抑制WSSV感染的铁结合蛋白基因Cq-Ferritin及其制备方法与应用转让专利

申请号 : CN201711076744.1

文献号 : CN107760689B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 刘海鹏陈潇潇郑文云马兴元王克坚

申请人 : 厦门大学

摘要 :

抑制WSSV感染的铁结合蛋白基因Cq‑Ferritin及其制备方法与应用,涉及红螯螯虾铁结合蛋白基因。将Cq‑Ferritin基因连接到原核表达载体pET32a(+)中,构建红螯螯虾铁结合蛋白pET32a‑Cq‑Ferritin重组表达载体;将所得重组表达载体导入宿主细胞E.coli(BL21:DE3),并用硫代半乳糖苷(IPTG)对其进行诱导表达,获得表达产物;分离纯化得到的表达产物,超声破碎后通过亲和层析获得较高纯度的红螯螯虾铁结合蛋白。所述红螯螯虾Cq‑Ferritin对白斑综合征病毒的感染具有明显抑制作用,所述红螯螯虾铁结合蛋白在制备抗WSSV类新药和作为动物抗病饲料添加剂中应用。

权利要求 :

1.编码红螯螯虾铁结合蛋白的基因序列为:

2.红螯螯虾铁结合蛋白的氨基酸序列为:

3.红螯螯虾铁结合蛋白的制备方法,其特征在于包括以下步骤:

1)将编码权利要求1所述的红螯螯虾铁结合蛋白的Cq-Ferritin基因连接到原核表达载体pET32a(+)中,构建红螯螯虾铁结合蛋白pET32a-Cq-Ferritin重组表达载体;

2)将步骤1)所得重组表达载体导入宿主细胞E.coli BL21(DE3),并用硫代半乳糖苷对其进行诱导表达,得到表达产物;

3)分离纯化步骤2)得到的表达产物,超声破碎后通过亲和层析获得较高纯度的红螯螯虾铁结合蛋白。

4.如权利要求3所述红螯螯虾铁结合蛋白的制备方法,其特征在于在步骤2)中,所述诱导表达的条件为0.1mM IPTG、诱导温度28℃、诱导时间10h。

5.如权利要求3所述红螯螯虾铁结合蛋白的制备方法所制备的红螯螯虾铁结合蛋白在制备抗WSSV类新药中应用。

6.如权利要求3所述红螯螯虾铁结合蛋白的制备方法所制备的红螯螯虾铁结合蛋白在制备动物抗病饲料添加剂中应用。

说明书 :

抑制WSSV感染的铁结合蛋白基因Cq-Ferritin及其制备方法

与应用

技术领域

[0001] 本发明涉及红螯螯虾(Cherax quadricarinatus)铁结合蛋白基因,尤其是涉及抑制白斑综合征病毒(White spot syndrome virus,WSSV)感染的铁结合蛋白基因Cq-Ferritin及其制备方法与应用。

背景技术

[0002] 白斑综合征病毒是一种引起养殖对虾暴发性流行病的主要病毒性病原。该病毒侵染性和复制能力很强,宿主死亡率可达100%,可侵染对虾的多种组织,且宿主范围很广,对[1]虾、螯虾和蟹类等均可被其感染 。WSSV已成为对虾养殖业的主要危害,因此有效防治WSSV的爆发在水产养殖中具有重要意义。
[0003] 铁结合蛋白是一类广泛存在于动植物体内的铁贮藏蛋白,是一种保守性较高的多功能多亚基蛋白。脊椎动物的Ferritin由12条H链和12条L链两类亚基组成一个球面大分[2]子,最多可容纳4500个铁原子,而无脊椎动物的铁蛋白只含有一种亚基 。铁在细胞代谢中起着重要的作用,氧的运输、电子传递、DNA复制、光合作用和细胞增殖等细胞代谢过程都与铁的功能密切相关[3],同时铁是一些蛋白质的必需成分(例如在酶,辅因子中)[4]。生物体内,铁结合蛋白的表达水平对维持机体铁平衡具有重要影响[5]。
[0004] 铁结合蛋白可通过调节铁的储存和释放来调控铁代谢平衡,在参与核酸和蛋白质等的合成中发挥着重要的作用[6]。铁结合蛋白可以作为急性时相反应蛋白,参与机体非特异性免疫反应[7]。铁结合蛋白可储存机体中的过剩铁,避免产生铁中毒[8];还具有抗氧化胁迫的功能,防止铁氧化过程中所产生的自由基带来的伤害[9]。此外,铁结合蛋白也是细胞用来抵抗应激和炎症的一种蛋白[10]。近年来,人们已不再局限于Ferritin对铁调节的研究,转而更注重于免疫防御功能上的研究。研究表明,注射细菌或LPS均能引起果蝇体内Ferritin的表达上调[11];日本囊对虾在WSSV感染后,Ferritin的转录水平显著上升[12]。因此,Ferritin可能参与了机体免疫系统的响应。
[0005] 参考文献:
[0006] 1.Lightner D V.Virus diseases of farmed shrimp in the Western Hemisphere(the Americas):a review[J].Journal of invertebrate pathology,2011,106(1):110-130.
[0007] 2.Harrison P M,Arosio P.The ferritins:molecular properties,iron storage function and cellular regulation[J].Biochimica et Biophysica Acta(BBA)-Bioenergetics,1996,1275(3):161-203.
[0008] 3.Thomson A M,Rogers J T,Leedman P J.Iron-regulatory proteins,iron-responsive elements and ferritin mRNA translation[J].The international journal of biochemistry & cell biology,1999,31(10):1139-1152.
[0009] 4.Ye T,Wu X,Wu W,et al.Ferritin protect shrimp Litopenaeus vannamei from WSSV infection by inhibiting virus replication[J].Fish & shellfish immunology,2015,42(1):138-143.
[0010] 5.Wang D,Kim B Y,Lee K S,et al.Molecular characterization of iron binding proteins,transferrin and ferritin heavy chain subunit,from the bumblebee Bombus ignitus[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2009,152(1):20-27..
[0011] 6.Zielińska-Dawidziak M.Plant ferritin—a source of iron to prevent its deficiency[J].Nutrients,2015,7(2):1184-1201.
[0012] 7.Durand J P,Goudard F,Barbot C,et al.Ferritin and hemocyanin:210Po molecular traps in marine fish,oyster and lobster[J].Marine Ecology Progress Series,2002,233:199-205.
[0013] 8.Chiancone E,Ceci P,Ilari A,et al.Iron and proteins for iron storage and detoxification[J].Biometals,2004,17(3):197-202.
[0014] 9.Li M,Saren G,Zhang S.Identification and expression of a ferritin homolog in amphioxus Branchiostoma belcheri:evidence for its dual role in immune response and iron metabolism[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2008,150(3):263-270.[0015] 10.Torti F M,Torti S V.Regulation of ferritin genes and protein[J].Blood,2002,99(10):3505-3516.
[0016] 11.Levy F,Bulet P,Ehret-Sabatier L.Proteomic analysis of the systemic immune response of Drosophila[J].Molecular & Cellular Proteomics,2004,3(2):156-166..
[0017] 12.Feng W R,Zhang M,Su Y Q,et al.Identification and analysis of a Marsupenaeus japonicus ferritin that is regulated at the transcriptional level by WSSV infection[J].Gene,2014,544(2):184-190.

发明内容

[0018] 本发明的第一目的在于提供红螯螯虾铁结合蛋白的基因序列。
[0019] 本发明的第二目的在于提供红螯螯虾铁结合蛋白的氨基酸序列。
[0020] 本发明的第三目的在于提供红螯螯虾铁结合蛋白的制备方法。
[0021] 本发明的第四目的在于提供红螯螯虾铁结合蛋白的应用。
[0022] 所述红螯螯虾铁结合蛋白命名为Cq-Ferritin。
[0023] 所述红螯螯虾铁结合蛋白的基因序列为:
[0024]
[0025] 所述红螯螯虾铁结合蛋白的氨基酸序列为:
[0026]
[0027]
[0028] 所述红螯螯虾铁结合蛋白的制备方法包括以下步骤:
[0029] 1)将Cq-Ferritin基因连接到原核表达载体pET32a(+)中,构建红螯螯虾铁结合蛋白pET32a-Cq-Ferritin重组表达载体;
[0030] 2)将步骤1)所得重组表达载体导入宿主细胞E.coli(BL21:DE3),并用硫代半乳糖苷(IPTG)对其进行诱导表达,获得表达产物;
[0031] 在步骤2)中,所述诱导表达的条件可为0.1mM IPTG、诱导温度28℃、诱导时间10h。
[0032] 3)分离纯化步骤2)得到的表达产物,超声破碎后通过亲和层析获得较高纯度的红螯螯虾铁结合蛋白。
[0033] 所述红螯螯虾Cq-Ferritin对白斑综合征病毒(White spot syndrome virus,WSSV)的感染具有明显抑制作用,对研究虾类抗病毒机制具有重要参考价值,所述红螯螯虾铁结合蛋白在制备抗WSSV类新药和作为动物抗病饲料添加剂中应用。
[0034] 本发明涉及一种新的基因序列及基因工程产品,涉及生物技术领域中的基因克隆和基因表达,具体为红螯螯虾铁结合蛋白基因表达载体的构建和在宿主细胞中的表达,以及表达产物的分离纯化和抗病毒活性的分析。
[0035] 该基因工程产品能够抑制WSSV在红螯螯虾造血组织(Hpt)干细胞中的增殖,是一种具有抑制WSSV感染活性的基因工程产物,对于有效防治白斑综合征病害具有重要应用价值。
[0036] 本发明根据Cq-Ferritin基因序列特征成功构建重组表达载体,在大肠杆菌原核表达系统中诱导表达并纯化获得rCq-Ferritin蛋白,该重组蛋白具有较强的抗WSSV活性。研究结果表明,rCq-Ferritin可能通过降低铁离子的浓度而抑制WSSV在红螯螯虾Hpt细胞中的增殖,是一种重要的抗WSSV因子。因此,重组基因工程产品rCq-Ferritin蛋白在抗WSSV类新药开发中具有潜在的应用价值。

附图说明

[0037] 图1为pET32-Cq-Ferritin原核表达载体构建图。
[0038] 图2为SDS-PAGE分析pET32-Cq-Ferritin重组载体克隆子诱导表达的电泳图谱。在图2中,M为SDS-PAGE标准蛋白质Marker,1为空载体导入表达菌添加诱导剂后的菌液,2为导入重组载体的表达菌添加诱导剂前的菌液,3为导入重组载体的表达菌添加诱导剂后的菌液,可见约36kDa的诱导重组表达蛋白条带。
[0039] 图3为SDS-PAGE分析pET32-Cq-Ferritin重组载体克隆子表达产物纯化的电泳图谱。在图3中,M为SDS-PAGE标准蛋白质Marker,1为表达的pET32-Cq-Ferritin重组蛋白,可见约为36kDa的明显重组表达蛋白条带。
[0040] 图4为Western blot实验验证Cq-Ferritin重组蛋白处理抑制WSSV在红螯螯虾Hpt干细胞中的增殖。可见WSSV感染蛋白水平降低50%左右。

具体实施方式

[0041] 以下通过实施例结合附图详细说明本发明的技术方案。
[0042] 实施例1红螯螯虾铁结合蛋白Cq-Ferritin原核表达载体的构建
[0043] 设计特异性扩增红螯螯虾Cq-Ferritin基因开放阅读框(ORF)的上游引物F1和下游引物R1。根据pET32a载体多克隆位点,在上游引物F1的5′端添加BamH I酶切位点,在下游引物R1的5′端添加Sal I酶切位点和终止密码子,将红螯螯虾Cq-Ferritin ORF克隆至pET32a载体中。
[0044] 上游引物F1:5′-CGCGGATCCATGGCTTCCAGTGTCCGCCA-3′;
[0045] 下游引物R1:5′-ACGCGTCGACCTATAGTAAATCTTTATCAAATATATGCAA-3′。
[0046] 扩增Cq-Ferritin的编码区片段,PCR反应条件为:95℃预变性5min;95℃变性30s,58℃退火30s,72℃延伸30s,重复30个循环;72℃延伸10min。
[0047] 利用琼脂糖凝胶纯化试剂盒回收PCR产物,回收的PCR产物经BamH I和Sal I酶切后纯化回收,与BamH I和Sal I双酶切线性化的pET32a载体连接,构建好重组表达载体pET32-Cq-Ferritin,测序鉴定读码框准确无误后用于后续表达。
[0048] pET32-Cq-Ferritin载体构建图参见图1。
[0049] 实施例2重组表达载体pET32a-Cq-Ferritin在大肠杆菌E.coli(BL21:DE3)中的诱导表达
[0050] 1.将测序正确的重组表达载体pET32a-Cq-Ferritin转化至E.coli BL21中,并用IPTG诱导表达。
[0051] 2.挑取单克隆菌落,接种于10ml含氨苄青霉素(Amp+)的LB培养基中,37℃,200rpm摇床培养12h。
[0052] 3.以1︰100的比例接种至200ml含Amp+的LB培养基中,37℃,200rpm摇床培养至OD600为0.3~0.5。
[0053] 4.加入IPTG至终浓度0.1mM,28℃,160rpm诱导10h。
[0054] 结果显示,见图2,IPTG诱导后在菌体中可检测到明显的rCq-Ferritin融合蛋白诱导条带,大小为36kDa左右,说明该条件可以获得较高比例的表达产物。
[0055] 实施例3pET32a-Cq-Ferritin重组质粒在大肠杆菌IPTG诱导后的表达产物纯化[0056] 1.收集菌体:诱导后菌液8000g离心10min,重悬于PBS;超声破碎,并于4℃,12000g离心30min,收集上清。
[0057] 2.如上菌体超声破碎上清可再次离心10min,以充分去除不溶菌体团块,并用0.45μm滤头过滤,即可进行亲和层析纯化。
[0058] 3.取1ml含镍琼脂糖珠子,Mili-Q清洗3遍以除去乙醇,再用PBS清洗2遍以平衡珠子,然后加入到过滤好的上清中,于4℃旋转孵育2h。
[0059] 4.洗杂:用10~20mM浓度的咪唑溶液清洗珠子以除去非特异结合的杂蛋白。
[0060] 5.洗脱:利用50~250mM咪唑溶液进行梯度洗脱。
[0061] 6.收集:分别收集洗脱蛋白,取少量进行SDS-PAGE电泳鉴定。
[0062] 7.透析:鉴定后的蛋白溶液于20mM Hepes溶液(pH7.4)中4℃透析48h,期间换液4~5次,透析后的蛋白溶液分装后于-80℃保存以备后续实验使用。
[0063] 结果显示,纯化透析后的蛋白条带较为单一(图3),说明经亲和层析纯化后可以得到纯度较高的重组表达蛋白。
[0064] 实施例4利用Western blot实验证明重组表达rCq-Ferritin抗WSSV实验[0065] rCq-Ferritin重组蛋白抗WSSV增殖活性鉴定:取螯虾造血组织干细胞(Hpt)培养于96孔板中,每孔取300ng rCq-Ferritin蛋白和等量的对照蛋白TRX(pET32a载体蛋白),转染试剂1μl,20mM Hepes溶液补足至20μl,室温孵育15min后加入到96孔板Hpt培养细胞中,20℃培养箱孵育4h后换掉所有L-15培养液,然后加入新的培养液,并加入MOI=10的WSSV,
1h后换掉培养液。感染12h后用10μl 1×SDS-PAGE样品缓冲液(100mM Tris,4%SDS,20%甘油,2%β-巯基乙醇,0.2%溴酚蓝,pH6.8)收集培养孔中的细胞并煮沸10min,20mM Hepes溶液作为阴性对照。
[0066] 将蛋白质样品在12%SDS-PAGE凝胶中电泳并电转到PVDF膜(GE Healthcare)上。将膜置于TBST缓冲液(20mM Tris,150mM NaCl,0.1%Tween 20,pH 7.6)溶解的5%脱脂奶粉中室温封闭1h,随后与抗VP28(1:3000)和抗β-actin(内参)单克隆抗体(TransGen Biotech,1︰3000)在4℃孵育过夜。然后用TBST缓冲液洗涤膜5次,在室温下用辣根过氧化物酶(HRP)标记的抗体(1︰5000)孵育1h。最后使用辣根过氧化物酶HRP-ECL发光法显影。
Western blot结果(图4)显示:rCq-Ferritin孵育处理组的Hpt细胞中VP28的表达量较对照组降低50%左右,表明rCq-Ferritin处理组中WSSV的复制受到明显抑制,该结果说明rCq-Ferritin具有较强的抗WSSV活性。
[0067] 本发明旨在获得红螯螯虾Cq-Ferritin基因全长和基因工程表达产品,并对其抗病毒活性进行了鉴定,以期用于抗WSSV新药物的制备中。本发明成功构建了红螯螯虾Cq-Ferritin基因工程表达重组质粒pET32a-Cq-Ferritin及相应原核表达系统,在获得rCq-Ferritin重组表达蛋白纯品后,进一步确认了rCq-Ferritin的抗WSSV活性,即rCq-Ferritin可以显著抑制WSSV的增殖,为其作为抗病毒新药物的开发或应用于饲料添加剂奠定了良好的前期基础。