一种多联机舒适度均衡控制方法及系统转让专利

申请号 : CN201710851713.2

文献号 : CN107726554B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 禚百田时斌程绍江张锐钢王军

申请人 : 青岛海尔空调电子有限公司

摘要 :

本发明的多联机舒适度均衡控制方法及系统,通过获取每台开机室内机的实际环境温度和设定环境温度,计算每台开机室内机的舒适度偏差,获取所有开机室内机的舒适度偏差中的最大值和最小值,并计算二者的差值△;计算平均舒适度偏差;根据差值△、平均舒适度偏差调整开机室内机的冷媒流入量,以减小差值△,提高整个多联机的舒适度均衡性。

权利要求 :

1.一种多联机舒适度均衡控制方法,其特征在于:包括:(1)获取每台开机室内机的实际环境温度和设定环境温度,计算每台开机室内机的舒适度偏差,计算公式为:制冷工况时:offseti=(curTempi-setTempi)*100/setTempi;

制热工况时:offseti=(setTempi-curTempi)*100/setTempi;

其中,offseti为第i台开机室内机的舒适度偏差,curTempi为第i台开机室内机的实际环境温度,setTempi为第i台开机室内机的设定环境温度;其中i=1,2,3,...,N;N为开机室内机的数量;

(2)获取所有开机室内机的舒适度偏差中的最大值offsetMAX和最小值offsetMIN,并计算二者的差值Δ=offsetMAX-offsetMIN;

(3)计算平均舒适度偏差

其中HPi为第i台开机室内机的能力匹数,SumHP为所有开机室内机的能力匹数之和;

(4)根据差值Δ、平均舒适度偏差调整开机室内机的冷媒流入量,具体包括:(41)当差值Δ>第一设定阈值时:

对舒适度偏差>(offsetAVG+第二设定阈值)的室内机,增加该室内机的冷媒流入量;

对舒适度偏差<(offsetAVG-第二设定阈值)的室内机,减小该室内机的冷媒流入量;

对(offsetAVG-第二设定阈值)≤舒适度偏差≤(offsetAVG+第二设定阈值)的室内机,保持该室内机的冷媒流入量不变;

(42)当第二设定阈值<差值Δ≤第一设定阈值时:对于舒适度偏差>0的室内机,增加该室内机的冷媒流入量;

对于舒适度偏差<0的室内机,减小该室内机的冷媒流入量;

对于舒适度偏差=0的室内机,保持该室内机的冷媒流入量不变;

(43)当差值Δ≤第二设定阈值时,保持每个开机室内机的冷媒流入量不变;

其中,第一设定阈值>第二设定阈值>0。

2.根据权利要求1所述的控制方法,其特征在于:在步骤(41)中,当差值Δ>第一设定阈值时,通过调整室内机的换热器的盘管温度目标值,来增加或减小该室内机的冷媒流入量;

对舒适度偏差>(offsetAVG+第二设定阈值)的室内机,盘管温度目标值的计算公式为:制冷工况时:

paraCtlTar=paraCtlCur-(offset-offsetAVG-第二设定阈值)*rationA;

制热工况时:

paraCtlTar=paraCtlCur+(offset-offsetAVG-第二设定阈值)*rationA;

对舒适度偏差<(offsetAVG-第二设定阈值)的室内机,盘管温度目标值的计算公式为:制冷工况时:

paraCtlTar=paraCtlCur+(offsetAVG-第二设定阈值-offset)*rationA;

制热工况时:

paraCtlTar=paraCtlCur-(offsetAVG-第二设定阈值-offset)*rationA;

其中,paraCtlTar为盘管温度目标值,paraCtlCur为当前盘管温度,offset为该室内机的舒适度偏差,rationA为调整系数。

3.根据权利要求2所述的控制方法,其特征在于:在步骤(42)中,当第二设定阈值<差值Δ≤第一设定阈值时,通过调整室内机的换热器的盘管温度目标值,来增加或减小该室内机的冷媒流入量;

盘管温度目标值的计算公式为:

制冷工况时:paraCtlTar=paraCtlCur-offset*rationB;

制热工况时:paraCtlTar=paraCtlCur+offset*rationB;

其中,paraCtlTar为盘管温度目标值,paraCtlCur为当前盘管温度,offset为该室内机的舒适度偏差,rationB为调整系数。

4.根据权利要求3所述的控制方法,其特征在于:rationB<rationA。

5.根据权利要求2所述的控制方法,其特征在于:rationA的取值范围为[0.6,1]。

6.根据权利要求3所述的控制方法,其特征在于:rationB的取值范围为[0.1,0.5]。

7.一种多联机舒适度均衡控制系统,其特征在于:包括:获取模块,用于获取每台开机室内机的实际环境温度和设定环境温度;

舒适度偏差计算模块,用于计算每台开机室内机的舒适度偏差,计算公式为:制冷工况时:offseti=(curTempi-setTempi)*100/setTempi;

制热工况时:offseti=(setTempi-curTempi)*100/setTempi;

其中,offseti为第i台开机室内机的舒适度偏差,curTempi为第i台开机室内机的实际环境温度,setTempi为第i台开机室内机的设定环境温度;其中i=1,2,3,...,N;N为开机室内机的数量;

差值计算模块,用于获取所有开机室内机的舒适度偏差中的最大值offsetMAX和最小值offsetMIN,并计算二者的差值Δ=offsetMAX-offsetMIN;

平均舒适度偏差计算模块,用于计算平均舒适度偏差其中HPi为第i台开机室内机的能力匹数,SumHP为所有开机室内机的能力匹数之和;

调整模块,用于根据差值Δ、平均舒适度偏差调整开机室内机的冷媒流入量;

所述调整模块具体用于:

当差值Δ>第一设定阈值时:

对舒适度偏差>(offsetAVG+第二设定阈值)的室内机,增加该室内机的冷媒流入量;

对舒适度偏差<(offsetAVG-第二设定阈值)的室内机,减小该室内机的冷媒流入量;

对(offsetAVG-第二设定阈值)≤舒适度偏差≤(offsetAVG+第二设定阈值)的室内机,保持该室内机的冷媒流入量不变;

当第二设定阈值<差值Δ≤第一设定阈值时:

对于舒适度偏差>0的室内机,增加该室内机的冷媒流入量;

对于舒适度偏差<0的室内机,减小该室内机的冷媒流入量;

对于舒适度偏差=0的室内机,保持该室内机的冷媒流入量不变;

当差值Δ≤第二设定阈值时,保持每个开机室内机的冷媒流入量不变;

其中,第一设定阈值>第二设定阈值>0。

8.根据权利要求7所述的控制系统,其特征在于:所述调整模块还用于:当差值Δ>第一设定阈值时,通过调整室内机的换热器的盘管温度目标值,来增加或减小该室内机的冷媒流入量;

对舒适度偏差>(offsetAVG+第二设定阈值)的室内机,盘管温度目标值的计算公式为:制冷工况时:paraCtlTar=paraCtlCur-(offset-offsetAVG-第二设定阈值)*rationA;

制热工况时:paraCtlTar=paraCtlCur+(offset-offsetAVG-第二设定阈值)*rationA;

对舒适度偏差<(offsetAVG-第二设定阈值)的室内机,盘管温度目标值的计算公式为:制冷工况时:paraCtlTar=paraCtlCur+(offsetAVG-第二设定阈值-offset)*rationA;

制热工况时:paraCtlTar=paraCtlCur-(offsetAVG-第二设定阈值-offset)*rationA;

当第二设定阈值<差值Δ≤第一设定阈值时,通过调整室内机的换热器的盘管温度目标值,来增加或减小该室内机的冷媒流入量;盘管温度目标值的计算公式为:制冷工况时:paraCtlTar=paraCtlCur-offset*rationB;

制热工况时:paraCtlTar=paraCtlCur+offset*rationB;

其中,paraCtlTar为盘管温度目标值,paraCtlCur为当前盘管温度,offset为该室内机的舒适度偏差,rationA和rationB为调整系数。

说明书 :

一种多联机舒适度均衡控制方法及系统

技术领域

[0001] 本发明属于空调技术领域,具体地说,是涉及一种多联机舒适度均衡控制方法和系统。

背景技术

[0002] 多联机系统中,通常一个室外机连接多个室内机。每个室内机都有一个膨胀阀,通过控制膨胀阀的开度来调节进入室内机换热器的冷媒流量,实现与外界的冷热量交换。膨胀阀的开度与调节的目标参数有关,目标参数一般是室内换热器的盘管温度。制冷时,目标参数越低,流入室内换热器的冷媒越多;制热时,目标参数越高,流入室内换热器的冷媒越多。
[0003] 目前,通常目标参数是由室内机根据各自的机型设定,在相同的系统环境下目标参数保持不变,不能自动调整,这样系统中的冷媒分配情况基本不变。各内机的房间要求达到的温度与使用环境有关,设定的温度每个房间会不同。在冷媒分配到各内机的流量情况基本保持不变时,会出现有些内机已经达到设定温度,而有些内机距离设定温度的理想值相差甚远,导致多联机舒适度不均衡。

发明内容

[0004] 本发明提供了一种多联机舒适度均衡控制方法,提高了多联机舒适度均衡性。
[0005] 为解决上述技术问题,本发明采用下述技术方案予以实现:
[0006] 一种多联机舒适度均衡控制方法,包括:
[0007] (1)获取每台开机室内机的实际环境温度和设定环境温度,计算每台开机室内机的舒适度偏差,计算公式为:
[0008] 制冷工况时:offseti=(curTempi-setTempi)*100/setTempi;
[0009] 制热工况时:offseti=(setTempi-curTempi)*100/setTempi;
[0010] 其中,offseti为第i台开机室内机的舒适度偏差,curTempi为第i台开机室内机的实际环境温度,setTempi为第i台开机室内机的设定环境温度;其中i=1,2,3,...,N;N为开机室内机的数量;
[0011] (2)获取所有开机室内机的舒适度偏差中的最大值offsetMAX和最小值offsetMIN,并计算二者的差值Δ=offsetMAX-offsetMIN;
[0012] (3)计算平均舒适度偏差
[0013] 其中HPi为第i台开机室内机的能力匹数,SumHP为所有开机室内机的能力匹数之和;
[0014] (4)根据差值Δ、平均舒适度偏差调整开机室内机的冷媒流入量。
[0015] 进一步的,所述根据差值Δ、平均舒适度偏差调整开机室内机的冷媒流入量,具体包括:
[0016] (41)当差值Δ>第一设定阈值时:
[0017] 对舒适度偏差>(offsetAVG+第二设定阈值)的室内机,增加该室内机的冷媒流入量;
[0018] 对舒适度偏差<(offsetAVG-第二设定阈值)的室内机,减小该室内机的冷媒流入量;
[0019] 对(offsetAVG-第二设定阈值)≤舒适度偏差≤(offsetAVG+第二设定阈值)的室内机,保持该室内机的冷媒流入量不变;
[0020] (42)当第二设定阈值<差值Δ≤第一设定阈值时:
[0021] 对于舒适度偏差>0的室内机,增加该室内机的冷媒流入量;
[0022] 对于舒适度偏差<0的室内机,减小该室内机的冷媒流入量;
[0023] 对于舒适度偏差=0的室内机,保持该室内机的冷媒流入量不变;
[0024] (43)当差值Δ≤第二设定阈值时,保持每个开机室内机的冷媒流入量不变;其中,第一设定阈值>第二设定阈值>0。
[0025] 又进一步的,在步骤(41)中,当差值Δ>第一设定阈值时,通过调整室内机的换热器的盘管温度目标值,来增加或减小该室内机的冷媒流入量;
[0026] 对舒适度偏差>(offsetAVG+第二设定阈值)的室内机,盘管温度目标值的计算公式为:
[0027] 制冷工况时:
[0028] paraCtlTar=paraCtlCur-(offset-offsetAVG-第二设定阈值)*rationA;
[0029] 制热工况时:
[0030] paraCtlTar=paraCtlCur+(offset-offsetAVG-第二设定阈值)*rationA;
[0031] 对舒适度偏差<(offsetAVG-第二设定阈值)的室内机,盘管温度目标值的计算公式为:
[0032] 制冷工况时:
[0033] paraCtlTar=paraCtlCur+(offsetAVG-第二设定阈值-offset)*rationA;
[0034] 制热工况时:
[0035] paraCtlTar=paraCtlCur-(offsetAVG-第二设定阈值-offset)*rationA;
[0036] 其中,paraCtlTar为盘管温度目标值,paraCtlCur为当前盘管温度,offset为该室内机的舒适度偏差,rationA为调整系数。
[0037] 更进一步的,在步骤(42)中,当第二设定阈值<差值Δ≤第一设定阈值时,通过调整室内机的换热器的盘管温度目标值,来增加或减小该室内机的冷媒流入量;
[0038] 盘管温度目标值的计算公式为:
[0039] 制冷工况时:paraCtlTar=paraCtlCur-offset*rationB;
[0040] 制热工况时:paraCtlTar=paraCtlCur+offset*rationB;
[0041] 其中,paraCtlTar为盘管温度目标值,paraCtlCur为当前盘管温度,offset为该室内机的舒适度偏差,rationB为调整系数。
[0042] 优选的,rationB<rationA。
[0043] 优选的,rationA的取值范围为[0.6,1]。
[0044] 优选的,rationB的取值范围为[0.1,0.5]。
[0045] 一种多联机舒适度均衡控制系统,包括:
[0046] 获取模块,用于获取每台开机室内机的实际环境温度和设定环境温度;
[0047] 舒适度偏差计算模块,用于计算每台开机室内机的舒适度偏差,计算公式为:
[0048] 制冷工况时:offseti=(curTempi-setTempi)*100/setTempi;
[0049] 制热工况时:offseti=(setTempi-curTempi)*100/setTempi;
[0050] 其中,offseti为第i台开机室内机的舒适度偏差,curTempi为第i台开机室内机的实际环境温度,setTempi为第i台开机室内机的设定环境温度;其中i=1,2,3,...,N;N为开机室内机的数量;
[0051] 差值计算模块,用于获取所有开机室内机的舒适度偏差中的最大值offsetMAX和最小值offsetMIN,并计算二者的差值Δ=offsetMAX-offsetMIN;
[0052] 平均舒适度偏差计算模块,用于计算平均舒适度偏差其中HPi为第i台开机室内机的能力匹数,SumHP为
所有开机室内机的能力匹数之和;
[0053] 调整模块,用于根据差值Δ、平均舒适度偏差调整开机室内机的冷媒流入量。
[0054] 进一步的,所述调整模块具体用于:
[0055] 当差值Δ>第一设定阈值时:
[0056] 对舒适度偏差>(offsetAVG+第二设定阈值)的室内机,增加该室内机的冷媒流入量;
[0057] 对舒适度偏差<(offsetAVG-第二设定阈值)的室内机,减小该室内机的冷媒流入量;
[0058] 对(offsetAVG-第二设定阈值)≤舒适度偏差≤(offsetAVG+第二设定阈值)的室内机,保持该室内机的冷媒流入量不变;
[0059] 当第二设定阈值<差值Δ≤第一设定阈值时:
[0060] 对于舒适度偏差>0的室内机,增加该室内机的冷媒流入量;
[0061] 对于舒适度偏差<0的室内机,减小该室内机的冷媒流入量;
[0062] 对于舒适度偏差=0的室内机,保持该室内机的冷媒流入量不变;
[0063] 当差值Δ≤第二设定阈值时,保持每个开机室内机的冷媒流入量不变;
[0064] 其中,第一设定阈值>第二设定阈值>0。
[0065] 又进一步的,所述调整模块还用于:
[0066] 当差值Δ>第一设定阈值时,通过调整室内机的换热器的盘管温度目标值,来增加或减小该室内机的冷媒流入量;
[0067] 对舒适度偏差>(offsetAVG+第二设定阈值)的室内机,盘管温度目标值的计算公式为:
[0068] 制冷工况时:paraCtlTar=paraCtlCur-(offset-offsetAVG-第二设定阈值)*rationA;
[0069] 制热工况时:paraCtlTar=paraCtlCur+(offset-offsetAVG-第二设定阈值)*rationA;
[0070] 对舒适度偏差<(offsetAVG-第二设定阈值)的室内机,盘管温度目标值的计算公式为:
[0071] 制冷工况时:paraCtlTar=paraCtlCur+(offsetAVG-第二设定阈值-offset)*rationA;
[0072] 制热工况时:paraCtlTar=paraCtlCur-(offsetAVG-第二设定阈值-offset)*rationA;
[0073] 当第二设定阈值<差值Δ≤第一设定阈值时,通过调整室内机的换热器的盘管温度目标值,来增加或减小该室内机的冷媒流入量;盘管温度目标值的计算公式为:
[0074] 制冷工况时:paraCtlTar=paraCtlCur-offset*rationB;
[0075] 制热工况时:paraCtlTar=paraCtlCur+offset*rationB;
[0076] 其中,paraCtlTar为盘管温度目标值,paraCtlCur为当前盘管温度,offset为该室内机的舒适度偏差,rationA和rationB为调整系数。
[0077] 与现有技术相比,本发明的优点和积极效果是:本发明的多联机舒适度均衡控制方法及系统,通过获取每台开机室内机的实际环境温度和设定环境温度,计算每台开机室内机的舒适度偏差,获取所有开机室内机的舒适度偏差中的最大值offsetMAX和最小值offsetMIN,并计算二者的差值Δ=offsetMAX-offsetMIN;计算平均舒适度偏差;根据差值Δ、平均舒适度偏差调整开机室内机的冷媒流入量,以减小差值Δ,提高整个多联机的舒适度均衡性。
[0078] 结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。

附图说明

[0079] 图1是多联机的结构框图;
[0080] 图2是本发明所提出的多联机舒适度均衡控制方法的一个实施例的流程图;
[0081] 图3是本发明所提出的多联机舒适度均衡控制系统的结构框图。

具体实施方式

[0082] 为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细说明。
[0083] 多联机包括室外机和多个室内机,在每个室内机与室外机的连接管路上均布设有膨胀阀。膨胀阀一般布设在室内机的液管上,调节流入室内机的冷媒流量。每个室内机液管与室外机的液管连接。例如,参见图1所示,在室内机1的液管上布设有膨胀阀1,在室内机2的液管上布设有膨胀阀2,在室内机3的液管上布设有膨胀阀3,……,在室内机N的液管上布设有膨胀阀N。
[0084] 本实施例的多联机舒适度均衡控制方法,主要包括下述步骤,参见图2所示。
[0085] 每隔设定时间(如10分钟),执行下述步骤:
[0086] 步骤S1:获取每台开机室内机的实际环境温度和设定环境温度。
[0087] 步骤S2:计算每台开机室内机的舒适度偏差。
[0088] 计算公式为:
[0089] 制冷工况时:offseti=(curTempi-setTempi)*100/setTempi;
[0090] 制热工况时:offseti=(setTempi-curTempi)*100/setTempi;
[0091] 其中,offseti为第i台开机室内机的舒适度偏差,单位为%;curTempi为第i台开机室内机的实际环境温度,setTempi为第i台开机室内机的设定环境温度;其中i=1,2,3,...,N;N为开机室内机的数量。
[0092] 舒适度偏差是室内机距离理想状态的偏差,即当前实际环境温度距离设定环境温度的偏差,即实际值与理论值之间的偏差,偏差越接近于0,舒适感就越接近于理想状态。室内机的理想状态,即实际环境温度达到设定环境温度。
[0093] 具体来说,第1台开机室内机的实际环境温度为curTemp1、设定环境温度为setTemp1、舒适度偏差为offset1;第2台开机室内机的实际环境温度为curTemp2、设定环境温度为setTemp2、舒适度偏差为offset2;第3台开机室内机的实际环境温度为curTemp3、设定环境温度为setTemp3、舒适度偏差为offset3;……;第N台开机室内机的实际环境温度为curTempN、设定环境温度为setTempN、舒适度偏差为offsetN。
[0094] 当offseti=0时,说明第i台开机室内机的实际环境温度达到设定环境温度,正好满足用户的需求;当offseti大于0时,说明第i台开机室内机没有达到要求的制冷制热效果;当offseti小于0时,说明第i台开机室内机已经超过要求的制冷制热效果。
[0095] 步骤S3:获取所有开机室内机的舒适度偏差中的最大值offsetMAX和最小值offsetMIN,并计算二者的差值Δ=offsetMAX-offsetMIN。
[0096] 即找出offset1、offset2、offset3、……、offsetN中的最大值和最小值,并计算二者之差。
[0097] 步骤S4:计算平均舒适度偏差
[0098] 其中,HPi为第i台开机室内机的能力匹数;SumHP为所有开机室内机的能力匹数之和, i=1,2,3,...,N;N为开机室内机的数量。
[0099] 每台室内机的能力匹数与房间大小等环境因素是对应的,平均舒适度偏差的计算需要综合能力匹数因素。
[0100] 步骤S5:根据差值Δ、平均舒适度偏差调整开机室内机的冷媒流入量。
[0101] 当差值Δ较大时,说明所有开机室内机的舒适度偏差差距较大,多联机的舒适度均衡性较差,需要调整开机室内机的冷媒流入量;可以根据室内机的舒适度偏差与平均舒适度偏差之间的差值调整该室内机的冷媒流入量,以减小差值Δ,提高整个多联机的舒适度均衡性。
[0102] 本实施例的多联机舒适度均衡控制方法,通过获取每台开机室内机的实际环境温度和设定环境温度,计算每台开机室内机的舒适度偏差,获取所有开机室内机的舒适度偏差中的最大值offsetMAX和最小值offsetMIN,并计算二者的差值Δ=offsetMAX-offsetMIN;计算平均舒适度偏差;根据差值Δ、平均舒适度偏差调整开机室内机的冷媒流入量,以减小差值Δ,提高整个多联机的舒适度均衡性。
[0103] 本实施例的多联机舒适度均衡控制方法,通过调整开机室内机的冷媒流入量,减小了差值Δ,降低了各个室内机的舒适度偏差之间的差距,平衡了各个室内机房间的舒适度,保证各个室内机的舒适度基本一致,保证各室内机同时达到各自的理想状态,提高整个多联机的舒适度均衡性。
[0104] 室内机冷媒流入量的调整,通常是通过调整膨胀阀的开度实现的,但膨胀阀的开度是根据换热器盘管温度进行调整的。因此,调整该室内机的冷媒流入量,即通过调整该室内机的换热器的盘管温度目标值来实现。即室内机的盘管温度目标值作为室内机目标参数,室内机目标参数的调整,会重新分配各室内机的冷媒,从而实现各室内机的舒适度基本保持一致。
[0105] 根据差值Δ、平均舒适度偏差调整开机室内机的冷媒流入量,具体包括下述内容:
[0106] 一、当差值Δ>第一设定阈值时,说明开机室内机之间的舒适度偏差的差距较大,多联机的舒适度均衡性较差,为了保证多联机舒适度均衡性,需要调整开机室内机的冷媒流入量。第一设定阈值>0,如第一设定阈值=10。
[0107] 通过调整室内机的换热器的盘管温度目标值,来增加或减小该室内机的冷媒流入量。
[0108] (1)对舒适度偏差>(offsetAVG+第二设定阈值)的室内机,此室内机的舒适度偏差较大,距离理想状态差距较大,为保证整个多联机的舒适度均衡性,需要增加流入该室内机的冷媒量,以提高制冷/制热效果。
[0109] 制冷工况时,盘管温度目标值越低,膨胀阀开度越大,冷媒流入量越大,盘管温度目标值的计算公式为:
[0110] paraCtlTar=paraCtlCur-(offset-offsetAVG-第二设定阈值)*rationA。
[0111] 制热工况时,盘管温度目标值越高,膨胀阀开度越大,冷媒流入量越大,盘管温度目标值的计算公式为:
[0112] paraCtlTar=paraCtlCur+(offset-offsetAVG-第二设定阈值)*rationA。
[0113] 其中,paraCtlTar为盘管温度目标值,paraCtlCur为内机调阀时的当前盘管温度,offset为该室内机的舒适度偏差,rationA为调整系数,可由实验确定。第一设定阈值>第二设定阈值>0。
[0114] 也就是说,将offset与(offsetAVG+第二设定阈值)的差值作为盘管温度目标值的减量(制冷时)或增量(制热时),以增大膨胀阀开度,增大冷媒流入量,降低该室内机的舒适度偏差,提高多联机舒适度均衡性。
[0115] (2)对舒适度偏差<(offsetAVG-第二设定阈值)的室内机,此室内机的舒适度偏差较小,距离理想状态差距较小,为保证整个多联机的舒适度均衡性,需要减小流入该室内机的冷媒量,从而保证其他距离理想状态较大的内机需要增加的冷媒量。
[0116] 制冷工况时,盘管温度目标值越高,膨胀阀开度越小,冷媒流入量越小,盘管温度目标值的计算公式为:
[0117] paraCtlTar=paraCtlCur+(offsetAVG-第二设定阈值-offset)*rationA;
[0118] 制热工况时,盘管温度目标值越低,膨胀阀开度越小,冷媒流入量越小,盘管温度目标值的计算公式为:
[0119] paraCtlTar=paraCtlCur-(offsetAVG-第二设定阈值-offset)*rationA。
[0120] 其中,paraCtlTar为盘管温度目标值,paraCtlCur为当前盘管温度,offset为该室内机的舒适度偏差,rationA为调整系数。
[0121] 也就是说,将(offsetAVG-第二设定阈值)与offset的差值作为盘管温度目标值的增量(制冷时)或减量(制热),以减小膨胀阀开度,减小冷媒流入量,以增大该室内机的舒适度偏差,提高多联机舒适度均衡性。
[0122] (3)对(offsetAVG-第二设定阈值)≤舒适度偏差≤(offsetAVG+第二设定阈值)的室内机,在多联机中舒适度偏差处于中等水平,保持该室内机的冷媒量流入量不变,即保持盘管温度目标值不变。
[0123] 二、当第二设定阈值<差值Δ≤第一设定阈值时,说明开机室内机之间的舒适度偏差的差距较小,有些室内机可能会超过理想状态,在保证多联机舒适度均衡的基础上,可适当提升未满足要求的室内机的效果。
[0124] (1)对于舒适度偏差>0的室内机,增加该室内机的冷媒流入量,以减小舒适度偏差,提高多联机舒适度均衡性。
[0125] (2)对于舒适度偏差<0的室内机,减小该室内机的冷媒流入量,以增大舒适度偏差,提高多联机舒适度均衡性。
[0126] (3)对于舒适度偏差=0的室内机,保持该室内机的冷媒流入量不变,以保持舒适度偏差不变,提高多联机舒适度均衡性。
[0127] 通过调整室内机的换热器的盘管温度目标值,来增加或减小该室内机的冷媒流入量。
[0128] 在本实施例中,当第二设定阈值<差值Δ≤第一设定阈值时,每个室内机的盘管温度目标值的计算公式为:
[0129] 制冷工况时:paraCtlTar=paraCtlCur-offset*rationB;
[0130] 制热工况时:paraCtlTar=paraCtlCur+offset*rationB;
[0131] 其中,paraCtlTar为盘管温度目标值,paraCtlCur为当前盘管温度,offset为该室内机的舒适度偏差,rationB为调整系数。
[0132] 也就是说,
[0133] (1)对于offset>0的室内机,
[0134] 制冷工况下,paraCtlTar<paraCtlCur,盘管温度目标值减小,膨胀阀开度增大,冷媒流入量增大;
[0135] 制热工况下,paraCtlTar>paraCtlCur,盘管温度目标值增大,膨胀阀开度增大,冷媒流入量增大。
[0136] (2)对于offset<0的室内机,
[0137] 制冷工况下,paraCtlTar>paraCtlCur,盘管温度目标值增大,膨胀阀开度减小,冷媒流入量减小;
[0138] 制热工况下,paraCtlTar<paraCtlCur,盘管温度目标值减小,膨胀阀开度减小,冷媒流入量减小。
[0139] (3)对于offset=0的室内机,paraCtlTar=paraCtlCur,盘管温度目标值不变,膨胀阀开度不变,冷媒流入量不变。
[0140] 三、当差值Δ≤第二设定阈值时,说明开机室内机之间的舒适度偏差的差距很小,各室内机的舒适度已经均衡,为了维持多联机系统的稳定性,保持每个开机室内机的冷媒流入量不变,即保持盘管温度目标值不变,膨胀阀开度不变。
[0141] 本实施例的多联机舒适度均衡控制方法,根据差值Δ、平均舒适度偏差、各室内机的舒适度偏差,动态修正各室内机的目标参数(盘管温度目标值),实时调整多联机的冷媒分配,从而实现各室内机的舒适度基本保持一致,保证各室内机同时达到各自的理想状态。
[0142] 在本实施例中,rationA、rationB是对偏差程度的划分调整,当差值Δ较大时,调整系数大一些,当差值Δ较小时,调整系数小一些,即rationB<rationA,以针对差值Δ的大小,对盘管温度目标值进行调整,既尽快减小差值,又避免多联机运行不稳。
[0143] rationA:用于在差值Δ>第一设定阈值时,这时差值较大,为尽快减小差值Δ,缩小offsetMAX与offsetMIN的差距,rationA的值适当调大一些。在本实施例中,rationA的取值范围为[0.6,1],既能加快减小差值Δ,又避免多联机运行不稳。
[0144] rationB:用于在第二设定阈值<差值Δ≤第一设定阈值时,这时差值较小,为了维护多联机的稳定,rationB的值要小一些,避免引起多联机波动。在本实施例中,rationB的取值范围为[0.1,0.5],以保证多联机的稳定性。
[0145] ratioA、ratioB的具体取值范围,可通过模拟实验实测数据确定,不同的机型对应的数据可能不一样。通常这两个参数一般放在EEPROM芯片中,可通过PC软件或控制器进行修改。
[0146] 下面,以制热工况为例,开机室内机数量N=8,第一设定阈值=10,第二设定阈值=5,ratioA=0.8、ratioB=0.5为例,对多联机舒适度均衡控制方法的具体步骤进行详细的描述。
[0147] 表一:
[0148] 内机编号 1# 2# 3# 4# 5# 6# 7# 8#能力匹数HP 1 2 3 2 3 5 2 1
设定温度setTemp 20 25 26 24 27 24 22 25
当前温度curTemp 14.8 14.2 17.8 14.2 16.5 18.1 16.4 17.3
舒适度偏差offset 26 43.2 31.5 40.8 38.9 24.6 25.5 30.8
当前参数paraCtlCur 35 35 35 35 35 35 35 35
目标参数paraCtlTar 34.1 39.9 35 38 36.4 33 33.7 35
[0149] (1)当前参数paraCtlCur初始值设为35,根据实际环境温度、设定环境温度计算出每台室内机的舒适度偏差,填入表一。
[0150] 以3#室内机为例,舒适度偏差offset=(26-17.8)*100/26=31.5。
[0151] (2)最大值offsetMAX=43.2,最小值offsetMIN=24.6;
[0152] 差值△=offsetMAX-offsetMIN=43.2-24.6=18.6。
[0153] (3)开机室内机总匹数SumHP=(1+2+3+2+3+5+2+1)=19。
[0154] offsetAVG=(26*1+43.2*2+31.5*3+40.8*2+38.9*3+24.6*5+25.5*2+30.8*1)/19=32.1。
[0155] (4)由于差值△=18.6>第一设定阈值,需要调整室内机冷媒流入量。
[0156] 对offset>(32.1+5)的2#、4#、5#室内机,需要增大冷媒流入量,即需要增大目标参数(即盘管温度目标值)paraCtlTar。
[0157] 以2#为例,计算过程为:paraCtlTar=35+(43.2-32.1-5)*0.8=39.9;4#、5#的计算过程类似,此处不再赘述。
[0158] 对offset<(32.1-5)的1#、6#、7#室内机,需要减小冷媒流入量,即需要降低目标参数paraCtlTar。
[0159] 以1#为例:计算过程为:paraCtlTar=35-(32.1-5-26)*0.8=34.1;6#、7#的计算过程类似,此处不再赘述。
[0160] 对(32.1-5)≤offset≤(32.1+5)的3#、8#室内机,需要保持冷媒流入量不变,即目标参数paraCtlTar保持不变。
[0161] 继续调节,参数变为表二所示:
[0162] 内机编号 1# 2# 3# 4# 5# 6# 7# 8#能力匹数HP 1 2 3 2 3 5 2 1
设定温度setTemp 20 25 26 24 27 24 22 25
当前温度curTemp 20.5 24.2 24.5 22.8 25.8 22.7 20.9 25.2
舒适度偏差offset -2.5 3.2 5.8 5 4.4 5.4 5 -0.8
当前参数paraCtlCur 34.1 39.9 35 38 36.4 33 33.7 35
目标参数paraCtlTar 32.9 41.5 37.9 40.5 38.6 35.7 36.2 34.6
[0163] (1)根据实际环境温度、设定环境温度计算出每台室内机的舒适度偏差,填入表二。
[0164] (2)最大值offsetMAX=5.8,最小值offsetMIN=-2.5;
[0165] 差值△=offsetMAX-offsetMIN=5.8-(-2.5)=8.3。
[0166] (3)满足第二设定阈值<差值Δ≤第一设定阈值,需要调整室内机冷媒流入量。
[0167] 对offset>0的2#、3#、4#、5#、6#、7#室内机,需要增大冷媒流入量,即需要增大目标参数(即盘管温度目标值)paraCtlTar。
[0168] 以4#为例,计算过程为:paraCtlTar=38+5*0.5=40.5;2#、3#、5#、6#、7#的计算过程类似,此处不再赘述。
[0169] 对offset<0的1#、8#室内机,需要减小冷媒流入量,即需要减小目标参数paraCtlTar。
[0170] 以1#为例,计算过程为:paraCtlTar=34.1+(-2.5)*0.5=32.9,8#的计算过程类似,此处不再赘述。
[0171] 继续调节,参数变为表三所示:
[0172] 内机编号 1# 2# 3# 4# 5# 6# 7# 8#能力匹数HP 1 2 3 2 3 5 2 1
设定温度setTemp 20 25 26 24 27 24 22 25
当前温度curTemp 20.5 24.8 25.5 24.3 26.8 23.5 22.2 25.5
舒适度偏差offset -2.5 0.8 1.9 -1.3 0.7 2.1 -0.9 -2
当前参数paraCtlCur 32.9 41.5 37.9 40.5 38.6 35.7 36.2 34.6
目标参数paraCtlTar 32.9 41.5 37.9 40.5 38.6 35.7 36.2 34.6
[0173] (1)根据实际环境温度、设定环境温度计算出每台室内机的舒适度偏差,填入表三。
[0174] (2)最大值offsetMAX=2.1,最小值offsetMIN=-2.5
[0175] 差值△=offsetMAX-offsetMIN=2.1-(-2.5)=4.6;
[0176] 由于差值△<第二设定阈值,各室内机的冷媒流入量保持不变,即各室内机的目标参数(即盘管温度目标值)维持不变。
[0177] 通过表一、表二、表三以及上述计算过程可知,根据差值Δ、平均舒适度偏差offsetAVG,以及每个室内机的舒适度偏差来调整冷媒流入量,以提高整个多联机的舒适度均衡性。
[0178] 基于上述多联机舒适度均衡控制方法的设计,本实施例还提出了一种多联机舒适度均衡控制系统,包括获取模块、舒适度偏差计算模块、差值计算模块、平均舒适度偏差计算模块、调整模块等,参见图3所示。
[0179] 获取模块,用于获取每台开机室内机的实际环境温度和设定环境温度。
[0180] 舒适度偏差计算模块,用于计算每台开机室内机的舒适度偏差,计算公式为:制冷工况时:offseti=(curTempi-setTempi)*100/setTempi;制热工况时:offseti=(setTempi-curTempi)*100/setTempi;其中,offseti为第i台开机室内机的舒适度偏差,curTempi为第i台开机室内机的实际环境温度,setTempi为第i台开机室内机的设定环境温度;其中i=1,2,3,...,N;N为开机室内机的数量。
[0181] 差值计算模块,用于获取所有开机室内机的舒适度偏差中的最大值offsetMAX和最小值offsetMIN,并计算二者的差值Δ=offsetMAX-offsetMIN。
[0182] 平均舒适度偏差计算模块,用于计算平均舒适度偏差其中HPi为第i台开机室内机的能力匹数,SumHP为
所有开机室内机的能力匹数之和。
[0183] 调整模块,用于根据差值Δ、平均舒适度偏差调整开机室内机的冷媒流入量。
[0184] 所述调整模块具体用于:
[0185] (1)当差值Δ>第一设定阈值时:通过调整室内机的换热器的盘管温度目标值,来增加或减小该室内机的冷媒流入量。
[0186] 对舒适度偏差>(offsetAVG+第二设定阈值)的室内机,增加该室内机的冷媒流入量;盘管温度目标值的计算公式为:
[0187] 制冷工况时:paraCtlTar=paraCtlCur-(offset-offsetAVG-第二设定阈值)*rationA;
[0188] 制热工况时:paraCtlTar=paraCtlCur+(offset-offsetAVG-第二设定阈值)*rationA。
[0189] 对舒适度偏差<(offsetAVG-第二设定阈值)的室内机,减小该室内机的冷媒流入量;盘管温度目标值的计算公式为:
[0190] 制冷工况时:paraCtlTar=paraCtlCur+(offsetAVG-第二设定阈值-offset)*rationA;
[0191] 制热工况时:paraCtlTar=paraCtlCur-(offsetAVG-第二设定阈值-offset)*rationA。
[0192] 对(offsetAVG-第二设定阈值)≤舒适度偏差≤(offsetAVG+第二设定阈值)的室内机,保持该室内机的冷媒流入量不变,即保持盘管温度目标值不变。
[0193] (2)当第二设定阈值<差值Δ≤第一设定阈值时:通过调整室内机的换热器的盘管温度目标值,来增加或减小该室内机的冷媒流入量;
[0194] 对于舒适度偏差>0的室内机,增加该室内机的冷媒流入量;
[0195] 对于舒适度偏差<0的室内机,减小该室内机的冷媒流入量;
[0196] 对于舒适度偏差=0的室内机,保持该室内机的冷媒流入量不变。
[0197] 盘管温度目标值的计算公式为:
[0198] 制冷工况时:paraCtlTar=paraCtlCur-offset*rationB;
[0199] 制热工况时:paraCtlTar=paraCtlCur+offset*rationB;
[0200] 其中,paraCtlTar为盘管温度目标值,paraCtlCur为当前盘管温度,offset为该室内机的舒适度偏差,rationA和rationB为调整系数。
[0201] (3)当差值Δ≤第二设定阈值时,保持每个开机室内机的冷媒流入量不变,即保持盘管温度目标值不变。其中,第一设定阈值>第二设定阈值>0。
[0202] 具体的多联机舒适度均衡控制系统的工作过程,已经在上述多联机舒适度均衡控制方法中详述,此处不予赘述。
[0203] 本实施例的多联机舒适度均衡控制系统,通过获取每台开机室内机的实际环境温度和设定环境温度,计算每台开机室内机的舒适度偏差,获取所有开机室内机的舒适度偏差中的最大值offsetMAX和最小值offsetMIN,并计算二者的差值Δ=offsetMAX-offsetMIN;计算平均舒适度偏差;根据差值Δ、平均舒适度偏差调整开机室内机的冷媒流入量;以减小差值Δ,提高整个多联机的舒适度均衡性。
[0204] 以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。