一种外尔半金属异质结红外探测器及其制备方法转让专利

申请号 : CN201710883262.0

文献号 : CN107706265B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 于永强李智卢志坚许克伟耿祥顺罗林保吴春艳

申请人 : 合肥工业大学

摘要 :

本发明公开了一种外尔半金属异质结红外探测器及其制备方法,该探测器是在绝缘衬底的上表面依次设置有底电极和绝缘掩膜层;在掩膜层的中心处留有一与底电极相连通的通孔;在底电极上表面、位于通孔内依次沉积有两种不同的二维半导体材料,上层材料具备外尔半金属性质,在沉积过程中两种二维半导体材料会依次沿着垂直于底电极的方向逐层沉积生长形成范德瓦耳斯异质结;在掩膜层上方设置有顶电极,底电极与位于通孔内的下层半导体材料、顶电极与位于通孔内的上层外尔半金属材料皆形成欧姆接触。本发明的探测器制备工艺简单、可重复性强,所制备器件具有宽光谱响应、高灵敏度、响应速度快、易于集成等优异性能。

权利要求 :

1.一种外尔半金属异质结红外探测器的制备方法,其特征在于:

所述的外尔半金属异质结红外探测器是在绝缘衬底(6)上表面设置有底电极(5);在所述底电极(5)的上表面设置有掩膜层(4),所述掩膜层为绝缘材料,在所述掩膜层(4)的中心处留有一与所述底电极(5)相连通的通孔;在所述掩膜层(4)的通孔内、位于所述底电极(5)上表面沉积有下层半导体材料(3);在所述掩膜层(4)的通孔内、位于所述下层半导体材料(3)上沉积有上层外尔半金属材料(2);所述下层半导体材料(3)与所述上层外尔半金属材料(2)形成范德瓦耳斯异质结;在所述掩膜层(4)上方设置有顶电极(1),所述顶电极(1)完全覆盖通孔且不超出掩膜层(4)的边界;所述底电极(5)与所述下层半导体材料(3)之间、所述顶电极(1)与所述上层外尔半金属材料(2)之间皆形成欧姆接触;

所述外尔半金属异质结红外探测器的制备方法,包括以下步骤:

a、通过电子束溅射技术在绝缘衬底(6)的上表面蒸镀底电极(5);

b、在所述底电极(5)的上表面通过磁控溅射或脉冲激光沉积技术沉积绝缘材料,形成中央预留有通孔的掩膜层(4);

c、采用脉冲激光沉积或磁控溅射在所述掩膜层(4)的通孔内沉积下层半导体材料(3),所述底电极(5)与所述下层半导体材料(3)之间形成欧姆接触;

再采用脉冲激光沉积或磁控溅射在所述下层半导体材料(3)上外延上层外尔半金属材料(2);所述下层半导体材料(3)与所述上层外尔半金属材料(2)形成范德瓦耳斯异质结;

d、将顶电极(1)设置在所述掩膜层(4)上,使顶电极(1)不超出所述掩膜层(4)的边界且完全覆盖通孔;所述顶电极(1)与所述上层外尔半金属材料(2)之间形成欧姆接触,即完成外尔半金属异质结红外探测器的制备。

2.根据权利要求1所述的外尔半金属异质结红外探测器的制备方法,其特征在于:所述下层半导体材料(3)为MoSe2或MoS2,所述上层外尔半金属材料(2)为MoTe2。

3.根据权利要求1所述的外尔半金属异质结红外探测器的制备方法,其特征在于:所述底电极(5)为Au电极、Ti/Au电极、In/Ga电极或Ag电极;所述底电极(5)的厚度为20nm-

300nm。

4.根据权利要求1所述的外尔半金属异质结红外探测器的制备方法,其特征在于:所述顶电极(1)为贵金属电极或石墨烯电极。

5.根据权利要求1所述的外尔半金属异质结红外探测器的制备方法,其特征在于:步骤c中通过脉冲激光沉积制备下层半导体材料与上层外尔半金属材料的工艺条件为:激光功率40~500mJ、激光波长为248nm、脉冲频率为1~20Hz、气压为0.1~10-5Pa、加热温度为400℃、沉积时间为5~30分钟。

说明书 :

一种外尔半金属异质结红外探测器及其制备方法

技术领域

[0001] 本发明涉及一种外尔半金属异质结红外探测器及其制备方法,属于半导体光电器件技术领域。

背景技术

[0002] 所谓光电探测器就是利用半导体材料的光电导效应制成的一种光探测器件,广泛应用于生产生活、军事领域的各个方面。近年来,随着科学技术的发展,以纳米光电探测为代表的二维过渡金属硫属化物探测器因具有较高的响应度和灵敏度等优异特性而取得了巨大的关注。例如,采用CVD法制备的单层MoS2薄膜用于制备高性能光电探测器,其器件的-174光响应率可高达2200AW ,而光增益也能达到5000的水平。尽管基于MoS2的光探测器件在光响应方面的性能非常突出,但由于硫空位和其它材料自身的缺陷(尤其是在CVD制备过程中引入的杂质和束缚态)会大大影响其载流子传输速度,从而降低器件的响应速度(响应时间一般在4-30s之间);另一方面,随着对器件集成度要求的不断提升,传统的基于Ⅳ族和Ⅲ-Ⅴ族半导体(例如硅和砷化镓)的器件尺寸已经接近极限,不能满足要求。

发明内容

[0003] 针对上述现有技术存在的缺点和不足,本发明旨在提供一种外尔半金属异质结红外探测器及其制备方法,旨在保证器件具有较高的响应速度的同时,缩小器件的尺寸、提高器件的单片集成度。
[0004] 为实现上述目的,本发明采用如下技术方案:
[0005] 本发明首先公开了一种外尔半金属异质结红外探测器,其特点在于:所述的外尔半金属异质结红外探测器是在绝缘衬底上表面设置有底电极;在所述底电极的上表面设置有掩膜层,所述掩膜层为绝缘材料,在所述掩膜层的中心处留有一与所述底电极相连通的通孔;在所述掩膜层的通孔内、位于所述底电极上表面沉积有下层半导体材料;在所述掩膜层的通孔内、位于所述下层半导体材料上沉积有上层外尔半金属材料;所述下层半导体材料与所述上层外尔半金属材料形成范德瓦耳斯异质结;在所述掩膜层上方设置有顶电极,所述顶电极完全覆盖通孔且不超出掩膜层的边界;所述底电极与所述下层半导体材料之间、所述顶电极与所述上层外尔半金属材料之间皆形成欧姆接触。
[0006] 具体的,所述下层半导体材料为MoSe2或MoS2,所述上层外尔半金属材料为MoTe2。
[0007] 优选的,所述底电极为Au电极、Ti/Au电极、In/Ga电极或Ag电极;所述底电极的厚度为20nm-300nm。
[0008] 优选的,所述顶电极为贵金属电极或石墨烯电极。
[0009] 本发明还公开了上述外尔半金属异质结红外探测器的制备方法,其包括以下步骤:
[0010] a、通过电子束溅射技术在绝缘衬底的上表面蒸镀底电极;
[0011] b、在所述底电极的上表面通过磁控溅射或脉冲激光沉积技术沉积绝缘材料,形成中央预留有通孔的掩膜层;
[0012] c、采用脉冲激光沉积或磁控溅射在所述掩膜层的通孔内沉积下层半导体材料,所述底电极与所述下层半导体材料之间形成欧姆接触;
[0013] 再采用脉冲激光沉积或磁控溅射在所述下层半导体材料上外延上层外尔半金属材料;所述下层半导体材料与所述上层外尔半金属材料形成范德瓦耳斯异质结;
[0014] d、将顶电极设置在所述掩膜层上,使顶电极不超出所述掩膜层的边界且完全覆盖通孔;所述顶电极与所述上层外尔半金属材料之间形成欧姆接触,即完成外尔半金属异质结红外探测器的制备。
[0015] 优选的,步骤c中通过脉冲激光沉积制备下层半导体材料与上层外尔半金属材料的工艺条件为:激光功率40~500mJ、激光波长为248nm、脉冲频率为1~20Hz、气压为0.1~10-5Pa、加热温度为400℃、沉积时间5~30分钟。
[0016] 与现有技术相比,本发明的有益效果体现在:
[0017] 本发明设计了一种外尔半金属异质结红外探测器,通过脉冲激光沉积的过程制备外尔半金属异质结红外探测器,具备了高磁阻、高迁移率的优良电学性质,使得本发明的探测器具有较高的响应速度;同时,由于器件结构的优化设计,提高了本发明的探测器的单片集成度。

附图说明

[0018] 图1为本发明外尔半金属异质结红外探测器的结构示意图;
[0019] 图2为本发明实施例1所制备的红外探测器在光源波长为980nm的光照下和黑暗条件下的电流-电压曲线;
[0020] 图3为本发明实施例1所制备的红外探测器在光源波长为980nm、-2V偏压、1.12mW/cm2光功率下的时间响应曲线;
[0021] 图4为本发明实施例1所制备的红外探测器在光源波长为980nm、光源频率为1MHz下的光响应曲线;
[0022] 图5为本发明实施例1所制备的红外探测器在光源波长为980nm、光源频率为1MHz下的上升时间和下降时间;
[0023] 图6为本发明实施例1所制备的红外探测器在光源波长为1550nm下的电流-电压曲线;
[0024] 图7为本发明实施例1所制备的红外探测器在光源波长为1550nm、-2V偏压、0.54mW/cm2光功率下的时间响应曲线;
[0025] 图中标号:1为顶电极;2为上层外尔半金属材料;3为下层半导体材料;4为掩膜层;5为底电极;6为绝缘衬底。

具体实施方式

[0026] 下面结合附图和实施例对本发明的技术方案进行详细说明。
[0027] 实施例1
[0028] 参见图1,本实施例的外尔半金属异质结红外探测器是在绝缘衬底6的上表面设置有底电极5;在底电极5的上表面设置有掩膜层4,掩膜层为绝缘材料,在掩膜层4的中心处留有一与底电极5相连通的通孔;在掩膜层4的通孔内、位于底电极5上表面沉积有下层半导体材料3;在掩膜层4的通孔内、位于下层半导体材料3上沉积有上层外尔半金属材料2;下层半导体材料3与上层外尔半金属材料2形成范德瓦耳斯异质结;在掩膜层4上方设置有顶电极1,顶电极1完全覆盖通孔且不超出掩膜层4的边界;底电极5与所述下层半导体材料3之间、顶电极1与上层外尔半金属材料2之间皆形成欧姆接触。
[0029] 具体的,绝缘衬底6选用表面长有厚度为500nm氧化硅的硅片;底电极5为约80nm厚的Ti/Au电极(是在厚约10-50nm的Ti薄膜上沉积有厚约30-60nm的Au薄膜);掩膜层4为厚度约为200nm的云母绝缘层;下层半导体材料3为MoSe2,上层外尔半金属材料2为MoTe2。
[0030] 本实施例的外尔半金属异质结红外探测器按如下步骤进行制备:
[0031] a、将表面长有厚度为500nm氧化硅的硅片分别通过丙酮、乙醇、去离子水超声清洗干净后,通过电子束溅射在其表面蒸镀一层Ti/Au电极作为底电极,条件是在厚度为10-50nm的Ti上沉积厚度为30-60nm的Au。
[0032] b、通过脉冲激光沉积法在Ti/Au电极上蒸镀一层云母绝缘层作为掩膜层,并使云母绝缘层的中央位置留有一个直径为1cm的通孔作为MoTe2、MoSe2的沉积区;掩膜层的面积不超出底电极的边缘,厚度约为200nm左右。
[0033] c、在蒸镀Ti/Au电极和掩膜层的硅片上附一层中间留有圆孔的掩膜板,圆孔位置对应于掩膜层通孔的位置;通过脉冲激光沉积系统(PLD)在通孔内蒸镀一层厚度约100nm的P型MoSe2薄膜,P型MoSe2薄膜垂直于Ti/Au电极逐渐沉积生长;随后在P型MoSe2薄膜上再蒸镀一层厚度同样约100nm的N型MoTe2薄膜;脉冲激光沉积法的工艺条件为:激光功率120mJ、激光波长为248nm、脉冲频率3Hz、气压为10-5Pa、加热温度为400℃、沉积时间为25min。
[0034] d、在掩膜层上转移一层石墨烯,使石墨烯均匀贴合在掩膜层上,石墨烯不超出掩膜层4的边界且完全覆盖通孔;石墨烯与N型MoTe2薄膜之间形成欧姆接触,即获得外尔半金属异质结红外探测器。
[0035] 利用KEITHLEY 4200-SCS对本实施例所得器件进行测试,可以看出所制备的器件对980nm(参见图2和图3)和1550nm(参见图6和图7)的光都有响应;在没有光照射条件下,器件表现出良好的整流特性,器件在反向偏压1.6V条件下的暗电流为0.017mA。在波长980nm的光照条件下,由于光生少数载流子,反向光电流迅速增加到0.10mA。同时本实施例所得器件在光源波长为1550nm的光源照射下仍有响应,证实所得器件具有较宽的光谱响应。
[0036] 器件响应速度是衡量光电探测器的一个重要指标,以光源、示波器和信号发生器组装成快速光响应测试系统,对本实施例所得器件进行测试,获得如图4、图5所示的曲线,通过分析曲线可以看出,器件的响应速度可以达到纳秒级别,其上升时间和下降时间分别为340ns和320ns;这种器件性能已经超过目前绝大多数光电探测器。
[0037] 优异的器件性能主要归结为材料的外尔半金属性质,即具备高磁阻、高迁移率的优良电学性质,使得本发明的探测器具有较高的响应速度;并且由于两种半导体材料沿着垂直于底电极的方向逐层生长,减少了载流子在传输过程中所产生的散射问题,大大提高了载流子的迁移率,进而使得所制备光电探测器具有很快的响应速度和较好的高频特性。