基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法转让专利

申请号 : CN201610727979.1

文献号 : CN107783130B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 田雨农王鑫照

申请人 : 大连楼兰科技股份有限公司

摘要 :

一种基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法,属于信号处理领域,为了解决无人驾驶汽车复杂环境防碰撞的问题,技术要点是:S1.对各段波形,将A/D采集到的IQ数据,进行时频的FFT变换,将时域数据转换成频率数据;S2.将各段波形FFT变换后的复数模值做门限检测CFAR,输出过门限点位置,根据过门限的点计算其对应的频率值,并由此得到对应点上的频率矩阵,同时计算出恒频段过门限点对应的相位值,并由此得到对应点上的相位矩阵;S3.对于恒频波,计算得到速度矩阵;而对于三角波,其上扫频频率矩阵和下扫频对应的频率矩阵,两两进行配对计算距离和速度,并由此得到距离矩阵和速度矩阵。

权利要求 :

1.一种基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法,其特征在

于,所述组合波形是三角波调制的FMCW信号及恒频波调制的CW信号组合而成的波形,第一段为三角波,第二段为恒频波;

所述信号处理方法包括以下步骤:

S1.对各段波形,将A/D采集到的IQ数据,进行时频的FFT变换,将时域数据转换成频率数据;

S2.将各段波形FFT变换后的复数模值做门限检测CFAR,输出过门限点位置,根据过门限的点计算其对应的频率值,并由此得到对应点上的频率矩阵,同时计算出恒频段过门限点对应的相位值,并由此得到对应点上的相位矩阵;

过门限峰值点的处理的方法,设置一个峰值点阈值因子α,其用于限制检测出的过门限最大峰值点与上一周期出现的最大峰值点的差值绝对值,使得该差值绝对值不得大于该峰值点阈值因子α:表达式如下:

|L_max(k)-L_max(k-1)|≤α;

其中:L_max(k)为k周期的过门限最大峰值点坐标,L_max(k-1)为上一周期的最大峰值点坐标,k表示第k时刻;vmax为无人机最大飞行速度,λ为毫米波雷达波长,fs为采样率,N为FFT变换的点数,FFT变换的对象是加窗后的锯齿波数据;

如果k时刻,过门限最大峰值点与k-1时刻过门限最大峰值点的绝对值差值在所设置的峰值点阈值因子α范围内,则认为第k周期的峰值点有效;如果k时刻,过门限最大峰值点超过所设置的峰值点阈值因子α,则k时刻输出的峰值点用k-1时刻的峰值点进行替换;

S3.对于恒频波,计算得到速度矩阵;而对于三角波,其上扫频频率矩阵和下扫频对应的频率矩阵,两两进行配对计算距离和速度,并由此得到距离矩阵和速度矩阵。

2.如权利要求1所述的基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法,其特征在于,具有步骤:S4.通过恒频波的速度矩阵和三角波获得速度矩阵进行多目标的真实速度匹配以及查找,同时获得多目标的真实距离。

3.如权利要求2所述的基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法,其特征在于,具有步骤:S5.计算多目标的方位角。

4.如权利要求1所述的基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法,步骤S1的特征方法是:对通道1中的第一段三角波FMCW上扫频段和第二段三角波FMCW下扫频段、第三段恒频波CW1段,通道2中的恒频波CW2段,去除前部分数据点,根据数据点数选择进行适当点数的FFT变换,进行时频变化,将时域数据转换成频域数据。

5.如权利要求1所述的基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法,步骤S2的特征方法是:设通道1中,三角波上扫频过门限的点数有n1个,其对应的位置矩阵为N_up=[a1,a2,…an1],计算频率值 并由此得到对应点上的频率矩阵F_up=[fa1,fa2,…fan1],其中:fs为采样率,M为FFT变换的点数,N为位置点;三角波下扫频过门限的点数有n2个,其对应的位置矩阵为N_down=[b1,b2,…bn2],计算得到的频率矩阵为F_down=[fb1,fb2,…fbn2];恒频段过门限的点数有n3个,其对应的位置矩阵为N_cw1=[c1,c2,…cn3],计算得到的频率矩阵为F_cw1=[fc1,fc2,…fcn3],同时假设峰值点对应的FFT变换后的复数据为a_cw1+1j*b_cw1,其相位根据公式 计算得到,设其过门限的点对应的相位矩阵为ψCW1=[ψc1,ψc2,…ψcn3];通道2中恒频段过门限的点数与通道1中过门限点的点数相同也为n3个,其对应的位置矩阵为N_cw2=[c1,c2,…cn3],计算得到的频率矩阵为F_cw2=[fc1,fc2,…fcn3],其对应的相位矩阵为ψCW2=[ψ′c1,ψ′c2,…ψ′cn3];其中:a表示I路的数据值,b表示Q路的数据值,即I+jQ的意思,a_cw1表示在a+j*b组成的数组中,过门限的峰值点对应的坐标为cw1,b_cw1表示在a+j*b组成的数组中,过门限的峰值点对应的坐标为cw1,若过门限的位置点等于1,直接剔除该位置点。

6.如权利要求1所述的基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法,步骤S3的特征方法是:根据通道1的恒频段的频率矩阵F_cw1=[fc1,fc2,…fcn3],计算速度得到其速度矩阵为V_cw1=[vc1,vc2,…vcn3],其中,c为光速,f0为中心频率,

通道1的三角波上扫频频率矩阵F_up=[fa1,fa2,…fan1]和下扫频对应的频率矩阵F_down=[fb1 ,fb2,…fbn2],根据公式 计算其距离值,根据公式计算其速度值,其中,T为三角波周期,B为调频带宽,c为光速,c=3.0×

108,f0为中心频率,将矩阵F_up=[fa1,fa2,…fan1]中的数据和矩阵F_down=[fb1,fb2,…fbn2]中的数据,两两进行配对计算距离和速度,计算得出的距离矩阵为其中raibj(1≤i≤n1,1≤j≤n2),表示是由上扫频矩阵中F_up

的第i个元素与下扫频矩阵中F_down第j个元素进行计算得到的距离值;计算得出的速度矩阵为 其中vaibj(1≤i≤n1,1≤j≤n2),表示是由上扫频矩阵中F_up的第i个元素与下扫频矩阵中F_down第j个元素进行计算得到的速度值。

7.如权利要求2所述的基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法,步骤S4的特征步骤中,所述速度匹配以及查找的具体操作如下:将恒频波速度矩阵V_cw1中的每一个速度值与三角波速度矩阵V进行速度匹配,查找到与速度矩阵V_cw1中相同速度值以及该速度值所在的行值和列值;在速度矩阵V中,每找到一个真实目标的速度后,将该行与列的所有数据进行删除,根据真实目标的速度,在速度矩阵V中所在的行值和列值,在相应的距离矩阵中找到该行和该列所对应的距离值,该距离值则为真实目标在该速度值下对应的距离值。

8.如权利要求3所述的基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法,步骤S5多目标方位角计算的步骤是:计算得到通道1恒频段CW1获得的相位矩阵ψCW1=[ψc1,ψc2,…ψcn3]和通道2恒频段CW2获得的相位矩阵ψCW2=[ψ′c1,ψ′c2,…ψ′cn3]的对应列上的数据,相位矩阵ψCW1=[ψc1,ψc2,…ψcn3]和通道2恒频段CW2获得的相位矩阵ψCW2=[ψ′c1,ψ′c2,…ψ′cn3],这两个矩阵中对应列上的相位数据;

通过公式 1≤i≤n3,进行计算得到其相位

差,则其相位差矩阵为Δψ=[Δψc1,Δψc2,…Δψcn3],根据公式 计算方位角,其中,d为天线间距,λ为波长。

说明书 :

基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理

方法

技术领域

[0001] 本发明属于信号处理领域,涉及基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法。

背景技术

[0002] 近年来,随着经济的发展,交通需求日益增加,城市交通拥堵、交通事故频发等成为当前世界各国面临的共同问题。对公路交通事故的分析显示,在司机、汽车、道路三个环节中,司机是可靠性最薄弱的环节,因此近几年来,替代司机驾驶的无人驾驶汽车孕育而生,自动驾驶汽车又称无人驾驶汽车、电脑驾驶汽车是一种通过电脑系统实现无人驾驶的智能汽车。
[0003] 为提高自动驾驶汽车行驶的安全性,自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。因此自动驾驶汽车需要判断汽车行驶状况,对车辆的安全性进行预测,自动采取措施防止交通事故的发生,减小事故发生概率的系统,如车道偏离系统、前向车辆碰撞警告系统、前向避障辅助系统、驾驶员注意力监测等。其中,汽车防撞雷达是自动驾驶汽车最主要的传感器之一。主要是由于汽车防撞雷达是一种主动安全设备,可以准确的测量出周围目标的速度和距离,以及目标所在的方位角等信息,可以准确的发现无人驾驶汽车在行驶过程中的潜在危险,并且根据雷达检测到的障碍物信息,自动采取措施消除危险。
[0004] 目前应用到汽车上的测距方法主要有激光测距,超声波测距,红外线测距,毫米波雷达测距等几种方法。红外、摄像头等光学技术价格低廉且技术简单,但是全天候工作效果不好,防撞性能有限;超声波受天气状态影响大,探测距离较短。而毫米波雷达克服了上述几种探测方式的缺点,具有稳定的探测性能和良好环境适用性。它不仅具有频率高、波长短、频带宽、体积小、重量轻等特点,而且与上述几种传感器相比,毫米波雷达穿透雾、烟、灰尘的能力强,抗干扰能力强,不受光线影响,探测距离远,具有全天候全天时等特点。成本也有所下降,并且雷达的外型尺寸可以做得很小,便于在汽车上安装,故作为目前国内外自动驾驶汽车防撞雷达的普遍选择方式。
[0005] 综上所述:无论从安全角度还是经济角度而言,自动驾驶汽车防撞雷达的研制都极具应用价值和现实意义。自动驾驶汽车在实现过程中,需要全方位的进行防撞,所以本发明的自动驾驶汽车防撞雷达,可以安装在汽车正前方作为正向防撞雷达使用,同时可以安装在汽车前方的左边或是右边,作为汽车正前方的左边以及右边方向防撞雷达使用,同时可以安装在汽车正后面,作为后向防撞雷达使用,同时可以按照在汽车后方左边和右边作为变道辅助雷达同时作为防撞雷达使用,以及可以按照在汽车左右两侧,作为汽车左右两侧的防碰撞雷达使用。本发明所设计的自动驾驶汽车防撞雷达在以下描述中,主要是针对前向防撞雷达进行描述,但是其他按照地方的雷达可以按此方法进行同理使用。

发明内容

[0006] 为了解决无人驾驶汽车复杂环境防碰撞的问题,本发明提出了一种基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法,以实现对于障碍物的速度等解算。
[0007] 为了实现上述目的,本发明的技术方案是:
[0008] 所述组合波形是三角波调制的FMCW信号及恒频波调制的CW信号组合而成的波形,第一段为三角波,第二段为恒频波;
[0009] 所述信号处理方法包括以下步骤:
[0010] S1.对各段波形,将A/D采集到的IQ数据,进行时频的FFT变换,将时域数据转换成频率数据;
[0011] S2.将各段波形FFT变换后的复数模值做门限检测CFAR,输出过门限点位置,根据过门限的点计算其对应的频率值,并由此得到对应点上的频率矩阵,同时计算出恒频段过门限点对应的相位值,并由此得到对应点上的相位矩阵;
[0012] S3.对于恒频波,计算得到速度矩阵;而对于三角波,其上扫频频率矩阵和下扫频对应的频率矩阵,两两进行配对计算距离和速度,并由此得到距离矩阵和速度矩阵。
[0013] 有益效果:
[0014] 1、本发明给出了一种无人驾驶汽车在复杂环境中进行防碰撞系统整体信号处理设计方法;
[0015] 2、本发明给出了一种复杂环境中多目标检测的组合波形设计方案,同时给出了,可实现多目标检测的理论分析,对于无人驾驶汽车防撞多目标识别,提供了一种波形设计思路以及解决方法。
[0016] 3、本发明给出了详细的信号处理过程,包括多目标相对速度的解算、相对距离解算、相位差方向角的解算,以及利用恒频波的速度进行真是目标速度的匹配过程等,对于设计无人驾驶汽车复杂环境防碰撞系统提供了一种具体的信号处理方法。

附图说明

[0017] 图1恒频波与线性调频三角波组合波形一个扫频周期内的频率变化图;
[0018] 图2单目标的(R,V)空间图;
[0019] 图3多目标的(R,V)空间图;
[0020] 图4基于组合波形的汽车变道辅助系统信号处理流程图。

具体实施方式

[0021] 实施例1:一种基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理方法,所述组合波形是三角波调制的FMCW信号及恒频波调制的CW信号组合而成的波形,第一段为三角波,第二段为恒频波;
[0022] 所述信号处理方法包括以下步骤:
[0023] S1.对各段波形,将A/D采集到的IQ数据,进行时频的FFT变换,将时域数据转换成频率数据;
[0024] S2.将各段波形FFT变换后的复数模值做门限检测CFAR,输出过门限点位置,根据过门限的点计算其对应的频率值,并由此得到对应点上的频率矩阵,同时计算出恒频段过门限点对应的相位值,并由此得到对应点上的相位矩阵;
[0025] S3.对于恒频波,计算得到速度矩阵;而对于三角波,其上扫频频率矩阵和下扫频对应的频率矩阵,两两进行配对计算距离和速度,并由此得到距离矩阵和速度矩阵。
[0026] 作为一种实施例:还具有步骤:
[0027] S4.通过恒频波的速度矩阵和三角波获得速度矩阵进行多目标的真实速度匹配以及查找,同时获得多目标的真实距离。
[0028] 作为一种实施例,还具有步骤:
[0029] S5.计算多目标的方位角。
[0030] 步骤S1的方法是:对通道1中的第一段三角波FMCW上扫频段和第二段三角波FMCW下扫频段、第三段恒频波CW1段,通道2中的恒频波CW2段,去除前部分数据点,所述去除前部分数据点,就是在AD采集到的数据中,先去除掉AD采集到的前部分数据点,一般在50~70个点,比如,如果采集到700个点,去除掉前50个点,从51到700的数据去直流并进行FFT变换。之所以要去除掉这部分点有两个原因,一是这些数据里面,部分数据是由于波形在转变的时候,电压产生的脉冲,导致这部分数据异常,第二个原因是由于距离模糊度的原因。这部分不是之前说的导致距离分辨率降低的原因,其实是发射波形的线性度,导致这个分辨率降低。根据数据点数选择进行适当点数的FFT变换,进行时频变化,将时域数据转换成频域数据。
[0031] 步骤S2的方法是:设通道1中,三角波上扫频过门限的点数有n1个,其对应的位置矩阵为N_up=[a1,a2,…an1],计算频率值 并由此得到对应点上的频率矩阵F_up=[fa1,fa2,…fan1],其中:fs为采样率,M为FFT变换的点数,N为位置点;三角波下扫频过门限的点数有n2个,其对应的位置矩阵为N_down=[b1,b2,…bn2],计算得到的频率矩阵为F_down=[fb1,fb2,…fbn2];恒频段过门限的点数有n3个,其对应的位置矩阵为N_cw1=[c1,c2,…cn3],计算得到的频率矩阵为F_cw1=[fc1,fc2,…fcn3],同时假设峰值点对应的FFT变换后的复数据为a_cw1+1j*b_cw1,其相位根据公式 计算得到,设其过门限的点对应
的相位矩阵为ψCW1=[ψc1,ψc2,…ψcn3];通道2中恒频段过门限的点数与通道1中过门限点的点数相同也为n3个,其对应的位置矩阵为N_cw2=[c1,c2,…cn3],计算得到的频率矩阵为F_cw2=[fc1,fc2,…fcn3],其对应的相位矩阵为ψCW2=[ψ′c1,ψ′c2,…ψ′cn3];其中:a表示I路的数据值,b表示Q路的数据值,即I+jQ的意思,a_cw1表示在a+j*b组成的数组中,过门限的峰值点对应的坐标为cw1,b_cw1表示在a+j*b组成的数组中,过门限的峰值点对应的坐标为cw1,[0032] 若过门限的位置点等于1,则认为其是直流分量,不作为目标判定,直接剔除该位置点;
[0033] 步骤S3的方法是:根据通道1的恒频段的频率矩阵F_cw1=[fc1,fc2,…fcn3],计算速度 得到其速度矩阵为V_cw1=[vc1,vc2,…vcn3],其中,c为光速,c=3×108,f0为中心频率,f0=24.125GHz;
[0034] 通道1的三角波上扫频频率矩阵F_up=[fa1,fa2,…fan1]和下扫频对应的频率矩阵F_down=[fb1,fb2,…fbn2],根据公式 计算其距离值,根据公式计算其速度值,其中,T为三角波周期,T=20ms,B为调频带宽,B=
200MHz,c为光速,c=3.0×108,f0为中心频率,f0=24.125GHz。根据上面描述的,将矩阵F_up=[fa1,fa2,…fan1]中的数据和矩阵F_down=[fb1,fb2,…fbn2]中的数据,两两进行配对计算距离和速度,计算得出的距离矩阵为 其中raibj(1≤i≤n1,1≤j
≤n2),表示是由上扫频矩阵中F_up的第i个元素与下扫频矩阵中F_down第j个元素进行计算得到的距离值;计算得出的速度矩阵为 其中vaibj(1≤i≤n1,1
≤j≤n2),表示是由上扫频矩阵中F_up的第i个元素与下扫频矩阵中F_down第j个元素进行计算得到的速度值。从距离矩阵R和速度矩阵V中可以看出,如果得出真实目标在速度矩阵的坐标值,通过该坐标值在距离矩阵R中相应坐标对应的距离值则为真是目标的距离值。
[0035] 步骤S4的步骤中,所述速度匹配以及查找的具体操作如下:将恒频波速度矩阵V_cw1中的每一个速度值与三角波速度矩阵V进行速度匹配,查找到与速度矩阵V_cw1中相同速度值以及该速度值所在的行值和列值;在速度矩阵V中,每找到一个真实目标的速度后,将该行与列的所有数据进行删除,这样则保证频率之间唯一的配对关系。根据真实目标的速度,在速度矩阵V中所在的行值和列值,在相应的距离矩阵中找到该行和该列所对应的距离值,该距离值则为真实目标在该速度值下对应的距离值。由此完成所有真实目标距离以及速度的查找。
[0036] 步骤S5多目标方位角计算的步骤是:计算得到通道1恒频段cw1获得的相位矩阵ψCW1=[ψc1,ψc2,…ψcn3]和通道2恒频段cw2获得的相位矩阵ψCW2=[ψ′c1,ψ′c2,…ψ′cn3]的对应列上的数据,相位矩阵ψCW1=[ψc1,ψc2,…ψcn3]和通道2恒频段cw2获得的相位矩阵ψCW2=[ψ′c1,ψ′c2,…ψ′cn3],这两个矩阵中对应列上的相位数据;
[0037] 通过公式 进行计算得到其相位差,则其相位差矩阵为Δψ=[Δψc1,Δψc2,…Δψcn3],根据公式 计算
方位角,其中,d为天线间距,λ为波长。
[0038] 实施例2:作为实施例1的补充,针对无人驾驶汽车能够对复杂环境实现避障行为,则要求无人驾驶汽车防撞毫米波雷达能够实现多目标的同时检测问题。对于毫米波实现多目标检测,主要方法有多种,本实施例通过一种采用三角波和恒频波的组合波形来实现多目标的准确检测功能。本实施例是毫米波的中心频率在24GHz或77GHz,波形采用基于恒频波调制的CW信号以及三角波调制的FMCW信号组合而成的波形。波形发射形式为,第一段为三角波,工作频率变化范围为从24.025GHz变化到24.225GHz,带宽为200MHz,三角波周期为20ms,第二段为恒频波,工作频率为24.125GHz,周期为20ms。恒频波CW与线性调频三角波FMCW在一个扫频周期范围内的频率变化图如图1所示。
[0039] 选择该波形的原因在于,三角波FMCW对于单个目标距离以及速度的解算主要是通过上下扫频获得的目标峰值所各自对应的频率值进行配对实现的。但是对于多目标来说,上下扫频对同时检测出多个峰值点,如果进行上下扫频峰值点之间一一配对,则会造成真实目标和大量的虚假目标。当检测的峰值点越多,匹配后虚假目标则会更多。
[0040] 采用恒频波就是为了通过恒频波实现对多目标速度的单一计算,反过来对三角波峰值点一一配对后计算得到的速度矩阵进行真实目标速度的一一搜索。对于真实目标来说,短时间内,恒频波段获得速度值和三角波获得速度值基本上是一样的,误差会很小,由此可以在三角波中找到真是目标对应速度矩阵中的坐标位置,真实目标的距离矩阵和速度矩阵是完全对应的,由此距离矩阵中相应位置的距离值则为真实目标的距离,从而达到对真实目标的检测工作,大大的降低虚假目标。如图2所示,在R-V空间图中可以看到,恒频波和三角波上下扫频实现单个目标距离速度得解算原理;通过图3则可以很好地看到,组合波形对于实现多个目标的速度距离的解算原理。
[0041] 本实施例所设计的无人驾驶汽车复杂环境防碰撞系统,要求不仅主要对多个目标实现测距、测速功能,还有一定的测角功能,这样对于后期无人驾驶汽车对障碍物进行避障行为提供更好的空间依据,能够更好地实现无人驾驶汽车对驾驶前方环境的感知能力以及决策判断能力。因此,本实施例采用了双通道IQ数据的采集。通过双通道的比相法实现对目标方位角的计算。
[0042] 基于组合波形的无人驾驶汽车复杂环境防碰撞系统信号处理流程图,如图4所示如下:
[0043] 具体实现步骤如下:
[0044] 1.对通道1中的第一段三角波FMCW上扫频段和第二段三角波FMCW下扫频段、第三段恒频波CW1段,通道2中的恒频波CW2段,选取各段线性度高的数据,根据数据点数选择进行适当点数的FFT变换,进行时频变化,将时域数据转换成频域数据;
[0045] 2.将各段波形FFT变换后的复数模值做门限检测CFAR,输出过门限点位置,门限检测可以选择单元平均选大或是单元平均选小等方式设计相应的门限。根据过门限的点计算其对应的频率值,同时计算出恒频段过门限点对应的相位值。
[0046] 设通道1中,三角波上扫频过门限的点数有n1个,其对应的位置矩阵为N_up=[a1,a2,…an1],根据公式 (fs为采样率,M为FFT的点数,N为位置点,f为频率值)计算对应点上的频率矩阵,计算得到的频率矩阵为F_up=[fa1,fa2,…fan1];同理三角波下扫频过门限的点数有n2个,其对应的位置矩阵为N_down=[b1,b2,…bn2],计算得到的频率矩阵为F_down=[fb1,fb2,…fbn2];恒频段过门限的点数有n3个,其对应的位置矩阵为N_cw1=[c1,c2,…cn3],计算得到的频率矩阵为F_cw1=[fc1,fc2,…fcn3],同时假设峰值点对应的FFT后的复数据为a_cw1+1j*b_cw1,其相位可以根据公式 计算得到,设其过门限
的点对应的相位矩阵ψCW1=[ψc1,ψc2,…ψcn3];通道2中恒频段过门限的点数与通道1中过门限点的点数相同也为n3个,其对应的位置矩阵为N_cw2=[c1,c2,…cn3],计算得到的频率矩阵为F_cw2=[fc1,fc2,…fcn3],其对应的相位矩阵ψCW2=[ψ′c1,ψ′c2,…ψ′cn3]。
[0047] 若过门限的位置点等于1,则认为其是直流分量,不作为目标判定,直接剔除该位置点;
[0048] 3.根据步骤2中通道1计算的F_cw1=[fc1,fc2,…fcn3],根据速度计算公式得到其速度矩阵为V_cw1=[vc1,vc2,…vcn3],其中,c为光速,c=3×
108,f0为中心频率,f0=24.125GHz。
[0049] 4.将步骤2中得到的通道一三角波上扫频频率矩阵F_up=[fa1,fa2,…fan1]和下扫频对应的频率矩阵F_down=[fb1,fb2,…fbn2],根据公式 计算其距离值,根据公式 计算其速度值,其中,T为三角波周期,T=20ms,B为调频带宽,B
=200MHz,c为光速,c=3.0×108,f0为中心频率,f0=24.125GHz。根据上面描述的,将矩阵F_up=[fa1,fa2,…fan1]中的数据和矩阵F_down=[fb1,fb2,…fbn2]中的数据,两两进行配对计算距离和速度。计算得出的距离矩阵为 其中raibj(1≤i≤n1,1
≤j≤n2),表示是由上扫频矩阵中F_up的第i个元素与下扫频矩阵中F_down第j个元素进行计算得到的距离值;计算得出的速度矩阵为 其中vaibj(1≤i≤
n1,1≤j≤n2),表示是由上扫频矩阵中F_up的第i个元素与下扫频矩阵中F_down第j个元素进行计算得到的速度值。从距离矩阵R和速度矩阵V中可以看出,如果得出真实目标在速度矩阵的坐标值,通过该坐标值在距离矩阵R中相应坐标对应的距离值则为真是目标的距离值。
[0050] 5.下面通过恒频波的速度矩阵V_cw1和三角波获得速度矩阵V进行多目标的真实速度的匹配以及查找,同时获得多目标的真实距离。
[0051] 具体操作如下:将恒频波速度矩阵V_cw1中的每一个速度值与三角波速度矩阵V进行速度匹配,查找到与速度矩阵V_cw1中相同速度值以及该速度值所在的行值和列值。在速度矩阵V中,没找到一个真实目标的速度后,将该行与列的所有数据进行删除,这样则保证频率之间唯一的配对关系。根据真实目标的速度,在速度矩阵V中所在的行值和列值,在相应的距离矩阵中找到该行和该列所对应的距离值,该距离值则为真实目标在该速度值下对应的距离值。由此完成所有真实目标距离以及速度的查找。
[0052] 6.进行多目标的方位角计算。由于在步骤2中,计算得到通道1恒频段CW1获得的相位矩阵ψCW1=[ψc1,ψc2,…ψcn3]和通道2恒频段CW2获得的相位矩阵ψCW2=[ψ′c1,ψ′c2,…ψ′cn3],对应列上的数据,通过公式 进行计算得到其相位差,则其相位差矩阵为Δψ=[Δψc1,Δψc2,…Δψcn3]。根据公式计算方位角,其中,d为天线间距,λ为波长。
[0053] 由此上面几步则完成复杂环境中多目标距离、速度以及方位角的解算工作,完成无人驾驶汽车驾驶前方具有多目标障碍物的复杂环境的感知工作,从而为无人驾驶汽车在复杂环境中做出避障行为,提供更准确的复杂环境的感知能力以及更快速的判断能力和执行能力。
[0054] 实施例3:对于上述各方案中,峰值处理,本实施例提供一种应用于无人驾驶汽车信号的峰值处理方法:
[0055] 设置一个峰值点阈值因子α,其用于限制检测出的过门限最大峰值点与上一周期出现的最大峰值点的差值绝对值,使得该差值绝对值不得大于该峰值点阈值因子α:
[0056] 表达式如下:
[0057] |L_max(k)-L_max(k-1)|≤α;
[0058]
[0059] 其中:L_max(k)为k周期的过门限最大峰值点坐标,L_max(k-1)为上一周期的最大峰值点坐标,k表示第k时刻;vmax为无人驾驶汽车最大速度,λ为毫米波雷达波长,fs为采样率,N为FFT的点数;
[0060] 如果k时刻,过门限最大峰值点与k-1时刻过门限最大峰值点的绝对值差值在所设置的峰值点阈值因子α范围内,则认为第k周期的峰值点有效;如果k时刻,过门限最大峰值点超过所设置的峰值点阈值因子α,则k时刻输出的峰值点用k-1时刻的峰值点进行替换。
[0061] 作为上述技术手段的解释,在相邻周期的一个时间单元内,当前周期解算出的峰值点,与上个周期的峰值点,如果在相邻周期内,速度没有发生变化,则峰值点在相邻周期内也会保持不变,但是如果在相邻周期时间内,无人驾驶汽车速度发生变化,会导致当前周期的峰值点在上一周期的峰值点发生一定的变化,如果目标是远离无人驾驶汽车,则当前周期的点数会大于上一周期的点数,如果目标是靠近无人驾驶汽车,则当前周期的点数会小于上一周期的点数,该峰值点的变化范围即是所设计的峰值点阈值因子α,该因子选取的取值范围,主要取决于在相邻周期内,无人驾驶汽车的最大速度,即公式 其中vmax为无人驾驶汽车最大速度,λ为毫米波雷达波长,fs为采样率,N为FFT的点数。
[0062] 但是如果无人驾驶汽车环境发生突变后,对应的过门限的峰值点数也可能会连续发生超出所设计的阈值因子。如果不进行修正,发生突变后,每个周期检测到的过门限最大峰值点都会超过设置的阈值因子,每次过门限最大峰值点坐标都会被修正为上一时刻的峰值点坐标,即同理值也会保持突变前的值,不能适应突变后的值。为了提高无人驾驶汽车雷达表对各种环境的适应能力,为此引入一个峰值点突变累计因子φ。
[0063] 设置一个峰值点突变累计因子φ,该峰值点突变累计因子φ的定义为,如果从k时刻开始,连续b个周期,b的取值范围为5~10,过门限最大峰值点与前一周期的过门限最大峰值点相比,都超过阈值门限因子a,则第k+b时刻,将当前时刻解算出的过门限最大峰值点作为当前时刻的过门限最大峰值点。为了保证跟踪的实时性,建议b的取值为5~10个。
[0064] 通过上一步得出过门限最大峰值点后,为了提高系统值测量的精度,提出提高测距精度的谱最大估计算法。
[0065] 理想情况下,回波差频信号的频谱只有一个谱线,但是实际在使用过程中,由于采样存在栅栏效应,离散频谱最大幅值谱线必然会发生偏移谱峰位置,从而通过峰值点计算出的距离值与实际距离将会存在一定的误差。当谱峰发生偏移的时候,相对于主瓣峰值所对应的中央谱线将会两种情况,即左偏或是右偏。如果过门限最大值峰值点的左右峰值中,左边峰值大于右边峰值,则中央谱线所在的位置,在最大峰值点与左边峰值点之间,反之,则在最大峰值点与右边峰值点之间。
[0066] 由于FFT计算得到的频谱对连续距离普等间距采样,其频谱幅值最大点必定位于其曲线的主瓣内,主瓣内有且仅有两个采样点。设过门限最大峰值点A1的坐标为(a1,k1),其中,a1表示过门限最大峰值点的值,k1表示过门限峰值点对应的幅度值;最大峰值点左右两边,次峰值点坐标为A3(a3,k3),设所求的中央峰值点A为(amax,kmax),则e=amax-a1,则A1点,关于A点对称点A2坐标为(a2,k1)=(a1+2e,k1),复包络的零点A4为(a4,k1)=(a3+e,0);
[0067] 其中:a2、a3、a4是对应点的过门限最大峰值点的值,k3、k4是对应点的过门限峰值点对应的幅度值;
[0068] A2、A3和A4近似为一条直线,其线性关系为:
[0069]
[0070] 令 则
[0071] 设定误差E与偏差e进行比对,如果|e|坐标为(a2,k1)=(a1+2e,k1),初始条件时A点横轴坐标点与A2横轴坐标是关于最大峰值点对称的,即A2的坐标点是a1+2e,如果偏差e大于所设定的误差E时,说明A2的坐标选取过大,也即是最大峰值点在a1+2e之间,2倍的偏差e需要进行取小,本发明采用的修正方法是,通过改变修正因子β的大小从而改变l值,然后进行e的不断迭代,直到e小于设定的误差E为止。修正因子β的取值原则可以根据所需求达到的E值进行选取,如果E需求精度不高,修正因子β可以选择1.9进行修正,如果E需求精度很高,可能需要多次迭代达到要求,则需要修正因子β尽量选择小一点,可以选择1.5进行修正,本发明给出了一个快速解算出最大峰值点的修正因子的区间范围值,即修正因子β=1.5~1.9。改变修正因子计算出e的值,以计算得到中央峰值点的值amax=a1+e。
[0072] 作为另一种实施例,还包括步骤:距离跟踪:设置一个阈值因子ε,其用于限制当前数据H(k)与上一周期出现的数据H(k-1)的差值绝对值,使得该差值绝对值不得大于该阈值因子ε;
[0073] 表达式如下:
[0074] |H(k)-H(k-1)|≤ε,ε取值范围为0.8~1.3;
[0075] 如果k时刻的数据与k-1时刻的绝对值差值,在所设置的阈值因子ε范围内,则认为第k周期的峰值点有效;如果k时刻,数据超过所设置的阈值因子ε,则k时刻输出的数据用k-1时刻的数据进行替换。
[0076] 设置一个突变累计因子θ,该突变累计因子θ的定义为,如果从k时刻开始,连续b个周期,数据与前一周期的数据相比,都超过阈值门限因子θ,则第k+b时刻,将当前时刻解算出的数据作为当前时刻的数据。
[0077] 作为一种实施例,具体到本实施例中,对于上述未执行距离跟踪或执行了距离跟踪的,输出时,对于单次输出的数据,采用滑窗算法进行值的输出;
[0078] 第k时刻的数据等于滑窗中的Nc个值去掉最大值和最小值后的均值,作为最后的数据输出,其计算公式为
[0079]其中Nc表示滑窗所采用的数据点数。
[0080] 采用峰值跟踪算法和跟踪算法,可以有效避免由于单次或是多次峰值搜索的错误而导致一次或是多次数据解算的异常现象,如在单次峰值搜索过程中,发生峰值跳变,相邻周期之间的峰值差值很大,同时由与峰值的跳变,而引起的发生很大的跳变,即该周期内,峰值跳变引起的的跳变范围,已经远远大于由无人驾驶汽车速度引起的一个周期所产生的距离变化范围。由此峰值跟踪以及跟踪可以有效避免这种异常峰值导致的异常值,从而有效地的提高跟踪的数据的稳定度。
[0081] 以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。