(dicalcium phosphate anhydrous,DCPA)组成。但传统的CPC无诱导成骨作用,修复骨缺损的能力弱,因此需要改进其生物学性能。
[0005] 综上,急需为耐多药脊柱结核的治疗寻求一种全新的治疗思路和材料,以满足现有的多方面需求。

发明内容

[0006] 本发明要解决的技术问题是克服现有技术的不足,提供一种局部释药时间长、杀菌效果明显、且具有骨修复能力的缓释抗菌复合植骨材料,还相应提供一种操作简单方便、成本较低的缓释抗菌复合植骨材料的制备方法。
[0007] 为解决上述技术问题,本发明采用以下技术方案:
[0008] 一种本发明的缓释抗菌复合植骨材料,所述缓释抗菌复合植骨材料主要由纳米银/TMC-207缓释微球、纳米羟基磷灰石(nHA)和磷酸钙骨水泥粉末(CPC)混合制成,所述纳米银/TMC-207缓释微球、纳米羟基磷灰石、磷酸钙骨水泥粉末的体积比为1~3∶1~3∶6;
[0009] 所述纳米银/TMC-207缓释微球主要以纳米银和TMC-207为原料、以PLGA为载体材料、通过O/O乳化-溶剂挥发法制备得到,其中PLGA、纳米银、TMC-207的质量比为10~20∶1∶1。
[0010] 上述的缓释抗菌复合植骨材料中,优选的,所述缓释抗菌复合植骨材料对耐多药结核菌的抑菌率为85%~99%,所述缓释抗菌复合植骨材料的弯曲强度为20MPa~30MPa,弹性模量为5GPa~8GPa。
[0011] 上述的缓释抗菌复合植骨材料中,优选的,所述纳米银/TMC-207缓释微球中纳米银的载药量为28%~35%,纳米银的包封率为83%~91%,所述纳米银/TMC-207缓释微球中TMC-207的载药量为29%~40%,TMC-207的包封率为82%~92%;
[0012] 所述纳米银/TMC-207缓释微球在体外释药的突释期内纳米银的释放度为12%~18%,前3天体外累计释放度为15%~19%,到42天体外累积释放度达到85%~95%;
[0013] 所述纳米银/TMC-207缓释微球在体外释药的突释期内TMC-207的释放度为10%~15%,前3天体外累计释放度为13%~19%,到48天体外累积释放度达到87%~97%。
[0014] 上述的缓释抗菌复合植骨材料中,优选的,所述缓释抗菌复合植骨材料为用于治疗耐多药结核病的缓释抗菌复合植骨材料。
[0015] 作为一个总的技术构思,本发明还提供一种缓释抗菌复合植骨材料的制备方法,包括以下步骤:
[0016] (1)纳米银/TMC-207缓释微球的制备:以纳米银和TMC-207为原料,以PLGA作为载体材料,通过O/O乳化-溶剂挥发法制备纳米银/TMC-207缓释微球,其中,PLGA、纳米银和TMC-207的质量比为10~20∶1∶1;
[0017] (2)缓释抗菌复合植骨材料的制备:将步骤(1)制备的纳米银/TMC-207缓释微球、纳米羟基磷灰石和磷酸钙骨水泥粉末混合,其中,纳米银/TMC-207缓释微球、纳米羟基磷灰石、磷酸钙骨水泥粉末的体积比为1~3∶1~3∶6,所得混合物与去离子水按照质量比为2~6∶1混合调制成糊状物,所得糊状物经定型和干燥,得到缓释抗菌复合植骨材料。
[0018] 上述的缓释抗菌复合植骨材料的制备方法中,优选的,所述步骤(1)的O/O乳化-溶剂挥发法具体包括以下步骤:首先将PLGA、纳米银及TMC-207加入丙酮中超声溶解,得内油相,将液体石蜡与Span80搅拌混合,液体石蜡与Span80的体积质量比为8mL~10mL∶132mg~145mg,得外油相;采用注射器吸取内油相,于4℃~8℃下边滴加至外油相中边搅拌使乳化,滴加结束后,继续冰浴固化1.5h~2h,然后于25℃~30℃下固化2.5h~3h,再去除残留的有机溶剂,经离心、过筛、洗涤后,将沉淀冻干,即得纳米银/TMC-207缓释微球。
[0019] 上述的缓释抗菌复合植骨材料的制备方法中,优选的,所述糊状物的定型温度为25℃~30℃,所述糊状物的定型时间为4h~5h。
[0020] 上述的缓释抗菌复合植骨材料的制备方法中,优选的,所述磷酸钙骨水泥粉末主要由磷酸四钙与磷酸氢钙以质量比1~2∶1混合制得。
[0021] 可将本发明的缓释抗菌复合植骨材料作为抗耐多药脊柱结核抗菌材料放置于脊柱结核病灶部位。
[0022] 与现有技术相比,本发明的优点在于:
[0023] 1、本发明将纳米银/TMC-207缓释微球、nHA及CPC混合构建了一种新型的缓释抗菌复合植骨材料,为耐多药脊柱结核的治疗提供了一种全新的治疗思路和材料。其中,纳米银和TMC-207具有抗耐多药结核杆菌的能力,将二者制成缓释微球后植入病灶局部可提高局部的杀菌能力。纳米羟基磷灰石(nano-hydroxyapatite,nHA)与人骨的无机成分相似,具有良好的生物相容性,生物可降解性及成骨诱导能力。通过多组分的协同增效作用,本发明的缓释抗菌复合植骨材料局部释药时间长,杀菌效果明显,且无明显毒副作用,同时又可以起骨修复作用。这种复合植骨材料既有较强且持久的局部抗耐多药结核杆菌能力,同时又对骨缺损起修复作用。
[0024] 2、本发明的缓释抗菌复合植骨材料的制备方法相对简单,操作方便,成本较低,能够广泛应用于耐多药脊柱结核的治疗。而使用本发明制备的缓释抗菌复合植骨材料治疗耐多药脊柱结核的修复方法也非常容易操作,便于在修复手术中进行推广和应用。

附图说明

[0025] 图1为本发明实施例1中纳米银/TMC-207缓释微球在光学显微镜下的照片和SEM照片。
[0026] 图2为本发明实施例1中MG63在纳米银/TMC-207缓释微球上粘附生长的SEM照片。
[0027] 图3为本发明实施例1中BMSCs在缓释抗菌复合植骨材料上粘附生长的SEM照片。

具体实施方式

[0028] 以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
[0029] 以下实施例中所采用的材料和仪器均为市售。
[0030] 实施例1:
[0031] 一种本发明的缓释抗菌复合植骨材料,主要由纳米银/TMC-207缓释微球、纳米羟基磷灰石nHA及磷酸钙骨水泥粉末CPC混合制成,纳米银/TMC-207缓释微球、nHA、CPC的体积比为1~3∶1~3∶6,本实施例中为纳米银/TMC-207缓释微球、nHA、CPC的体积比为1∶1∶6。纳米银/TMC-207缓释微球主要以纳米银和TMC-207为原料、以PLGA为载体材料、通过O/O乳化-溶剂挥发法制备得到,其中PLGA、纳米银、TMC-207的质量比为10~20∶1∶1,本实施例中PLGA、纳米银、TMC-207的质量比为20∶1∶1。通过调整原料比例可以增加材料的局部抗结核菌能力和成骨诱导性能。
[0032] 一种上述本实施例的缓释抗菌复合植骨材料的制备方法,包括以下步骤:
[0033] (1)纳米银/TMC-207缓释微球模型的建立
[0034] 采用O/O乳化-溶剂挥发法制备纳米银/TMC-207缓释微球。首先将100mg聚乳酸-羟基乙酸共聚物PLGA(PLA∶PGA摩尔比=75∶25,固有粘度为0.59dl/g、数均分子量为70000、密度为1.25-1.3g/cm3)、5mg纳米银及5mg TMC-207置于小西林瓶中,加入2ml丙酮后超声溶解,得内油相。将8ml液体石蜡与132mg Span80(2%,w/w)通过机械搅拌混合,得外油相。注射器吸取内油相,缓慢加入到外油相中,滴加时间约10min,4-8℃下边滴加边磁力搅拌帮助乳化,滴加结束后,继续冰浴固化1.5h,接下来25℃固化2.5h,减压蒸馏法去除其中残留的有机溶剂,500rpm离心2min,过200目筛,去离子水洗涤,将沉淀冻干,即得纳米银/TMC-207缓释微球,分装冻干保存。
[0035] (2)缓释抗菌复合植骨材料的制备
[0036] 缓释抗菌复合植骨材料由纳米银/TMC-207缓释微球、nHA与CPC复合构成,具备制备过程为:先将磷酸四钙与磷酸氢钙以质量比1∶1混合,得到磷酸钙骨水泥粉末CPC(也可商购),然后将纳米银/TMC-207缓释微球、nHA与CPC混合,其中缓释微球、nHA与CPC的体积比为1∶1∶6。纳米银/TMC-207缓释微球、nHA与CPC的混合物与去离子水按照质量比为2∶1混合调制成糊状物,将糊状物放置于4×3×25cm的模具(用于力学测定)及厚度为2mm,直径12mm的圆形(用于生物学测试)模具定型4小时,定型温度为25℃,干燥后,得到缓释抗菌复合植骨材料,用于下面相关测试。
[0037] 以下对上述制备方法中制备的材料进行表征。
[0038] (1)纳米银/TMC-207缓释微球的性能表征
[0039] (1.1)缓释微球形态观察
[0040] 首先用光学显微镜观察,再将制备的缓释微球少量分散于无水乙醇后,滴到载玻片上,室温下自然干燥,镀金后在扫描电镜(scanning electron microscopy,SEM)下进行形态学观察。图1中A为光学显微镜照片,B为SEM照片。由图可知,纳米银/TMC-207缓释微球的形态规则,无粘连,流动性好,可见微球形态成圆形,表面光滑,无粘连,流动性好,分布较均匀。
[0041] (1.2)缓释微球粒径分布测定
[0042] 将缓释微球冻干粉剂用适量的双蒸水分散后,应用激光粒度分布仪检测其粒径大小和分布。得出结果为:微球成正态分布,冻干微球平均粒径32.6±3.1μm,粒径介于20~46μm之间。
[0043] (1.3)缓释微球载药量及包封率测定
[0044] 采用高效液相色谱法测定微球中的TMC-207含量,并计算微球中TMC-207的载药量和包封率;采用火焰原子吸收光谱法测定微球中银的载银量和包封率。
[0045] A:TMC-207含量测定
[0046] 准确称取10mg载有纳米银/TMC-207缓释微球,3ml二氯甲烷溶解,去离子水萃取TMC-207,5ml超纯水定容离心后取上清液20μl,注入色谱仪,采用外标法定量,计算每份微球样品的载药率和包封率。载药量=微球中含药量/微球总质量×100%;包封率=微球实际药物质量分数/投入体系药物质量分数×100%。
[0047] 色谱条件:色谱柱为SGE AnalyticalScience ENDURO C18柱(250mm×4.6mm,5μm),预柱为YWG-C18柱(10mm×4.6mm,5μm);流动相为0.02mol/L磷酸二氢钠溶液(磷酸调pH值至6.0):甲醇=85∶15;流速1.0mL/min;检测波长254nm;进样量20μl;柱温25℃。
[0048] B:银含量测定
[0049] 首先用银的标准品准确配制一系列标准工作溶液,用火焰原子吸收光谱法测其吸光度,绘图可得到工作曲线,其方程为:y=4.7886x-0.0204(R2=0.9982)。
[0050] 采用消解法测定微球中银的含量。准确称量0.0500g纳米银/TMC-207缓释微球样品,在通风橱里加入乙酸乙酯溶解微球,再加入50ml去离子水,离心分层后吸弃上层,再依次加入10mL68%的浓硝酸,1mL体积分数为30%的过氧化氢,用电热板加热至冒白烟,冷却后加入2mL高氯酸,继续加热至冒白烟。室温静置,冷却后加入2mL 50%的硝酸,然后去离子水用50mL容量瓶定容。定容后取TMC-207微球为空白对照组,用火焰原子吸收光谱仪测其吸光度,利用银的标准曲线计算样品的银含量。载银量=微球中银的质量/微球总质量×100%;包封率=所得微球中的银含量/投入银总含量×100%。
[0051] 结果显示:纳米银/TMC-207微球中纳米银的载药量31.4±2.25%,包封率87.5±2.4%;微球中TMC-207的载药量33.7±3.16%,包封率88.1±3.2%。
[0052] (1.4)缓释微球体外释放性能检测
[0053] 采用恒温振荡法测定缓释微球的体外药物释放性能。称取6份30mg的缓释微球,将每一试验个体投入透析袋内,放入磷酸盐缓冲液(Phosphate Buffered Saline,PBS)100ml棕色瓶中,加盖密封,在37℃恒温水浴振荡器中摇动(100r/min)。每天定时从每个释放瓶内取出液体3ml(-20℃冻存待检),作为检测药物浓度样品,同时再加同量等温的PBS于瓶中,继续摇动。最后使用高效液相色谱法及火焰原子吸收光谱法监测样品中TMC-207及银离子的累积释放量(方法同纳米银/TMC-207缓释微球系统模型的建立及上述性能表征部分)。
[0054] 该缓释微球的体外释药结果显示:该微球的体外释药过程较为平稳,突释期内微球中纳米银的释放度为14.56%,前3d累计释放度17.85%,到42d体外累积释放度达到92.14%。突释期内微球中TMC-207的释放度为12.41%,前3d累计释放度15.36%,到48d体外累积释放度达到94.03%。
[0055] (1.5)缓释微球体外生物相容性测试
[0056] 取上述缓释微球,超声下用无水乙醇、双蒸水交替清洗,低温等离子系统消毒,再将微球置于含10%胎牛血清的RPMI1640培养液浸泡24h。将缓释微球置于含10%胎牛血清的RPMI1640培养液的6孔培养板中,取200μl MG63细胞悬液接种于6孔培养板中(约2×104个),静置2h后每孔加入含10%胎牛血清的RPMI1640培养液1ml,然后置于37℃、5%CO2饱和湿度孵育箱中培养。3d后取出缓释微球,PBS清洗后依次经过2.5%戊二醛固定24h、PBS洗涤3次、乙醇梯度脱水、醋酸异戊酯浸泡,在37℃、5%CO2(质量分数)的条件下干燥,喷金后SEM观察细胞在微球上的生长及粘附情况。
[0057] 测试微球生物相容性时,将成骨细胞MG63与纳米银/TMC-207缓释微球共培养3d,观察细胞在微球上的粘附与生长情况。由图2的SEM照片可见,细胞在微球上粘附生长,紧贴在微球的表面,成多角形生长,成骨细胞生长良好,可见纳米银/TMC-207缓释微球可以支持细胞的粘附、伸展,说明微球无毒性。
[0058] (2)缓释抗菌复合植骨材料(即微球-nHA-CPC复合材料)样品的力学性能[0059] nHA-CPC复合材料的制备:nHA与CPC的体积比为1∶7。nHA-CPC混匀后再将混合物与去离子水混合,混合的质量比为2∶1。将糊状物放置于4×3×25cm的模具(力学测定)及厚度为2mm,直径12mm的圆形(生物学测试)模具定型4小时,干燥后用于下面相关测试。
[0060] 三点弯曲试验用于测定样品的抗弯强度,跨距为20mm,加载速度为0.5mm/min。抗2
弯强度S=3F L/(2bd ),式中F是最大载荷,L是跨度,b是样品宽度,d是厚度。弹性模量E=[3L(P1-P2)/2bh2(S2-S1)]×10-3,式中P1,P2分别为材料在线性范围内加载的初载荷和末载荷,L是跨度,b是样品宽度,h是厚度,S1、S2分别为与P1与P2对应的试样跨中的应变。
[0061] 微球-nHA-CPC复合材料的弯曲强度为26MPa,明显高于nHA-CPC样品的15MPa,也明显高于CPC样品的9MPa。微球-nHA-CPC复合材料的弹性模量为5.1GPa,明显高于nHA-CPC样品的3.1GPa,也明显高于CPC样品的2.1GPa。这些数据显示微球和nHA均可增强CPC的力学性能,但微球的作用更强。
[0062] (3)缓释抗菌复合植骨材料的体外抗菌性能测试
[0063] 采用菌落计数的方法测试缓释微球的抑菌率。取若干100ml的三角烧瓶,配有50ml的PBS,然后加入2ml培养好的菌悬液(金黄色葡萄球菌、标准结核杆菌、耐多药结核杆菌等),其细菌浓度为2×105CFU/ml,将10mg用1mlPBS浸泡过1d的缓释抗菌复合植骨材料加入到上述溶液中,只加入菌液的为空白对照组,在37℃下用水浴摇床摇动1小时,之后取少量菌液用PBS稀释后在平板上进行细菌培养,置于37℃细菌培养箱中培养24小时后进行菌落计数,复合材料体外降解过程中各时间点的抑菌率=[(空白对照组平均菌落数-实验组平均菌落数)/空白对照组平均菌落数]×100%。
[0064] 在体外抗菌的实验中,如表1所示,本研究发现缓释抗菌复合植骨材料具有较强体外的抗菌活性,对耐多药结核菌的抑菌率为98.9%。
[0065] 表1缓释抗菌复合植骨材料的抗菌效果
[0066]
[0067] (4)缓释抗菌复合植骨材料的体外生物相容性测试
[0068] 实验分为微球-nHA-CPC组和微球-CPC组。其中微球-CPC组作为对照组中微球与CPC的体积比为1∶6。取上述复合材料,超声下用无水乙醇、双蒸水交替清洗,低温等离子系统消毒,再将复合植骨材料置于含10%胎牛血清的DMEM培养液浸泡24h。将复合植骨材料置于含10%胎牛血清的DMEM培养液的6孔培养板中,取200μl BMSCs细胞悬液接种于6孔培养板中(约2×104个),静置2h后每孔加入1ml成骨诱导培养液(DMEM低糖培养液中含10%FBS,100ml/L PBS,100U/mL青霉素、100μg/mL链霉素,10nmol/L地塞米松、200μm/LL-抗坏血酸-
2-磷酸盐及10mmol/L B-甘油磷酸钠),然后置于37℃、5%CO2饱和湿度孵育箱中培养。
[0069] A:SEM观察BMSCs在样品上的生长与粘附情况
[0070] 3d后取出复合材料,PBS清洗后依次经过2.5%戊二醛固定24h、PBS洗涤3次、乙醇梯度脱水、醋酸异戊酯浸泡,在37℃、5%CO2(质量分数)的条件下干燥,喷金后SEM观察细胞在材料上的生长及粘附情况。
[0071] 如图3所示,BMSCs(用箭头表示)粘附于微球-CPC材料(图3A)和微球-nHA-CPC缓释抗菌复合植骨材料(图3B)上,细胞在两种材料上粘附生长并大量增殖,已基本覆盖材料的表面,但微球-nHA-CPC缓释抗菌复合植骨材料上的细胞增殖明显多于微球-CPC材料。这些数据显示,微球-CPC材料与缓释抗菌复合植骨材料均支持细胞的粘附、伸展,但在材料中加入nHA就可以明显促进BMSCs的增殖。
[0072] B:MTT法检测材料对BMSCs生长及增殖的影响
[0073] 共培养14天,细胞与材料复合物移入一新的24孔板,加入PBS洗涤2次,再加入1ml的PBS和100μlMTT溶液(5mg/ml)继续37℃孵育4小时,然后吸弃培养液,加入DMSO1ml,震荡使甲瓒完全溶解,取200μlDMSO溶解液加入到一新的96孔板。酶联免疫检测仪在490nm处测定每孔光吸收值。
[0074] 第14天,微球-CPC组和微球-nHA-CPC组的吸光度值分别为1.00和1.89,两组有统计学意义。这些数据显示,nHA可促进BMSCs在复合材料上的增殖。
[0075] C:酶联法检测BMSCs在材料上Coll I的活性
[0076] Coll I活性在干细胞的成骨分化中起着重要的作用,是评价BMSCs成骨分化的重要指标。各组细胞分别培养14天,吸弃各孔培养液,PBS洗涤2次,将材料移入一新的24孔板,加入0.2ml去离子水,反复冻融3次(-80℃和室温,每次30分钟),收集样品至1.5ml的离心管,3000转/分离心20分钟,仔细收集上清。取上清按酶联免疫分析试剂盒(武汉华美)提供的步骤进行操作,酶联仪450nm波长处测定各孔吸光度值,通过标准曲线计算样品中Coll I浓度,以普通培养基在细胞培养板培养的间充质干细胞作为对照组。
[0077] 结果显示:微球-nHA-CPC组Coll I活性为16.60±1.25μg/L,大于微球-CPC组的13.71±1.06μg/L,两组间有显著性差异(P<0.05)。这些数据显示,nHA可促进BMSCs在复合材料上的成骨分化,促进成骨。
[0078] 使用本实施例制备得到的缓释抗菌复合植骨材料治疗耐多药脊柱结核,具体的治疗方法为:将缓释抗菌复合植骨材料直接放置于病灶部位。使用本发明制备的缓释抗菌复合植骨材料治疗耐多药脊柱结核,在病灶部位释药时间长、杀菌效果明显、且无明显毒副作用,同时又可以起到骨修复作用。
[0079] 以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。