表面氨基修饰的静电纺纤维基摩擦纳米发电机及其制备转让专利

申请号 : CN201710556369.4

文献号 : CN107493029B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李召岭沈家力丁彬俞建勇

申请人 : 东华大学

摘要 :

本发明提供了一种表面氨基修饰的静电纺纤维基摩擦纳米发电机及其制备方法。所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机,其特征在于,包括:表面覆盖含氨基高分子的静电纺摩擦电正性纤维薄膜,以及静电纺摩擦电负性纤维薄膜;所述的静电纺摩擦电正性纤维薄膜和静电纺摩擦电负性纤维薄膜的背面皆设有电极材料。经过氨基修饰后的摩擦纳米发电机短路电量提高20~500%,短路电流提高30~500%,开路电压提高50~500%。本发明工艺流程短,设备简单,成本低廉,电输出性能提升显著,在可穿戴和微纳能源领域有着广泛应用前景。

权利要求 :

1.一种表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法,所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机,其特征在于,包括:表面覆盖含氨基高分子的静电纺摩擦电正性纤维薄膜,以及静电纺摩擦电负性纤维薄膜;所述的静电纺摩擦电正性纤维薄膜和静电纺摩擦电负性纤维薄膜的背面皆设有电极材料;所述的含氨基的高分子为:聚丙烯酰胺、聚乙烯亚胺、壳聚糖、聚乙烯胺、聚甲基丙烯酸氨基乙酯以及明胶中的一种,或者任意两种以上的混合物,其特征在于,包括:步骤一:分别配制至少一种含摩擦电正性聚合物的溶液和至少一种含摩擦电负性聚合物的溶液;

步骤二:将所述的含摩擦电正性聚合物的溶液和含摩擦电负性聚合物的溶液通过静电纺丝技术分别制备摩擦电正性纤维薄膜和摩擦电负性纤维薄膜;

步骤三:采用含氨基的高分子水溶液对摩擦电正性纤维薄膜进行加工处理,烘干后得到表面覆盖含氨基高分子的摩擦电正性纤维薄膜;

步骤四:分别在表面覆盖含氨基高分子的摩擦电正性纤维薄膜和摩擦电负性纤维薄膜的背面加工处理上电极材料,分别置于两个支撑平板上,并将两个支撑平板通过弹性材料连接,形成摩擦纳米发电机。

2.如权利要求1所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法,其特征在于,所述的步骤一中的摩擦电正性聚合物为:聚甲醛、乙基纤维素、聚酰胺11、聚酰胺

12、聚酰胺6、聚酰胺66、聚己内酯、丝素、棉、醋酸纤维素、聚丁二酸乙二醇酯、聚己二酸乙二醇酯、聚氨酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚丙烯腈、聚醋酸乙烯中的一种,或者任意两种以上的混合物;所述的含摩擦电正性聚合物的溶液的浓度为2~50%。

3.如权利要求1所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法,其特征在于,所述的步骤一中的摩擦电负性聚合物为:聚偏氟乙烯、聚三氟乙烯、聚偏氟乙烯-三氟乙烯、聚偏氟乙烯-六氟丙烯、聚偏氟乙烯-三氟氯乙烯醚、氟化聚氨酯、聚醚砜、聚醚酰亚胺、聚碳酸酯、聚苯乙烯、聚酰亚胺中的一种,或者任意两种以上的混合物;所述的含摩擦电负性聚合物的溶液的浓度为2~50%。

4.如权利要求1所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法,其特征在于,所述的配制方法包括将聚合物加入到相应的溶剂中,在20~100℃并持续搅拌2~48h直至形成均一稳定的溶液。

5.如权利要求1所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法,其特征在于,所述的步骤二中的静电纺丝指:单种溶液的单针头纺丝、多针头纺丝,两种以上不同溶液的多针头混合纺丝;所述的步骤二中的静电纺丝的技术参数为:灌注速度0.05~

5mL/h,电压10~90kV,接收距离10~100cm,温度10~35℃,相对湿度20~80%。

6.如权利要求1所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法,其特征在于,所述的步骤三中的含氨基的高分子为:聚丙烯酰胺、聚乙烯亚胺、壳聚糖、聚乙烯胺、聚甲基丙烯酸氨基乙酯以及明胶中的一种,或者任意两种以上的混合物;所述的含氨基的高分子水溶液的浓度为0.0001~50%。

7.如权利要求1所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法,其特征在于,所述的步骤三中的加工处理方法为:浸渍加工、涂层加工、浸轧加工以及喷雾加工中的一种或多种组合。

8.如权利要求1所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法,其特征在于,所述步骤四中的电极材料为:铜、银、金、铝、铁、铜合金、铝合金、铟锡氧化物、石墨烯、碳纳米管、碳纤维以及石墨中的一种或者多种。

9.如权利要求1所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法,其特征在于,所述的步骤四中的支撑平板为:聚甲基丙烯酸甲酯平板、聚对苯二甲酸乙二醇酯平板、铝平板、铜平板、木平板、石英平板、玻璃平板以及陶瓷平板中的一种或多种;所述的步骤四中的弹性材料为:海绵、弹簧、聚酰亚胺胶带中的一种或多种;所述的步骤四中两个支撑平板通过弹性材料连接后,两个支撑平板间形成可接触分离的间距。

说明书 :

表面氨基修饰的静电纺纤维基摩擦纳米发电机及其制备

技术领域

[0001] 本发明属于纳米能源及摩擦纳米发电机领域,具体涉及一种表面氨基修饰的静电纺纤维基摩擦纳米发电机及其制备方法。

背景技术

[0002] 随着现代社会发展,电子设备及系统不断朝着小型化、便携化、多功能化等方向演变。如何为微型功能器件和可穿戴设备提供长效稳定电能成为电子产业和信息技术发展中亟待解决的问题。摩擦纳米发电机能将环境中广泛分布的机械能,包括人体运动能、声能等能量直接转化成电能,具有较高的能量转化效率。并且摩擦纳米发电机具有质轻、材料选择性广、设计多样等特点,能和织物、运动鞋等服饰有机复合,能为可穿戴电子设备提供长效稳定能源。
[0003] 摩擦纳米发电机具有高电压、低电流的输出特性,并且表面电荷密度较低,电量输出较小,因此限制了其实际应用。为了改善电输出性能,目前主要通过优化摩擦材料的表面结构和化学组成来实现。在优化材料表面结构方面,广泛采用等离子体刻蚀、纳米压印技术、电化学腐蚀等方法,在材料表面形成纳米线、纳米棒、纳米孔等粗糙结构,来增加接触材料的比表面积。国内专利CN104779832A公开了一种采用通过氟碳等离子体处理工艺,在聚合物表面形成微纳结构,从而提高摩擦发电机的电输出性能。国内专利CN 104167949A公开了一种加热及凹凸压印处理技术,获得带有微纳凹凸结构的高分子薄膜层。但是以上这些制备纳米结构的方法所用设备昂贵、工艺复杂、成本较高,不利于大规模工业推广。在化学组成方面,目前往往采用含氟分子对摩擦电负性材料进行修饰。国内专利CN103391021A公开了采用八氟环丁烷对材料进行化学修饰,增强其电负性。但是目前缺乏对摩擦电正性材料进行化学修饰的有效方法,限制了进一步提升摩擦纳米发电机输出性能的空间。因此急需开发一种简单高效的制备工艺,既能有效获得摩擦材料表面所需的微纳结构,又能采用绿色环保技术对摩擦电正性材料进行化学组成优化,提升电输出性能和能量转换效率,以拓宽摩擦纳米发电机在可穿戴和微纳能源领域的应用范围。

发明内容

[0004] 本发明提供一种表面氨基修饰的静电纺纤维基摩擦纳米发电机及其制备方法,通过静电纺丝技术一步制备得到具有纳米纤维结构的薄膜,提高摩擦材料的粗糙度,并采用含氨基高分子修饰摩擦电正性纤维薄膜,提升摩擦纳米发电机的电输出性能。
[0005] 为了达到上述目的,本发明提供了一种表面氨基修饰的静电纺纤维基摩擦纳米发电机,其特征在于,包括:表面覆盖含氨基高分子的静电纺摩擦电正性纤维薄膜,以及静电纺摩擦电负性纤维薄膜;所述的静电纺摩擦电正性纤维薄膜和静电纺摩擦电负性纤维薄膜的背面皆设有电极材料。
[0006] 优选地,所述的静电纺摩擦电正性纤维薄膜和静电纺摩擦电负性纤维薄膜分别设于两个支撑平板上,所述的两个支撑平板通过弹性材料连接。
[0007] 更优选地,所述的两个支撑平板间形成可接触分离的间距。
[0008] 更优选地,所述的两个支撑平板间形成的间距高度为0.5~20mm。
[0009] 优选地,所述的表面覆盖含氨基高分子的静电纺摩擦电正性纤维薄膜的厚度为5-80μm,所述的静电纺摩擦电负性纤维薄膜的厚度为5-80μm。
[0010] 本发明还提供了上述的表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法,其特征在于,包括:
[0011] 步骤一:分别配制至少一种含摩擦电正性聚合物的溶液和至少一种含摩擦电负性聚合物的溶液;
[0012] 步骤二:将所述的含摩擦电正性聚合物的溶液和含摩擦电负性聚合物的溶液通过静电纺丝技术分别制备摩擦电正性纤维薄膜和摩擦电负性纤维薄膜;
[0013] 步骤三:采用含氨基的高分子水溶液对摩擦电正性纤维薄膜进行加工处理,烘干后得到表面覆盖含氨基高分子的摩擦电正性纤维薄膜;
[0014] 步骤四:分别在表面覆盖含氨基高分子的摩擦电正性纤维薄膜和摩擦电负性纤维薄膜的背面加工处理上电极材料,分别置于两个支撑平板上,并将两个支撑平板通过弹性材料连接,形成摩擦纳米发电机。
[0015] 优选地,所述的步骤一中的摩擦电正性聚合物为:聚甲醛、乙基纤维素、聚酰胺11、聚酰胺12、聚酰胺6、聚酰胺66、聚己内酯、丝素、棉、醋酸纤维素、聚丁二酸乙二醇酯、聚己二酸乙二醇酯、聚氨酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚丙烯腈、聚醋酸乙烯中的一种,或者任意两种以上的混合物。
[0016] 优选地,所述的含摩擦电正性聚合物的溶液的浓度为2~50%。
[0017] 优选地,所述的步骤一中的摩擦电负性聚合物为:聚偏氟乙烯、聚三氟乙烯、聚偏氟乙烯-三氟乙烯、聚偏氟乙烯-六氟丙烯、聚偏氟乙烯-三氟氯乙烯醚、氟化聚氨酯、聚醚砜、聚醚酰亚胺、聚碳酸酯、聚苯乙烯、聚酰亚胺中的一种,或者任意两种以上的混合物。
[0018] 优选地,所述的含摩擦电负性聚合物的溶液的浓度为2~50%。
[0019] 优选地,所述的配制方法包括将聚合物加入到相应的溶剂中,在20~100℃并持续搅拌2~48h直至形成均一稳定的溶液。
[0020] 优选地,所述的步骤二中的静电纺丝指:单种溶液的单针头纺丝、多针头纺丝,两种以上不同溶液的多针头混合纺丝;所述的步骤二中的静电纺丝的技术参数为:灌注速度0.05~5mL/h,电压10~90kV,接收距离10~100cm,温度10~35℃,相对湿度20~80%。
[0021] 优选地,所述的步骤三中的含氨基的高分子为:聚丙烯酰胺、聚乙烯亚胺、壳聚糖、聚乙烯胺、聚甲基丙烯酸氨基乙酯以及明胶中的一种,或者任意两种以上的混合物。
[0022] 优选地,所述的含氨基的高分子水溶液的浓度为0.0001~50%。
[0023] 优选地,所述的步骤三中的加工处理方法为:浸渍加工、涂层加工、浸轧加工以及喷雾加工中的一种或多种组合。
[0024] 优选地,所述步骤四中的电极材料为:铜、银、金、铝、铁、铜合金、铝合金、铟锡氧化物、石墨烯、碳纳米管、碳纤维以及石墨中的一种或者多种。
[0025] 优选地,所述的步骤四中的支撑平板为:聚甲基丙烯酸甲酯平板、聚对苯二甲酸乙二醇酯平板、铝平板、铜平板、木平板、石英平板、玻璃平板以及陶瓷平板中的一种或多种;所述的步骤四中的弹性材料为:海绵、弹簧、聚酰亚胺胶带中的一种或多种。
[0026] 更优选地,所述的步骤四中两个支撑平板通过弹性材料连接后,两个支撑平板间形成可接触分离的间距。
[0027] 更优选地,所述的步骤四中两个支撑平板的间距高度为0.5~20mm。
[0028] 与现有技术相比,本发明的有益效果是:
[0029] 1、和等离子体刻蚀、纳米压印技术、电化学腐蚀等方法,在材料表面形成纳米线、纳米棒、纳米孔等粗糙结构相比。本发明采用静电纺丝技术一步法直接制备具有特定微纳结构的摩擦材料,具有设备简单、工艺简便、成本低等特点。
[0030] 2、本发明采用含氨基高分子水溶液对摩擦电正性纤维薄膜进行表面改性,工艺简便绿色环保,并且能有效提升摩擦材料的正电荷密度,增强纳米发电机的电输出性能以及能量转化效率。经过氨基修饰后的摩擦纳米发电机短路电量提高20~500%,短路电流提高30~500%,开路电压提高50~500%。
[0031] 3、本发明制备的基于静电纺的摩擦纳米发电机,可与人体服装有机结合形成可穿戴摩擦纳米发电机,用于高效收集人体运动机械能为电子器件提供源源不断的电能。
[0032] 4、本发明工艺流程短,设备简单,成本低廉,电输出性能提升显著,在可穿戴和微纳能源领域有着广泛应用前景。

附图说明

[0033] 图1为实施例1中制备得到的一种表面氨基修饰的静电纺纤维基摩擦纳米发电机结构示意图,其中1为有机玻璃板,2为铜胶带,3为聚丙烯酰胺改性后的醋酸纤维素/聚氨酯纤维膜,4为聚偏氟乙烯纤维薄膜,5为聚酰亚胺胶带。
[0034] 图2为实施例1聚丙烯酰胺改性前后的摩擦纳米发电机电输出性能,(a)短路电量,(b)短路电流,(c)开路电压。
[0035] 图3为实施例3中制备得到的一种表面氨基修饰的静电纺纤维基摩擦纳米发电机结构示意图,其中11为有机玻璃板,12为金电极层,13为聚乙烯胺改性后的聚甲基丙烯酸甲酯纤维薄膜,14为聚醚砜纳米纤维膜,15为海绵。

具体实施方式

[0036] 下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
[0037] 实施例1~4中所用醋酸纤维素购于阿拉丁,产品编号C106244,聚氨酯重均分子量为80 000,聚偏氟乙烯重均分子量为570 000,聚丙烯酰胺重均分子量为10000000,聚丙烯腈重均分子量为90 000,聚乙烯亚胺重均分子量为70 000,聚乙烯胺重均分子量为100 000,聚醚砜重均分子量为45 000,聚甲基丙烯酸甲酯重均分子量为35 000,聚酰胺6重均分子量18 000,偏二氟乙烯-三氟乙烯(60/40)重均分子量为500 000。
[0038] 实施例1
[0039] 一种表面氨基修饰的静电纺纤维基摩擦纳米发电机,包括:表面覆盖含氨基高分子的静电纺摩擦电正性纤维薄膜,以及静电纺摩擦电负性纤维薄膜;所述的静电纺摩擦电正性纤维薄膜和静电纺摩擦电负性纤维薄膜的背面皆设有电极材料。所述的静电纺摩擦电正性纤维薄膜和静电纺摩擦电负性纤维薄膜分别设于两个支撑平板上,所述的两个支撑平板通过弹性材料连接,在两平板间形成可接触分离的间隙。
[0040] 所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法为:
[0041] 步骤一:将醋酸纤维素加入到丙酮和N,N-二甲基甲酰胺混合溶剂(体积比例为:3/2)中,在25℃下持续搅拌10h配制成质量分数为19%的均一稳定的溶液。将聚氨酯加入到丙酮和N,N-二甲基甲酰胺混合溶剂(体积比例为:8/2)中,在25℃下持续搅拌10h配制成质量分数为18%的均一稳定的溶液。将聚偏氟乙烯粉末加入N,N-二甲基甲酰胺中,在80℃条件下加热10h配制成质量分数为20%的均一稳定的溶液。
[0042] 步骤二:将所述的醋酸纤维素溶液和聚氨酯溶液在静电纺设备中通过静电纺丝技术进行醋酸纤维素和聚氨酯多针头混纺(针头比例为:2/1),制备厚度为20μm的摩擦电正性纳米纤维薄膜,纺丝工艺为:灌注速度0.5mL/h,电压25kV,接收距离20em,温度25℃,相对湿度45%。将所述的聚偏氟乙烯溶液通过静电纺丝形成厚度为20μm的摩擦电负性纳米纤维薄膜,纺丝工艺为:灌注速度3.0mL/h,电压30kV,接收距离20cm,温度25℃,相对湿度45%。
[0043] 步骤三:将聚丙烯酰胺溶解在水中形成质量分数为0.25%的均一透明水溶液,将摩擦电正性纳米纤维薄膜浸渍在聚丙烯酰胺水溶液中,30min后取出在烘箱中80℃烘干,制备得到厚度为18μm的表面覆盖聚丙烯酰胺的静电纺摩擦电正性纤维薄膜。
[0044] 步骤四:分别在摩擦电负性纳米纤维薄膜和表面覆盖聚丙烯酰胺的静电纺摩擦电正性纤维薄膜的背面粘贴铜胶带,分别固定于有机玻璃板上,并将两个有机玻璃板通过聚酰亚胺胶带连接成摩擦纳米发电机。如图1所示,聚偏氟乙烯纤维膜4和表面覆盖聚丙烯酰胺的醋酸纤维素/聚氨酯混纺纤维膜3分别经铜胶带2固定于有机玻璃板1上,两个有机玻璃板1通过聚酰亚胺胶带5连接,形成可接触分离的间距,间距高度为10mm。
[0045] 如图2所示,未经过聚丙烯酰胺改性的摩擦纳米发电机短路电量为23nC,短路电流为-2.0~4.0μA,开路电压为75V,经过聚丙烯酰胺处理之后的摩擦纳米发电机短路电量为45nC,短路电流为-3.0~7.5μA,开路电压为140V。由此可见,经过本发明方法处理后的纳米发电机的电输出性能得到明显改善。
[0046] 实施例2
[0047] 一种表面氨基修饰的静电纺纤维基摩擦纳米发电机,包括:表面覆盖含氨基高分子的静电纺摩擦电正性纤维薄膜,以及静电纺摩擦电负性纤维薄膜;所述的静电纺摩擦电正性纤维薄膜和静电纺摩擦电负性纤维薄膜的背面皆设有电极材料。所述的静电纺摩擦电正性纤维薄膜和静电纺摩擦电负性纤维薄膜分别设于两个支撑平板上,所述的两个支撑平板通过弹性材料连接,在两平板间形成可接触分离的间隙。
[0048] 所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法为:
[0049] 步骤一:将聚丙烯腈粉末加入到N,N-二甲基甲酰胺溶剂中,在25℃下持续搅拌10h配制成质量分数为9%的均一稳定的溶液。将聚偏氟乙烯粉末加入N,N-二甲基甲酰胺溶剂中,在80℃条件下加热10h配制成质量分数为20%的均一稳定的溶液。
[0050] 步骤二:将所得的聚丙烯腈溶液在静电纺设备中进行聚丙烯腈静电纺丝,制备厚度为30μm的摩擦电正性纳米纤维薄膜,纺丝工艺为:灌注速度1.0mL/h,电压30kV,接收距离20cm,温度25℃,相对湿度45%。将所得的聚偏氟乙烯溶液在静电纺设备中进行聚偏氟乙烯静电纺丝,制备厚度为30μm的摩擦电负性纳米纤维薄膜,纺丝工艺为:灌注速度3.0mL/h,电压30kV,接收距离20cm,温度25℃,相对湿度45%。
[0051] 步骤三:将聚乙烯亚胺溶解在水中形成质量分数为5%的均一透明水溶液,将聚丙烯腈纤维膜浸渍在聚乙烯亚胺水溶液中,30min后取出在烘箱中80℃烘干,制备得到厚度为28μm的表面覆盖聚乙烯亚胺的摩擦电正性纳米纤维薄膜。
[0052] 步骤四:分别在摩擦电负性纳米纤维薄膜和表面覆盖聚乙烯亚胺的摩擦电正性纳米纤维薄膜的背面粘贴上铜胶带,分别固定于有机玻璃板上,并将两个有机玻璃板通过聚酰亚胺胶带连接产生8mm间距形成摩擦纳米发电机。未经过聚乙烯亚胺改性的摩擦纳米发电机短路电量为13nC,短路电流为-1.5~2.0μA,开路电压为35V。经过聚乙烯亚胺处理之后的摩擦纳米发电机短路电量为35nC,短路电流为-2.5~6.6μA,开路电压为100V。
[0053] 实施例3
[0054] 一种表面氨基修饰的静电纺纤维基摩擦纳米发电机,包括:表面覆盖含氨基高分子的静电纺摩擦电正性纤维薄膜,以及静电纺摩擦电负性纤维薄膜;所述的静电纺摩擦电正性纤维薄膜和静电纺摩擦电负性纤维薄膜的背面皆设有电极材料。所述的静电纺摩擦电正性纤维薄膜和静电纺摩擦电负性纤维薄膜分别设于两个支撑平板上,所述的两个支撑平板通过弹性材料连接,在两平板间形成可接触分离的间隙。
[0055] 所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法为:
[0056] 步骤一:将聚甲基丙烯酸甲酯颗粒加入到N,N-二甲基甲酰胺溶剂中,在25℃持续搅拌12h配制成质量分数为40%的均一稳定的溶液。将聚醚砜颗粒加入到N,N-二甲基甲酰胺溶剂中,在25℃持续搅拌12h配制成质量分数为18%的均一稳定的溶液。
[0057] 步骤二:将所得的聚甲基丙烯酸甲酯溶液在静电纺设备中进行聚甲基丙烯酸甲酯静电纺丝,制备厚度为50μm的摩擦电正性纳米纤维薄膜,纺丝工艺为:灌注速度1.0mL/h,电压20kV,接收距离22cm,温度25℃,相对湿度45%。将所得的聚醚砜溶剂在静电纺设备中进行聚醚砜静电纺丝,制备厚度为50μm的摩擦电负性纳米纤维薄膜,纺丝工艺为:灌注速度1.0mL/h,电压25kV,接收距离20cm,温度25℃,相对湿度45%。
[0058] 步骤三:将聚乙烯胺溶解在水中形成质量分数为2%的均一透明水溶液,将摩擦电正性纳米纤维薄膜浸渍在聚乙烯胺水溶液中,30min后取出在烘箱中80℃烘干,制备得到厚度为45μm的表面覆盖聚乙烯胺的摩擦电正性纳米纤维薄膜。
[0059] 步骤四:分别在摩擦电负性纳米纤维薄膜和表面覆盖聚乙烯胺的摩擦电正性纳米纤维薄膜的背面镀上一层50μm厚的金层,分别固定于有机玻璃板上,并将两个有机玻璃板通过海绵连接成摩擦纳米发电机。如图3所示,聚乙烯胺改性后的聚甲基丙烯酸甲酯纤维薄膜3和聚醚砜纳米纤维膜4背面镀有金层2并固定于有机玻璃板1上,两个有机玻璃板1中间通过海绵5隔开,形成20mm可接触分离的间距。未经过聚乙烯胺改性的摩擦纳米发电机短路电量为17nC,短路电流为-2.0~2.5μA,开路电压为60V。经过聚乙烯亚胺处理之后的摩擦纳米发电机短路电量为43nC,短路电流为-2.5~7.6μA,开路电压为150V。
[0060] 实施例4
[0061] 一种表面氨基修饰的静电纺纤维基摩擦纳米发电机,包括:表面覆盖含氨基高分子的静电纺摩擦电正性纤维薄膜,以及静电纺摩擦电负性纤维薄膜;所述的静电纺摩擦电正性纤维薄膜和静电纺摩擦电负性纤维薄膜的背面皆设有电极材料。所述的静电纺摩擦电正性纤维薄膜和静电纺摩擦电负性纤维薄膜分别设于两个支撑平板上,所述的两个支撑平板通过弹性材料连接,在两平板间形成可接触分离的间距。
[0062] 所述的表面氨基修饰的静电纺纤维基摩擦纳米发电机的制备方法为:
[0063] 步骤一:将聚酰胺6加入到甲酸溶剂中,在25℃下持续搅拌14h配制成质量分数为8%的均一稳定的溶液。将聚偏二氟乙烯-三氟乙烯粉末加入N,N-二甲基甲酰胺溶剂中,在
80℃条件下加热14h配制成质量分数为15%的均一稳定的溶液。
[0064] 步骤二:将所得的聚酰胺6溶液在静电纺设备中进行聚酰胺6静电纺丝,制备厚度为40μm的摩擦电正性纳米纤维薄膜,纺丝工艺为:灌注速度1.0mL/h,电压15kV,接收距离2cm,温度25℃,相对湿度45%。将所得的聚偏二氟乙烯-三氟乙烯溶液在静电纺设备中进行聚偏二氟乙烯-三氟乙烯静电纺丝制备厚度为40μm的摩擦电负性纳米纤维薄膜,纺丝工艺为:灌注速度0.5mL/h,电压25kV,接收距离20cm,温度25℃,相对湿度45%。
[0065] 步骤三:将聚乙烯胺溶解在水中形成质量分数为5%的均一透明水溶液,将其水溶液均匀刮涂在聚酰胺6纤维膜表面,刮涂结束后在烘箱中80℃烘干,制备得到厚度为38μm的表面覆盖聚乙烯胺的摩擦电正性纳米纤维薄膜。
[0066] 步骤四:分别在摩擦电负性纳米纤维薄膜和表面覆盖聚乙烯胺的摩擦电正性纳米纤维薄膜背面镀上一层50μm厚的银层,分别固定于有机玻璃板上,并将两个有机玻璃板通过弹簧连接成摩擦纳米发电机,、弹簧置于两个有机玻璃板之间,形成5mm可接触分离的间距。未经过聚乙烯胺改性的摩擦纳米发电机短路电量为30nC,短路电流为-3.0~4.5μA,开路电压为90V。经过聚乙烯亚胺处理之后的摩擦纳米发电机短路电量为63nC,短路电流为-3.5~8.6μA,开路电压为180V。