化合物氟硼酸铯铷和氟硼酸铯铷非线性光学晶体及制备方法和用途转让专利

申请号 : CN201710845438.3

文献号 : CN107628629A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 潘世烈王颖

申请人 : 中国科学院新疆理化技术研究所

摘要 :

本发明提供一种化合物氟硼酸铯铷和氟硼酸铯铷非线性光学晶体及制备方法和用途,所述化合物的化学式为CsRbB8O12F2,分子量为534.86,采用固相合成法或真空封装法制成。该晶体的化学式为CsRbB8O12F2,分子量为534.86,属于六方晶系,空间群为P-62c,晶胞参数为a=b=6.5878 Å,c=7.813 Å,α=β=90°,γ=120°,单胞体积为293.6 Å3。该晶体的倍频效应约为KH2PO4 (KDP) 的2倍,紫外吸收边150-200 nm。CsRbB8O12F2采用高温熔液法,真空封装法,水热法或室温溶液法生长晶体,该晶体在空气中不潮解,化学稳定性好,可作为紫外、深紫外非线性光学晶体在全固态激光器中获得应用。

权利要求 :

1.一种化合物氟硼酸铯铷,其特征在于该化合物的化学式为CsRbB8O12F2,分子量为

534.86,该化合物为晶体结构。

2.一种如权利要求1所述的化合物氟硼酸铯铷的制备方法,其特征在于采用固相合成法或真空封装法制备化合物,具体操作按下列步骤进行:所述固相合成法制备化合物氟硼酸铯铷:

将含Cs化合物、含Rb化合物、含B化合物和含F化合物按摩尔比Cs∶Rb∶B∶F=0.5-2∶0.5-

2∶3-10∶0.5-2混合均匀,装入铂金坩埚中,然后放入马弗炉,升温至350-600℃,恒温3-96小时,即得到化合物CsRbB8O12F2多晶粉末,其中含Cs化合物为Cs2CO3、CsNO3、CsHCO3、CsOH、CH3COOCs、CsF或CsBF4;含Rb化合物为Rb2CO3、RbNO3、RbHCO3、RbOH、CH3COORb、RbF或RbBF4;含B化合物为H3BO3、B2O3、K2B2O4.3H2O、KBF4或CsBF4,含F化合物为NH4F、NH4HF2、CsF、RbF、HF、HBF4、RbBF4或CsBF4;

所述真空封装法制备化合物氟硼酸铯铷:

将含Cs化合物、含Rb化合物、含B化合物和含F化合物按摩尔比Cs∶Rb∶B∶F=0.5-2∶0.5-

2∶3-10∶0.5-2混合均匀,装入Φ40mm的石英管中,将石英管抽真空,真空度达到1×10−3Pa,高温下火焰密封,放入马弗炉中,以10-50℃的速率升温至350-600℃,恒温3-96小时,即得到化合物CsRbB8O12F2多晶粉末,其中含Cs化合物为Cs2CO3、CsNO3、CsHCO3、CsOH、CH3COOCs、CsF或CsBF4;含Rb化合物为Rb2CO3、RbNO3、RbHCO3、RbOH、CH3COORb、RbF或RbBF4;含B化合物为H3BO3、B2O3、K2B2O4.3H2O、KBF4或CsBF4,含F化合物为NH4F、NH4HF2、CsF、RbF、HF、HBF4、RbBF4或CsBF4。

3.一种氟硼酸铯铷非线性光学晶体,其特征在于该晶体的化学式为CsRbB8O12F2,分子量为534.86,晶体属六方晶系,空间群为P-62c,晶胞参数为a = b  = 6.5878 Å,c = 7.813 Å,α= β = 90°, γ = 120° ,单胞体积为293.6 Å3。

4.一种如权利要求3所述的氟硼酸铯铷非线性光学晶体的制备方法,其特征在于采用高温熔液法,真空封装法,水热法或室温溶液法生长晶体;

所述高温熔液法生长氟硼酸铯铷非线性光学晶体,按下列步骤进行:

a、将含Cs化合物、含Rb化合物、含B化合物和含F化合物按摩尔比Cs∶Rb∶B∶F=0.5-2∶

0.5-2∶3-10∶0.5-2混合均匀,装入铂金坩埚中,然后放入马弗炉,升温至350-600℃,恒温3-

96小时,即得到化合物CsRbB8O12F2多晶粉末,其中含Cs化合物为Cs2CO3、CsNO3、CsHCO3、CsOH、CH3COOCs、CsF或CsBF4;含Rb化合物为Rb2CO3、RbNO3、RbHCO3、RbOH、CH3COORb、RbF或RbBF4;含B化合物为H3BO3、B2O3、K2B2O4.3H2O、KBF4或CsBF4,含F化合物为NH4F、NH4HF2、CsF、RbF、HF、HBF4、RbBF4或CsBF4;

b、将步骤a得到的化合物CsRbB8O12F2多晶粉末与助熔剂按摩尔比1∶0.1-0.5混合均匀,再装入洗净的铂金坩埚中,以温度35-45℃/h的速率升温至400-700℃,恒温7-15小时,得到混合熔液,其中助熔剂为LiF、NaF、KF、RbF、CsF、H3BO3、B2O3、PbO或PbF2;

c、制备籽晶:将步骤b得到的混合熔液置于单晶炉中,然后以温度0.1-5℃/h降温速率降至350-610℃,以温度0.2-0.6℃/h的速率降温至300-385℃,再以温度3-10℃/h的降温速率降至30℃,得到CsRbB8O12F2的籽晶;

d、生长晶体:将步骤c得到的CsRbB8O12F2籽晶固定于籽晶杆上,从装有混合熔液的晶体生长炉顶部将籽晶杆下至混合熔液液面上方1mm,预热10-25分钟,然后使籽晶与混合熔液液面接触,以温度0.1-2℃/h的速率降温至晶体生长结束,将晶体提离混合熔液表面,再以温度3-10℃/h的速率降温至30℃,即得到CsRbB8O12F2非线性光学晶体;

所述真空封装法生长氟硼酸铯铷非线性光学晶体的具体操作按下列步骤进行:

a、将含Cs化合物、含Rb化合物、含B化合物和含F化合物按摩尔比Cs∶Rb∶B∶F=0.5-2∶

0.5-2∶3-10∶0.5-2混合均匀,装入铂金坩埚中,然后放入马弗炉,升温至350-600℃,恒温3-

96小时,即得到化合物CsRbB8O12F2多晶粉末,其中含Cs化合物为Cs2CO3、CsNO3、CsHCO3、CsOH、CH3COOCs、CsF或CsBF4;含Rb化合物为Rb2CO3、RbNO3、RbHCO3、RbOH、CH3COORb、RbF或RbBF4;含B化合物为H3BO3、B2O3、K2B2O4.3H2O、KBF4或CsBF4,含F化合物为NH4F、NH4HF2、CsF、RbF、HF、HBF4、RbBF4或CsBF4;

b、将步骤a得到的化合物CsRbB8O12F2多晶粉末与助熔剂为LiF、NaF、KF、RbF、CsF、H3BO3、B2O3、PbO或PbF2按摩尔比1∶0.1-1混合均匀,再装入石英管中,将石英管抽真空,真空度达到−3

1×10 Pa,用火焰枪真空封装,放入马弗炉中,以温度10-50℃/h的速率升温至400-700℃,恒温3-96小时,然后以温度0.5-1.5℃/天的速率降温至330-450℃,再以温度2-5℃/h的速率降至30℃,切开石英管,即得到CsRbB8O12F2非线性光学晶体;

所述水热法生长氟硼酸铯铷非线性光学晶体的具体操作按下列步骤进行:

a、将含Cs化合物、含Rb化合物、含B化合物和含F化合物按摩尔比Cs∶Rb∶B∶F=0.5-2∶

0.5-2∶3-10∶0.5-2混合均匀,装入铂金坩埚中,然后放入马弗炉,升温至350-600℃,恒温3-

96小时,即得到化合物CsRbB8O12F2多晶粉末,其中含Cs化合物为Cs2CO3、CsNO3、CsHCO3、CsOH、CH3COOCs、CsF或CsBF4;含Rb化合物为Rb2CO3、RbNO3、RbHCO3、RbOH、CH3COORb、RbF或RbBF4;含B化合物为H3BO3、B2O3、K2B2O4.3H2O、KBF4或CsBF4,含F化合物为NH4F、NH4HF2、CsF、RbF、HF、HBF4、RbBF4或CsBF4;

b、将步骤a得到的化合物CsRbB8O12F2多晶粉末,置入5-30mL去离子水中溶解,将不完全溶解的混合物在温度20-50℃下的超声波处理5-30分钟使其充分混合溶解;

c、将步骤b得到的混合溶液转入到干净、无污染的体积为100mL的高压反应釜的内衬中,并将反应釜旋紧密封;

d、将高压反应釜放置在恒温箱内,以温度5-50℃/h的速率升温至150-500℃,恒温3-15天,再以温度5-30℃/天的降温速率降至室温,即得到CsRbB8O12F2非线性光学晶体;

所述室温溶液法生长氟硼酸铯铷非线性光学晶体的具体操作按下列步骤进行:

a、将含Cs化合物、含Rb化合物、含B化合物和含F化合物按摩尔比Cs∶Rb∶B∶F=0.5-2∶

0.5-2∶3-10∶0.5-2混合均匀,装入铂金坩埚中,然后放入马弗炉,升温至350-600℃,恒温3-

96小时,即得到化合物CsRbB8O12F2多晶粉末,其中含Cs化合物为Cs2CO3、CsNO3、CsHCO3、CsOH、CH3COOCs、CsF或CsBF4;含Rb化合物为Rb2CO3、RbNO3、RbHCO3、RbOH、CH3COORb、RbF或RbBF4;含B化合物为H3BO3、B2O3、K2B2O4.3H2O、KBF4或CsBF4,含F化合物为NH4F、NH4HF2、CsF、RbF、HF、HBF4、RbBF4或CsBF4;

b、将步骤a得到的化合物CsRbB8O12F2多晶粉末,放入洗干净的玻璃容器中,加入20-

100mL的去离子水,然后超声波处理5-60分钟,使其充分混合溶解,然后加入HF调节溶液pH值1-11;

c、将步骤b中装有溶液的容器用称量纸封口,放在无晃动、无污染、无空气对流的静态环境中,将封口扎小孔将蒸发速率控制为0.2-2mL/天,在室温下静置5-20天;

d、待步骤c中的溶液在容器底部长出晶体颗粒,直至晶体颗粒大小不再明显变化,生长结束,得到籽晶;

e、将剩余溶液用定性滤纸将晶粒及溶液中的其它杂质过滤,选择质量较好的籽晶,用铂金丝固定籽晶,将其悬挂于过滤后的溶液中,将封口扎小孔将蒸发速率控制为0.2-2mL /天,在室温下静置生长10-30天,即可得到CsRbB8O12F2非线性光学晶体。

5.一种如权利要求3所述的氟硼酸铯铷非线性光学晶体在制备Nd:YAG激光器所输出的

1064nm的基频光进行2倍频、3倍频、4倍频、5倍频或6倍频的谐波光输出中的用途。

6.一种如权利要求3所述的氟硼酸铯铷非线性光学晶体在制备产生150-200nm的深紫外倍频光输出中的用途。

7.一种如权利要求3所述的化合物氟硼酸铯铷非线性光学晶体在制备倍频发生器、上或下频率转换器或光参量振荡器中的用途。

说明书 :

化合物氟硼酸铯铷和氟硼酸铯铷非线性光学晶体及制备方法

和用途

技术领域

[0001] 本发明涉及一种化合物氟硼酸铯铷CsRbB8O12F2和氟硼酸铯铷CsRbB8O12F2非线性光学晶体及制备方法和用途。

背景技术

[0002] 深紫外(λ<200nm)非线性光学晶体材料是基于非线性光学效应获得深紫外激光的主要手段,能够极大的促进全固态激光器的工作范围。经过半个世纪的研究,已发现一系列性能优异的非线性光学晶体。可见光波段的代表性的非线性光学晶体有KTiOPO4(KTP),KH2PO4(KDP)等。在紫外波段,已经产业化的非线性光学晶体LiB3O5(LBO)、CsB3O5(CBO)、CsLiB6O10(CLBO)和BaB2O4(BBO)等。但是在200nm以下的深紫外波段,实用化的非线性光学晶体只有KBe2BO3F2(KBBF)。由于该晶体生长周期长、含有剧毒Be元素、层状生长习性等,一定程度上限制了其应用。因此,探索具有优良性能的新型深紫外非线性光学晶体是十分有必要的。
[0003] 在之前的研究中,已有化合物氟硼酸铵NH4B4O6F和氟硼酸铵NH4B4O6F非线性光学晶体(专利申请号201611128283.3),以及化合物氟硼酸铯和氟硼酸铯非线性光学晶体及制备方法和用途(专利申请号201710215337.8)两个相关专利。本发明与氟硼酸铵NH4B4O6F和氟硼酸铯CsB4O6F的主要区别在于,本发明所述的化合物CsRbB8O12F2属于六方晶系,空间群为P-62c,分子式和晶体结构完全不同。此外,生长习性、生长工艺关键参数,晶体线性和非线性光学性能等均与前两者不同。该化合物不属于已知化合物的简单同构替换。

发明内容

[0004] 本发明目的在于,提供一种化合物氟硼酸铯铷,该化合物的化学式为CsRbB8O12F2,分子量为534.86,采用固相反应法或真空封装法制备。
[0005] 本发明的另一个目的在于,提供氟硼酸铯铷CsRbB8O12F2非线性光学晶体,该晶体的化学式为CsRbB8O12F2,分子量为534.86,晶体属六方晶系,空间群为P-62c,晶胞参数为α=β=90°,γ=120°,单胞体积为
[0006] 本发明再一个目的在于,提供氟硼酸铯铷CsRbB8O12F2非线性光学晶体的制备方法,采用高温熔液法,真空封装法,水热法或室温溶液法生长晶体。
[0007] 本发明又一个目的在于,提供氟硼酸铯铷CsRbB8O12F2非线性光学晶体的用途。
[0008] 本发明所述的一种化合物氟硼酸铯铷,该化合物的化学式为CsRbB8O12F2,分子量为534.86,该化合物为晶体结构。
[0009] 所述化合物氟硼酸铯铷的制备方法,采用固相合成法或真空封装法制备化合物,具体操作按下列步骤进行:
[0010] 所述固相合成法制备化合物氟硼酸铯铷:
[0011] 将含Cs化合物、含Rb化合物、含B化合物和含F化合物按摩尔比Cs∶Rb∶B∶F=0.5-2∶0.5-2∶3-10∶0.5-2混合均匀,装入铂金坩埚中,然后放入马弗炉,升温至350-600℃,恒温3-
96小时,即得到化合物CsRbB8O12F2多晶粉末,其中含Cs化合物为Cs2CO3、CsNO3、CsHCO3、CsOH、CH3COOCs、CsF或CsBF4;含Rb化合物为Rb2CO3、RbNO3、RbHCO3、RbOH、CH3COORb、RbF或RbBF4;含B化合物为H3BO3、B2O3、K2B2O4.3H2O、KBF4或CsBF4,含F化合物为NH4F、NH4HF2、CsF、RbF、HF、HBF4、RbBF4或CsBF4;
[0012] 所述真空封装法制备化合物氟硼酸铯铷:
[0013] 将含Cs化合物、含Rb化合物、含B化合物和含F化合物按摩尔比Cs∶Rb∶B∶F=0.5-2∶-0.5-2∶3-10∶0.5-2混合均匀,装入Φ40mm的石英管中,将石英管抽真空,真空度达到1×10
3Pa,高温下火焰密封,放入马弗炉中,以10-50℃的速率升温至350-600℃,恒温3-96小时,即得到化合物CsRbB8O12F2多晶粉末,其中含Cs化合物为Cs2CO3、CsNO3、CsHCO3、CsOH、CH3COOCs、CsF或CsBF4;含Rb化合物为Rb2CO3、RbNO3、RbHCO3、RbOH、CH3COORb、RbF或RbBF4;含B化合物为H3BO3、B2O3、K2B2O4.3H2O、KBF4或CsBF4,含F化合物为NH4F、NH4HF2、CsF、RbF、HF、HBF4、RbBF4或CsBF4。
[0014] 一种氟硼酸铯铷非线性光学晶体,该晶体的化学式为CsRbB8O12F2,分子量为534.86,晶体属六方晶系,空间群为P-62c,晶胞参数为 α=β
=90°,γ=120°,单胞体积为
[0015] 所述氟硼酸铯铷非线性光学晶体的制备方法,采用高温熔液法,真空封装法,水热法或室温溶液法生长晶体;
[0016] 所述高温熔液法生长氟硼酸铯铷非线性光学晶体,按下列步骤进行:
[0017] a、将含Cs化合物、含Rb化合物、含B化合物和含F化合物按摩尔比Cs∶Rb∶B∶F=0.5-2∶0.5-2∶3-10∶0.5-2混合均匀,装入铂金坩埚中,然后放入马弗炉,升温至350-600℃,恒温
3-96小时,即得到化合物CsRbB8O12F2多晶粉末,其中含Cs化合物为Cs2CO3、CsNO3、CsHCO3、CsOH、CH3COOCs、CsF或CsBF4;含Rb化合物为Rb2CO3、RbNO3、RbHCO3、RbOH、CH3COORb、RbF或RbBF4;含B化合物为H3BO3、B2O3、K2B2O4.3H2O、KBF4或CsBF4,含F化合物为NH4F、NH4HF2、CsF、RbF、HF、HBF4、RbBF4或CsBF4;
[0018] b、将步骤a得到的化合物CsRbB8O12F2多晶粉末与助熔剂按摩尔比1∶0.1-0.5混合均匀,再装入洗净的铂金坩埚中,以温度35-45℃/h的速率升温至400-700℃,恒温7-15小时,得到混合熔液,其中助熔剂为LiF、NaF、KF、RbF、CsF、H3BO3、B2O3、PbO或PbF2;
[0019] c、制备籽晶:将步骤b得到的混合熔液置于单晶炉中,然后以温度0.1-5℃/h降温速率降至350-610℃,以温度0.2-0.6℃/h的速率降温至300-385℃,再以温度3-10℃/h的降温速率降至30℃,得到CsRbB8O12F2的籽晶;
[0020] d、生长晶体:将步骤c得到的CsRbB8O12F2籽晶固定于籽晶杆上,从装有混合熔液的晶体生长炉顶部将籽晶杆下至混合熔液液面上方1mm,预热10-25分钟,然后使籽晶与混合熔液液面接触,以温度0.1-2℃/h的速率降温至晶体生长结束,将晶体提离混合熔液表面,再以温度3-10℃/h的速率降温至30℃,即得到CsRbB8O12F2非线性光学晶体;
[0021] 所述真空封装法生长氟硼酸铯铷非线性光学晶体的具体操作按下列步骤进行:
[0022] a、将含Cs化合物、含Rb化合物、含B化合物和含F化合物按摩尔比Cs∶Rb∶B∶F=0.5-2∶0.5-2∶3-10∶0.5-2混合均匀,装入铂金坩埚中,然后放入马弗炉,升温至350-600℃,恒温
3-96小时,即得到化合物CsRbB8O12F2多晶粉末,其中含Cs化合物为Cs2CO3、CsNO3、CsHCO3、CsOH、CH3COOCs、CsF或CsBF4;含Rb化合物为Rb2CO3、RbNO3、RbHCO3、RbOH、CH3COORb、RbF或RbBF4;含B化合物为H3BO3、B2O3、K2B2O4.3H2O、KBF4或CsBF4,含F化合物为NH4F、NH4HF2、CsF、RbF、HF、HBF4、RbBF4或CsBF4;
[0023] b、将步骤a得到的化合物CsRbB8O12F2多晶粉末与助熔剂为LiF、NaF、KF、RbF、CsF、H3BO3、B2O3、PbO或PbF2按摩尔比1∶0.1-1混合均匀,再装入石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度10-50℃/h的速率升温至400-700℃,恒温3-96小时,然后以温度0.5-1.5℃/天的速率降温至330-450℃,再以温度2-5℃/h的速率降至30℃,切开石英管,即得到CsRbB8O12F2非线性光学晶体;
[0024] 所述水热法生长氟硼酸铯铷非线性光学晶体的具体操作按下列步骤进行:
[0025] a、将含Cs化合物、含Rb化合物、含B化合物和含F化合物按摩尔比Cs∶Rb∶B∶F=0.5-2∶0.5-2∶3-10∶0.5-2混合均匀,装入铂金坩埚中,然后放入马弗炉,升温至350-600℃,恒温
3-96小时,即得到化合物CsRbB8O12F2多晶粉末,其中含Cs化合物为Cs2CO3、CsNO3、CsHCO3、CsOH、CH3COOCs、CsF或CsBF4;含Rb化合物为Rb2CO3、RbNO3、RbHCO3、RbOH、CH3COORb、RbF或RbBF4;含B化合物为H3BO3、B2O3、K2B2O4.3H2O、KBF4或CsBF4,含F化合物为NH4F、NH4HF2、CsF、RbF、HF、HBF4、RbBF4或CsBF4;
[0026] b、将步骤a得到的化合物CsRbB8O12F2多晶粉末,置入5-30mL去离子水中溶解,将不完全溶解的混合物在温度20-50℃下的超声波处理5-30分钟使其充分混合溶解;
[0027] c、将步骤b得到的混合溶液转入到干净、无污染的体积为100mL的高压反应釜的内衬中,并将反应釜旋紧密封;
[0028] d、将高压反应釜放置在恒温箱内,以温度5-50℃/h的速率升温至150-500℃,恒温3-15天,再以温度5-30℃/天的降温速率降至室温,即得到CsRbB8O12F2非线性光学晶体;
[0029] 所述室温溶液法生长氟硼酸铯铷非线性光学晶体的具体操作按下列步骤进行:
[0030] a、将含Cs化合物、含Rb化合物、含B化合物和含F化合物按摩尔比Cs∶Rb∶B∶F=0.5-2∶0.5-2∶3-10∶0.5-2混合均匀,装入铂金坩埚中,然后放入马弗炉,升温至350-600℃,恒温
3-96小时,即得到化合物CsRbB8O12F2多晶粉末,其中含Cs化合物为Cs2CO3、CsNO3、CsHCO3、CsOH、CH3COOCs、CsF或CsBF4;含Rb化合物为Rb2CO3、RbNO3、RbHCO3、RbOH、CH3COORb、RbF或RbBF4;含B化合物为H3BO3、B2O3、K2B2O4.3H2O、KBF4或CsBF4,含F化合物为NH4F、NH4HF2、CsF、RbF、HF、HBF4、RbBF4或CsBF4;
[0031] b、将步骤a得到的化合物CsRbB8O12F2多晶粉末,放入洗干净的玻璃容器中,加入20-100mL的去离子水,然后超声波处理5-60分钟,使其充分混合溶解,然后加入HF调节溶液pH值1-11;
[0032] c、将步骤b中装有溶液的容器用称量纸封口,放在无晃动、无污染、无空气对流的静态环境中,将封口扎小孔将蒸发速率控制为0.2-2mL/天,在室温下静置5-20天;
[0033] d、待步骤c中的溶液在容器底部长出晶体颗粒,直至晶体颗粒大小不再明显变化,生长结束,得到籽晶;
[0034] e、将剩余溶液用定性滤纸将晶粒及溶液中的其它杂质过滤,选择质量较好的籽晶,用铂金丝固定籽晶,将其悬挂于过滤后的溶液中,将封口扎小孔将蒸发速率控制为0.2-2mL/天,在室温下静置生长10-30天,即可得到CsRbB8O12F2非线性光学晶体。
[0035] 所述氟硼酸铯铷非线性光学晶体在制备Nd:YAG激光器所输出的1064nm的基频光进行2倍频、3倍频、4倍频、5倍频或6倍频的谐波光输出中的用途。
[0036] 所述氟硼酸铯铷非线性光学晶体在制备产生150-200nm的深紫外倍频光输出中的用途。
[0037] 7所述化合物氟硼酸铯铷非线性光学晶体在制备倍频发生器、上或下频率转换器或光参量振荡器中的用途。
[0038] 本发明所述氟硼酸铯铷非线性光学晶体的制备方法,在制备混合溶液中所使用的化合物CsRbB8O12F2多晶粉末,也可以用直接称取的原料代替,即将含Cs化合物、含Rb化合物、含B化合物和含F化合物按摩尔比Cs∶Rb∶B∶F=0.5-2∶0.5-2∶3-10∶0.5-2称取并混合均匀,所述含Cs化合物为Cs2CO3、CsNO3、CsHCO3、CsOH、CH3COOCs、CsF或CsBF4;含Rb化合物为Rb2CO3、RbNO3、RbHCO3、RbOH、CH3COORb、RbF或RbBF4;含B化合物为H3BO3、B2O3、K2B2O4.3H2O、KBF4或CsBF4,含F化合物为NH4F、NH4HF2、CsF、RbF、HF、HBF4、RbBF4或CsBF4。
[0039] 本发明所述氟硼酸铯铷非线性光学晶体的制备方法,在制备过程中所用的容器为铂金坩埚,铱坩埚,陶瓷坩埚,石英管,锥形瓶,烧杯,内衬为聚四氟乙烯内衬或装有铂金套管的不锈钢内衬的水热釜;当容器为石英管时,密封之前需要抽真空,避免反应过程中原料挥发使石英管炸裂;当容器为锥形瓶或烧杯,须先用酸将容器清洗干净,再用去离子水润洗,晾干。
[0040] 本发明所述氟硼酸铯铷非线性光学晶体的制备方法,在制备过程中所用的电阻炉为马弗炉或干燥箱。
[0041] 采用本发明所述方法获得尺寸为厘米级的氟硼酸铯铷非线性光学晶体,使用大尺寸坩埚或容器,并延长晶体的生长周期,则可获得相应大尺寸的CsRbB8O12F2非线性光学晶体,在该CsRbB8O12F2非线性光学晶体的生长中晶体易长大透明无包裹,具有生长速度快,成本低,容易获得大尺寸晶体等优点。
[0042] 采用本发明所述的氟硼酸铯铷非线性光学晶体的制备方法,获得的大尺寸CsRbB8O12F2非线性光学晶体,根据晶体的结晶学数据,将晶体毛胚定向,按所需角度、厚度和截面尺寸切割晶体,将晶体的通光面抛光,即可作为非线性光学器件使用,该CsRbB8O12F2非线性光学晶体具有较宽的透光波段,物化性能稳定,机械硬度大,不易碎裂和潮解,易于切割、抛光加工和保存等优点。

附图说明

[0043] 图1为本发明化合物CsRbB8O12F2的粉末XRD谱图,谱图与理论XRD图谱一致,证明了化合物CsRbB8O12F2的存在;
[0044] 图2为本发明CsRbB8O12F2晶体的结构图;
[0045] 图3为本发明CsRbB8O12F2晶体制作的非线性光学器件的工作原理图,其中1为激光器,2为发出光束,3为CsRbB8O12F2晶体,4为出射光束,5为滤波片。

具体实施方式

[0046] 以下结合实施例对本发明做进一步描述,需要说明的是,本发明不仅限于所例举出的实施例,任何在本发明基础上做出的改进都不违背本发明精神,本发明所用原料或设备,如无特殊说明,均是商业上可以购买得到的。
[0047] 实施例1
[0048] 制备化合物:
[0049] 按反应式:CsF+RbF+4B2O3→CsRbB8O12F2,采用固相合成法合成化合物CsRbB8O12F2:
[0050] 将CsF,RbF,B2O3按摩尔比1:1:4混合均匀,装入干净、无污染的体积为28mL的铂金坩埚中,然后放入马弗炉,升温至450℃,恒温96小时,即得到化合物CsRbB8O12F2多晶粉末。
[0051] 实施例2
[0052] 制备化合物:
[0053] 按反应式:CsF+RbF+8H3BO3→CsRbB8O12F2+12H2O↑,采用固相反应法合成化合物CsRbB8O12F2:
[0054] 将CsF,RbF,H3BO3按摩尔比1:1:4混合均匀,装入干净、无污染的体积为28mL的铂金坩埚中,然后放入马弗炉,升温至500℃,恒温3小时,即得到化合物CsRbB8O12F2多晶粉末。
[0055] 实施例3
[0056] 制备化合物:
[0057] 按反应式:CsF+RbBF4+4B2O3→CsRbB8O12F2+BF3↑,采用真空封装法合成化合物CsRbB8O12F2:
[0058] 将CsF,RbBF4,B2O3按摩尔比1:1:2混合均匀,装入Φ40mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,高温下用火焰枪真空封装,放入马弗炉中,以50℃的速率升温至350℃,恒温96小时,温度降至室温后打开石英管,即得到化合物CsRbB8O12F2多晶粉末。
[0059] 实施例4
[0060] 制备化合物:
[0061] 按反应式:CsBF4+RbF+4B2O3→CsRbB8O12F2+BF3↑,采用真空封装法合成化合物CsRbB8O12F2:
[0062] 将CsBF4,RbF,B2O3按摩尔比1:2:5混合均匀,装入Φ40mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,高温下用火焰枪真空封装,放入马弗炉中,以10℃的速率升温至400℃,恒温96小时,温度降至室温后打开石英管,即得到化合物CsRbB8O12F2多晶粉末。
[0063] 实施例5
[0064] 制备化合物:
[0065] 按反应式:CsBF4+RbBF4+4B2O3→CsRbB8O12F2+2BF3↑,采用固相反应法合成化合物CsRbB8O12F2:
[0066] 将CsBF4,RbBF4和B2O3按摩尔比1:2:3混合均匀,装入铂金坩埚,置于马弗炉中,升温至450℃,恒温56小时,即得到化合物CsRbB8O12F2多晶粉末。
[0067] 实施例6
[0068] 制备化合物:
[0069] 按反应式:3CsNO3+3RbOH+12B2O3+6NH4F=3CsRbB8O12F2+12H2O↑+4N2↑+NH3↑,采用真空封装法合成化合物CsRbB8O12F2:
[0070] 将CsNO3,RbOH,B2O3和NH4F按摩尔比1.5:1.5:6:2混合均匀,装入Φ40mm的石英管-3中,将石英管抽真空,真空度达到1×10 Pa,高温下火焰密封,放入马弗炉中,以30℃的速率升温至350℃,恒温90小时,即得到化合物CsRbB8O12F2多晶粉末。
[0071] 实施例7
[0072] 制备化合物:
[0073] 按反应式:Cs2CO3+2RbOH+16H3BO3+4NH4F=2CsRbB8O12F2+27H2O↑+4NH3↑+CO2↑,采用固相反应法合成化合物CsRbB8O12F2:
[0074] 将Cs2CO3,RbOH,H3BO3和NH4F按摩尔比0.5:1:8:2混合均匀,装入铂金坩埚,置于马弗炉中,升温至460℃,恒温96小时,即得到化合物CsRbB8O12F2多晶粉末。
[0075] 实施例8
[0076] 高温熔液法合成CsRbB8O12F2非线性光学晶体:
[0077] 将实施例1得到的化合物CsRbB8O12F2多晶粉末与助熔剂为CsF按摩尔比1∶0.1混合均匀,再装入洗净的铂金坩埚中,以温度35℃/h的速率升温至400℃,恒温7小时,得到混合熔液;
[0078] 制备籽晶:将得到的混合熔液置于单晶炉中,以温度0.1℃/h的速率降温至350℃,以温度0.2℃/h的速率降温至300℃,再以温度3℃/h的速率降至30℃,得到CsRbB8O12F2籽晶;
[0079] 生长晶体:将得到的CsRbB8O12F2籽晶固定于籽晶杆上,从装有制得的混合熔液的晶体生长炉顶部将籽晶下降至混合熔液液面上方1mm,预热10分钟,然后使籽晶与混合熔液液面接触,以温度0.1℃/h的速率降温至晶体生长结束,提出籽晶杆上的晶体,再以3℃/h的速率降至30℃,即获得尺寸为12mm×13mm×16mm的CsRbB8O12F2非线性光学晶体。
[0080] 实施例9
[0081] 高温熔液法合成CsRbB8O12F2非线性光学晶体:
[0082] 将实施例2得到的化合物CsRbB8O12F 2多晶粉末与助熔剂为PbF2按摩尔比1∶0.5混合,再装入洗净的铂金坩埚中,以温度45℃/h的速率升温至700℃,恒温15小时,得到混合熔液;
[0083] 制备籽晶:将制得的混合熔液置于单晶炉中,以温度5℃/h的速率降温至610℃,以温度0.6℃/h的速率降温至385℃,再以温度10℃/h的速率降至30℃,得到CsRbB8O12F2晶体的籽晶;
[0084] 生长晶体:将得到的CsRbB8O12F2籽晶固定于籽晶杆上,从装有制得的混合熔液的晶体生长炉顶部将籽晶下降至混合熔液液面上方1mm,预热25分钟,然后使籽晶与混合熔液液面接触,以温度2℃/h的速率降温至晶体生长结束,提出籽晶杆上的晶体,再以温度10℃/h的速率降至30℃,即获得尺寸为15mm×17mm×18mm的CsRbB8O12F2非线性光学晶体。
[0085] 实施例10
[0086] 高温熔液法合成CsRbB8O12F2非线性光学晶体:
[0087] 将实施例3得到的化合物CsRbB8O12F2多晶粉末与助熔剂为B2O3按摩尔比1∶0.5混合均匀,装入洗净的铂金坩埚中,以温度40℃/h的速率升温至690℃,恒温10小时,得到混合熔液;
[0088] 制备籽晶:将制得的混合熔液置于单晶炉中,以温度3℃/h的速率降温至580℃,以温度0.6℃/h的速率降温至330℃,再以温度8℃/h的速率降至30℃,得到CsRbB8O12F2晶体的籽晶;
[0089] 生长晶体:将得到的CsRbB8O12F2籽晶固定于籽晶杆上,从制得的混合熔液的晶体生长炉顶部将籽晶下降至混合熔液液面上方1mm,预热20分钟,然后使籽晶与混合熔液液面接触,以温度0.3℃/h的速率降温至晶体生长结束,提出籽晶杆上的晶体,以温度8℃/h的速率降至30℃,即获得尺寸为12mm×15mm×19mm的CsRbB8O12F2非线性光学晶体。
[0090] 实施例11
[0091] 高温熔液法合成CsRbB8O12F2非线性光学晶体:
[0092] 将实施例4得到的化合物CsRbB8O12F2多晶粉末与助熔剂为NaF按摩尔比1∶0.2混合均匀,装入洗净的铂金坩埚中,以温度35℃/h的速率升温至660℃,恒温8小时,得到混合熔液;
[0093] 制备籽晶:将制得的混合熔液置于单晶炉中,以温度2℃/h的速率降温至575℃,以温度0.2℃/h的速率降温至380℃,再以温度7℃/h的速率降至30℃,得到CsRbB8O12F2籽晶;
[0094] 生长晶体:将得到的CsRbB8O12F2籽晶固定于籽晶杆上,从制得的混合熔液的晶体生长炉顶部将籽晶下降至混合熔液液面上方1mm,预热25分钟,然后使籽晶与混合熔液液面接触,以温度0.1℃/h的速率降温至晶体生长结束,提出籽晶杆上的晶体,以温度7℃/h的速率降至30℃,即获得尺寸为11mm×12mm×15mm的CsRbB8O12F2非线性光学晶体。
[0095] 实施例12
[0096] 高温熔液法合成CsRbB8O12F2非线性光学晶体:
[0097] 按摩尔比CsF:RbF:H3BO3=1:1:8称取原料,与助熔剂为RbF按摩尔比1∶0.4混合均匀,装入洗净的铂金坩埚中,以温度37℃/h的速率升温至665℃,恒温7小时,得到混合熔液;
[0098] 制备籽晶:将制得的混合熔液置于单晶炉中,以温度2.4℃/h的速率降温至570℃,以温度0.15℃/h的速率降温至385℃,再以温度7.5℃/h的速率降至30℃,得到CsRbB8O12F2籽晶;
[0099] 生长晶体:将得到的CsRbB8O12F2籽晶固定于籽晶杆上,从制得的混合熔液的晶体生长炉顶部将籽晶下降至混合熔液液面上方1mm,预热20分钟,然后使籽晶与混合熔液液面接触,以温度0.15℃/h的速率降温至晶体生长结束,提出籽晶杆上的晶体,再以温度7.5℃/h的速率降至30℃,即获得尺寸为13mm×14mm×16mm的CsRbB8O12F2非线性光学晶体。
[0100] 实施例13
[0101] 真空封装法生长CsRbB8O12F2晶体:
[0102] 将实施例1得到的化合物CsRbB8O12F2多晶粉末与助熔剂为B2O3按摩尔比1∶0.1混合均匀,装入Φ40mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度10℃/h的速率升温至400℃,恒温3小时,然后以温度0.5℃/天的速率降温至330℃,再以温度2℃/h的速率降至30℃,切开石英管,即获得尺寸为13mm×16mm×21mm的CsRbB8O12F2非线性光学晶体。
[0103] 实施例14
[0104] 真空封装法生长CsRbB8O12F2晶体:
[0105] 将依据实施例2得到的化合物CsRbB8O12F2与助熔剂为CsF按摩尔比1∶1混合均匀,装入Φ40mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度50℃/h的速率升温至700℃,恒温96小时,然后以温度1.5℃/天的速率降温至450℃,再以温度5℃/h的速率降至30℃,切开石英管,即获得尺寸为15mm×18mm×23mm的CsRbB8O12F2非线性光学晶体。
[0106] 实施例15
[0107] 真空封装法生长CsRbB8O12F2晶体:
[0108] 将实施例3得到的化合物CsRbB8O12F2与助熔剂为H3BO3按摩尔比1∶0.3混合均匀,装入Φ40mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度35℃/h的速率升温至500℃,恒温50小时,然后以温度0.5℃/天的速率降温至430℃,再以温度4℃/h的速率降至30℃,切开石英管,即获得尺寸为14mm×16mm×17mm的CsRbB8O12F2非线性光学晶体。
[0109] 实施例16
[0110] 真空封装法生长CsRbB8O12F2晶体:
[0111] 将实施例4得到的化合物CsRbB8O12F2与助熔剂为PbO按摩尔比1∶0.4混合均匀,装入Φ40mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度32℃/h的速率升温至520℃,恒温52小时,然后以温度0.8℃/天的速率降温至435℃,再以温度4.5℃/h的速率降至30℃,切开石英管,即获得尺寸为14mm×16mm×17mm的CsRbB8O12F2非线性光学晶体。
[0112] 实施例17
[0113] 真空封装法生长CsRbB8O12F2晶体:
[0114] 按CsF:RbF:H3BO3=1:1:8直接称取原料,与助熔剂为PbF2按摩尔比1∶0.5混合均匀,装入Φ40mm的石英管中,将石英管抽真空,真空度达到1×10-3Pa,用火焰枪真空封装,放入马弗炉中,以温度37℃/h的速率升温至510℃,恒温96小时,然后以温度1.2℃/天的速率降温至445℃,再以温度3.5℃/h的速率降至30℃,切开石英管,即获得尺寸为10mm×10mm×17mm的CsRbB8O12F2非线性光学晶体。
[0115] 实施例18
[0116] 室温溶液法合成CsRbB8O12F2非线性光学晶体:
[0117] 将实施例1得到的化合物CsRbB8O12F2多晶粉末放入洗干净的玻璃容器中,加入100mL的去离子水,然后超声波处理5分钟,使其充分混合溶解,然后加入HF调节溶液pH值到
1;
[0118] 将装有溶液的容器用称量纸封口,放在无晃动、无污染、无空气对流的静态环境中,将封口扎小孔将蒸发速率控制为2mL/天,静置5天;
[0119] 待溶液在容器底部长出晶体颗粒,直至晶体颗粒大小不再明显变化,生长结束,得到籽晶;
[0120] 将剩余溶液用定性滤纸将晶粒及溶液中的其它杂质过滤,选择质量较好的籽晶,用铂金丝固定籽晶,将其悬挂于过滤后的溶液中,将封口扎小孔将蒸发速率控制为2mL/天,在室温下静置30天,即获得尺寸为8mm×14mm×17mm的CsRbB8O12F2非线性光学晶体。
[0121] 实施例19
[0122] 室温溶液法合成CsRbB8O12F2非线性光学晶体:
[0123] 按CsF:RbOH:B2O3:NH4F=1:1:4:0.5直接称取原料,放入洗干净的玻璃容器中,加入20mL的去离子水,然后超声波处理30分钟,使其充分混合溶解,然后加入HF调节溶液pH值到11;
[0124] 将装有溶液的容器用称量纸封口,放在无晃动、无污染、无空气对流的静态环境中,将封口扎小孔将蒸发速率控制为0.2mL/天,静置20天;
[0125] 待溶液在容器底部长出晶体颗粒,直至晶体颗粒大小不再明显变化,生长结束,得到籽晶;
[0126] 将剩余溶液用定性滤纸将晶粒及溶液中的其它杂质过滤,用铂金丝固定籽晶,将其悬挂于过滤后的溶液中,将封口扎小孔将蒸发速率控制为0.2mL/天,在室温下静置30天,即获得尺寸为4mm×8mm×9mm的CsRbB8O12F2非线性光学晶体。
[0127] 实施例20
[0128] 水热法合成CsRbB8O12F2非线性光学晶体:
[0129] 将实施例1得到的化合物CsRbB8O12F2多晶粉末,置入5mL去离子水中溶解,将不完全溶解的混合物在温度20℃下的超声波中处理5分钟,使其充分混合;
[0130] 将得到的混合溶液转入到干净、无污染的体积为100mL的高压反应釜的内衬中,并将反应釜旋紧密封;
[0131] 将高压反应釜放置在恒温箱内,以温度50℃/h的速率升温至500℃,恒温3天,再以温度5℃/天的降温速率降至室温,打开高压反应釜,即获得尺寸为8mm×9mm×15mm的CsRbB8O12F2非线性光学晶体。
[0132] 实施例21
[0133] 水热法合成CsRbB8O12F2非线性光学晶体:
[0134] 按CsF:RbF:H3BO3=1:1:8直接称取原料,置入30mL去离子水中溶解,将不完全溶解的混合物在温度为50℃下的超声波中处理30分钟,使其充分混合;
[0135] 将得到的混合溶液转入到干净、无污染的体积为100mL的高压反应釜的内衬中,并将反应釜旋紧密封;
[0136] 将高压反应釜放置在恒温箱内,以温度5℃/h的速率升温至150℃,恒温15天,再以温度30℃/天的降温速率降至室温,打开高压反应釜,即获得尺寸为22mm×24mm×27mm的CsRbB8O12F2非线性光学晶体。
[0137] 实施例22
[0138] 水热法合成CsRbB8O12F2非线性光学晶体:
[0139] 将实施例2得到的化合物CsRbB8O12F2多晶粉末,置入8mL去离子水中溶解,将不完全溶解的混合物在温度为45℃下的超声波中处理30分钟,使其充分混合;
[0140] 将得到的混合物转入到干净、无污染的体积为100mL的高压反应釜的内衬中,并将反应釜旋紧密封;
[0141] 将高压反应釜放置在恒温箱内,按温度40℃/h的速率升温至330℃,恒温10天,再以温度8℃/天的降温速率降至室温,打开高压反应釜,即获得尺寸为12mm×18mm×20mm的CsRbB8O12F2非线性光学晶体。
[0142] 实施例23
[0143] 将实施例1-22所得的任意CsRbB8O12F2晶体按相匹配方向加工,按附图3所示安置在3的位置上,在室温下,用调Q-Nd:YAG激光器作光源,入射波长为1064nm,由调Q-Nd:YAG激光器1发出波长为1064nm的红外光束2射入CsRbB8O12F2单晶3,产生波长为532nm的绿色倍频光,输出强度约为同等条件KDP的2倍。
[0144] 实施例24
[0145] 将实施例1-22所得的任意CsRbB8O12F2晶体按相匹配方向加工,按附图3所示安置在3的位置上,在室温下,用调Q Nd:YAG激光器作光源,入射波长为532nm,由调Q的Nd:YAG激光器1发出波长为532nm的红外光束2射入CsRbB8O12F2单晶3,产生波长为266nm的倍频光,输出强度约为同等条件BBO的0.5倍。
[0146] 实施例25
[0147] 将实施例1-22所得的任意CsRbB8O12F2晶体按相匹配方向加工,按附图3所示安置在3的位置上,在室温下,用调Q-Nd:YAG激光器作光源,入射波长为355nm,由调Q-Nd:YAG激光器1发出波长为355nm的红外光束2射入CsRbB8O12F2单晶3,可观察到波长为177.3nm的深紫外倍频光输出。