用于高生长速率EPI腔室的热屏蔽环转让专利

申请号 : CN201680023769.2

文献号 : CN107636211A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 大木慎一青木裕司森義信

申请人 : 应用材料公司

摘要 :

于此描述用于外延腔室的热屏蔽组件。所述热屏蔽组件具有热屏蔽构件及预热构件。热屏蔽构件设置于预热构件上。热屏蔽构件具有切口部分,所述切口部分暴露预热构件的一部分。预热构件具有凹陷部分以接收热屏蔽构件。

权利要求 :

1.一种热屏蔽组件,包括:

环状热屏蔽构件,所述环状热屏蔽构件具有间隙,所述间隙对着所述热屏蔽构件的一角度,其中所述间隙的边缘平行于把所述角度二等分的所述热屏蔽构件的半径;及环状预热构件,所述环状预热构件具有凹陷部分以用于接收所述热屏蔽构件。

2.如权利要求1所述的热屏蔽组件,其中所述预热构件的内半径较所述热屏蔽构件的内半径大。

3.如权利要求1所述的热屏蔽组件,其中所述预热构件具有轮缘部分,所述轮缘部分环绕所述热屏蔽构件。

4.如权利要求3所述的热屏蔽组件,其中所述预热构件或所述热屏蔽构件具有减小接触特征。

5.如权利要求3所述的热屏蔽组件,其中所述预热构件及所述热屏蔽构件皆具有倾斜接触表面。

6.如权利要求4所述的热屏蔽组件,其中所述减小接触特征是脊部。

7.如权利要求6所述的热屏蔽组件,其中所述预热构件具有从所述预热构件的外半径至所述预热构件的内半径的间隙。

8.一种预热构件,包括:

环状构件,所述环状构件具有环状凹陷部分,所述凹陷部分界定间隙,其中所述间隙对着一角度,且所述凹陷部分具有边缘,所述边缘平行于把所述角度二等分的所述环状构件的半径。

9.如权利要求8所述的预热构件,进一步包括轮缘部分,所述轮缘部分环绕所述凹陷部分。

10.如权利要求8所述的预热构件,进一步包括沿所述预热构件的径向方向从所述预热构件的外半径至所述预热构件的内半径的直间隙。

11.如权利要求10所述的预热构件,进一步包括减小接触特征,所述减小接触特征在所述环状构件的上表面中形成。

12.如权利要求11所述的预热构件,其中所述减小接触特征是脊部。

13.如权利要求9所述的预热构件,其中所述环状构件具有圆化边缘及倾斜接触表面。

14.一种热屏蔽构件,包括:

环状构件,所述环状构件具有间隙,所述间隙对着所述环状构件的一角度,所述间隙具有边缘,所述边缘平行于把所述间隙所对着的所述角度二等分的所述环状构件的半径,其中所述间隙具有圆化拐角。

15.如权利要求14所述的热屏蔽构件,其中所述环状构件具有倾斜接触表面。

说明书 :

用于高生长速率EPI腔室的热屏蔽环

技术领域

[0001] 本揭示案的实施方式大体涉及用于半导体处理的设备。更特定地,于此描述的实施方式涉及用于外延腔室的加热部件。

背景技术

[0002] 外延为半导体处理中常用的处理,以制造用于半导体装置的具有极端均匀电气性质的高品质材料。随着半导体装置长得更小及制造单元更大,极端需求横跨单一制造基板
的均匀性。
[0003] 在典型的外延腔室中,处理气体从腔室的一侧跨过基板流动至另一侧,在另一侧处移除排放气体。基板通常在处理期间旋转以最小化非均匀性的效应,但持续的非均匀性
仍可表现为径向变化。
[0004] 在高生长速率外延腔室中,处理容积通常非常小而靠近基座,基板放置于基座上。石英窗设置于处理容积之上以限制处理气体至处理容积。圆顶可在边缘处稍微弯曲,所述
圆顶于所述边缘处与腔室侧面交会。由于圆顶朝着腔室侧面弯曲,因此处理容积压缩而使
靠近基板边缘的用于处理气体的流动路径非常小。结果,处理气体以非常高的速度流动。
[0005] 外延腔室通常包含环绕基座的预热环或环组件。预热环组件通常从基座下方的加热元件吸收热,且重新辐射所述热于预热环组件上方及基座边缘附近。在气体到达基座(基板设置于基座上)之前,辐射的热增加进入的处理气体的温度至处理温度。这确保气体与基板表面的反应起始于基板边缘处。
[0006] 由于压缩的处理容积及靠近腔室侧面的高气体流率,预热环组件之上的气体加热被折损。预热环组件之上的停留时间可不足以允许处理气体得到足够的热来激发在基板边
缘处的外延生长。因此,减少了基板边缘处的生长且均匀性受损。
[0007] 存在对预热处理气体的设备的需求,以在非常高流率情况下外延生长。

发明内容

[0008] 于此描述用于外延腔室的热屏蔽组件。所述热屏蔽组件具有热屏蔽构件及预热构件。所述热屏蔽构件设置于所述预热构件上。所述热屏蔽构件具有切口部分,所述切口部分暴露预热构件的一部分。所述预热构件具有凹陷部分以接收所述热屏蔽构件。

附图说明

[0009] 图1为根据一个实施方式的处理腔室的示意截面视图。
[0010] 图2为根据另一实施方式的热屏蔽组件的俯视视图。
[0011] 图3为图2的热屏蔽组件的热屏蔽构件的俯视视图。
[0012] 图4为图2的热屏蔽组件的预热构件的俯视视图。
[0013] 图5A为图2的热屏蔽组件的截面视图。
[0014] 图5B为图2的热屏蔽组件的另一截面视图。
[0015] 图5C为根据另一实施方式的热屏蔽组件的截面视图。
[0016] 图6为根据另一实施方式的热屏蔽组件的截面视图。
[0017] 为了便于理解,已尽可能使用相同元件符号,以标示各图中共用的相同元件。应设想到揭露于一个实施方式中的元件可有利地使用于其他实施方式,而无须特定叙述。

具体实施方式

[0018] 在此揭示案中,用语“顶部”、“底部”、“侧面”、“上方”、“下方”、“上”、“下”、“向上”、“向下”、“水平”、“垂直”及类似用语并非意指绝对方向。代替地,这些用语意指相对于腔室的基本平面的方向,所述腔室的基本平面例如平行于腔室的基板处理表面的平面。
[0019] 图1为根据一个实施方式的处理腔室100的示意截面视图。腔室100的特征为封闭结构101,封闭结构101具有设置于封闭结构101中的基板支撑件104。基板108通常设置于基板支撑件104上以用于处理腔室100。处理气体入口174穿过处理腔室100的侧壁136且穿过
设置于处理腔室100中的衬垫163而形成,处理气体入口174提供通路以流动处理气体进入
封闭结构101。处理气体从处理气体源172流动穿过处理气体入口174并跨过基板108的上表
面。在处理期间基板支撑件104可旋转基板以改良均匀性。处理气体出口178设置于侧壁136及衬垫163中与处理气体入口174相对以允许流动跨过基板108的处理气体离开腔室100。真
空源180从腔室100排空处理气体。
[0020] 圆顶128设置于基板支撑件104上方且与基板支撑件104一起界定处理容积。盖130将圆顶128维持就位。
[0021] 可使用热模块提供热至处理,所述热模块可位于基板支撑件104的上方或下方。在腔室100中,热模块145提供于基板支撑件104下方。热模块145包括外壳114,多个热源102设置于外壳114中。热源102可为灯具、LED及激光器的任何组合,且热模块145可包含光学元件
115(例如透镜、光管和/或其他反射性及折射性元件),光学元件115可各自成形以朝向基板支撑件104引导由各别热源102发射的能量。来自热模块145的热加热基板支撑件104,基板
支撑件104通过传导(如果基板大部分接触基板支撑件104)或通过辐射(如果基板大部分未
接触基板支撑件104)传送热至基板。
[0022] 热屏蔽组件160环绕基板支撑件104。热屏蔽组件160是与基板支撑件104同心的环状结构。热屏蔽组件160的外半径120较腔室100的侧壁136或衬垫163的内半径121小。热屏
蔽组件160的上表面122与基板支撑件104的上表面110实质同平面,以提供用于气体流穿过
腔室100的均匀平坦表面。
[0023] 热屏蔽组件160包括预热构件167及热屏蔽构件168(下面将更详细地进一步描述)。预热构件167具有较基板支撑件104的外半径133大的内半径132,外半径133与内半径
132一起界定预热构件167与基板支撑件104之间的间隙134。热屏蔽构件168至少部分地覆
盖间隙134。
[0024] 净化气体源162可耦接至腔室100以防止处理气体穿过间隙134侵入腔室100的下部分。净化气体可从源162流动穿过净化气体管道164以提供穿过间隙134至处理气体出口
178的正压气体流。
[0025] 图2为根据一个实施方式的热屏蔽组件200的俯视视图。热屏蔽组件200可用作或取代热屏蔽组件160而用于腔室100中。热屏蔽组件200包括预热构件202及热屏蔽构件204。
热屏蔽构件202是安置于预热构件204上的环状构件,且具有向内延伸以至少部分覆盖间隙
134的内半径206。因此,预热构件204的内半径212较热屏蔽构件的内半径206大。预热构件
204的外半径210也较热屏蔽构件202的外半径208大。
[0026] 图3为热屏蔽构件202的示意俯视视图。热屏蔽构件202具有暴露预热构件204的部分222的间隙220。暴露部分222针对从气体入口106跨过预热构件204流动至基板支撑件104
的气体提供更直接的热暴露。热屏蔽构件202的内半径206可大于150mm以容纳具有额定
300mm直径的基板。例如,针对300mm的基板,内半径206可从约151mm至约155mm。间隙220可具有尺寸(如尺寸指示符302所示),所述尺寸被选择以对进入气体提供所需量的热暴露。对于图3的实施方式,尺寸302可从约50mm至约180mm。间隙220具有第一边缘304及第二边缘
306。第一边缘304及第二边缘306一般平行于把间隙220所对着的角度310二等分的半径
308,以促进均匀的层状气体流动。在其他实施方式中,边缘可具有任何所需方向性。例如,在一些实施方式中,边缘可为圆的。在其他实施方式中,每一边缘可平行于与各别边缘交叉的半径。
[0027] 可包含一个或更多个形状特征304于热屏蔽构件202中以防止在操作期间热屏蔽构件202的移动,如下面进一步描述的。在图3的实施方式中,间隙220的两侧上的两个外拐角被圆化为形状特征。形状特征304的圆化拐角在形状上为圆形,但可将任何所需形状加至所述拐角。在图3的实施方式中,圆化拐角具有在约0.01mm与约1.5mm之间的曲率半径,比如在约0.1mm与约1.0mm之间,例如约0.3mm、0.4mm或0.5mm。
[0028] 图4为图2的预热构件204的示意俯视视图。预热构件204具有凹陷部分402,凹陷部分402在形状上与热屏蔽构件202相似,使得热屏蔽构件202安置于预热构件204的凹陷部分
402中。预热构件204的轮缘部分404环绕凹陷部分402,且在热屏蔽构件202设置于凹陷部分
402中时环绕热屏蔽构件202。
[0029] 预热构件204可具有间隙406。可沿着任何所需路径(例如直接沿着半径或沿着可为所需的任何弯曲路径)从预热构件204的外半径210至内半径212穿过预热构件204来形成
间隙406。间隙406可在热周期期间为预热构件204提供应力释放。间隙406也可提供锁定机
构以防止处理期间预热构件204的移动。为了图示可能的锁定手段,在图4中以虚线示意地
示出腔室衬垫408。腔室衬垫408具有凹陷410,凹陷410形成在腔室衬垫408的内壁412中。也以虚线图示锁定销414。锁定销414插入到凹陷410中且从凹陷410突出到腔室内部中。可接
着放置预热构件204使得锁定销414延伸穿过间隙406。
[0030] 图5A为图2中于标识为5A的第二线处取得的热屏蔽组件200的截面视图。预热构件204可具有边缘延伸504,可使用边缘延伸504将预热构件204与另一腔室部件接合,所述另
一腔室部件比如腔室衬垫(未图示)。边缘延伸504可使热屏蔽组件200居中。热屏蔽构件202在背景中可见。热屏蔽构件可具有在约0.1mm与约1.5mm之间的厚度,比如在约0.6mm与约
0.8mm之间,例如约0.7mm、0.75mm、0.78mm、或0.79mm。通常基于热屏蔽构件所需的热性质而选择热屏蔽构件202的厚度。预热构件204具有在约2.0mm与约10.0mm之间的厚度502,比如
在约3.0mm与约6.0mm之间,例如约5.0mm或约5.5mm。边缘延伸504可在预热构件204的主体
下方延伸约0.5mm与约3.5mm之间,例如约1.0mm。热屏蔽构件202可由任何能够承受可能使
用于处理腔室100中的处理条件的材料制成。示例性材料包含石英、蓝宝石、硅、石墨、碳化硅、陶瓷、或上述材料的组合。热屏蔽构件202也可具有由任何上述材料制成的涂层。例如,热屏蔽构件可由碳化硅或涂覆碳化硅的石墨制成。预热构件204也可由任何上述材料制成。
例如,预热构件204可由碳化硅或涂覆碳化硅的石墨制成。
[0031] 图5B为图2中于标识为5B的截线处取得的热屏蔽组件200的截面视图。热屏蔽构件202是可见的,能看到热屏蔽构件202的内半径206向内延伸超过预热构件204的内半径212。
轮缘部分404也是可见的。如图5B中所示,轮缘部分404的上表面506与热屏蔽构件202的上
表面508实质同平面。在图5B的实施方式中,热屏蔽构件202被图示为与预热构件204实质连续接触。
[0032] 图5C为根据另一实施方式的热屏蔽组件550的截面视图。热屏蔽组件550的截面视图是在与图5B的截面相似的位置处取得的。热屏蔽构件202与预热构件552耦接,预热构件
552具有减小接触特征554以最小化热屏蔽构件202与预热构件552之间的直接接触。热屏蔽
构件与预热构件之间的减小的接触在一些实施方式中可为有用的,以减少从预热构件至热
屏蔽构件的热传导。减小接触特征554可采用在预热构件552的上表面中形成的脊部的形
式,以接触热屏蔽构件的下表面。或者,可在热屏蔽构件的下表面中形成脊部。可在预热构件、热屏蔽构件或两者中形成减小接触特征。
[0033] 图6为根据另一实施方式的热屏蔽组件600的截面视图。热屏蔽组件600与热屏蔽组件200相似,但绘于图5A中的热屏蔽组件200具有直角边缘,而热屏蔽组件600包含一些可选的结构特征,比如圆化边缘602及斜切边缘604。热屏蔽组件600包含具有倾斜接触表面的预热构件606及热屏蔽构件608。预热构件606包含倾斜表面610,且热屏蔽构件608包含安置于倾斜表面610上的倾斜表面612。
[0034] 虽然前述内容针对某些实施方式,但可在不背离本揭示案的基本范围的情况下设计出其他及进一步的实施方式。