杂配位铱配合物转让专利

申请号 : CN201711111508.9

文献号 : CN107880077B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 夏传军R·孔S·拉耶克

申请人 : 通用显示公司

摘要 :

提供了包含杂配位铱配合物的新化合物。这些化合物具有配体的特征组合,所述配体包括单个的吡啶基二苯并取代配体。这些化合物可以用于有机发光器件中,特别是作为发光掺杂剂,以提供具有改善的效率、寿命和制造的器件。

权利要求 :

1.化合物,其为具有下式的杂配位铱配合物:其中X为O;

其中R1、R2、R3和R4可以表示单取代、二取代、三取代或四取代;并且其中R1、R2、R3和R4各自独立地选自氢、烷基和芳基。

2.第一器件,其包含有机发光器件,该有机发光器件包含:阳极;

阴极;以及

位于该阳极和该阴极之间的有机层,该有机层包含化合物,该化合物为具有下式的杂配位铱配合物:其中X为O;

其中R1、R2、R3和R4可以表示单取代、二取代、三取代或四取代;并且其中R1、R2、R3和R4各自独立地选自氢、烷基和芳基。

说明书 :

杂配位铱配合物

[0001] 本申请要求2009年3月23日提交的美国临时申请No.61/162,470和2010年3月19日提交的美国申请No.12/727,615的优先权,其公开内容通过引用全部明确地纳入本文中。
[0002] 要求保护的发明由联合的大学-公司研究协议的一个或多个下列参与方做出,代表其做出,和/或与其相关地做出:密歇根大学董事会、普林斯顿大学、南加利福尼亚大学和通用显示公司。该协议在要求保护的发明的做出之日和其之前有效,并且要求保护的发明作为在该协议范围内进行的活动的结果而做出。

技术领域

[0003] 本发明涉及新的有机配合物,该配合物可以有利地用于有机发光器件中。更特别地,本发明涉及含有吡啶基二苯并取代配体的新的杂配位(heteroleptic)铱配合物以及含有这些化合物的器件。

背景技术

[0004] 由于很多原因,利用有机材料的光电器件变得越来越受欢迎。用于制备这样的器件的很多材料比较廉价,因此有机光电器件在相对于无机器件的成本优势方面具有潜力。此外,有机材料的固有特性,例如它们的柔性,可以使得它们良好地适用于特定应用,例如在柔性基片上制造。有机光电器件的实例包括有机发光器件(OLEDs)、有机光电晶体管、有机光伏电池和有机光电探测器。对于OLEDs,有机材料可以具有优于常规材料的性能。例如,有机发光层发光的波长通常可以容易地用合适的掺杂剂进行调整。
[0005] OLEDs利用当跨器件施加电压时发光的有机薄膜。OLEDs正在成为在诸如平板显示、照明和背光的应用中越来越有利的技术。多种OLED材料和构造记载于美国专利No.5,844,363、6,303,238和5,707,745中,它们全部通过引用纳入本文。
[0006] 发磷光分子的一种应用是全色显示器。这样的显示器的工业标准要求适于发射称为“饱和”色彩的特定色彩的像素。特别是,这些标准要求饱和的红、绿和蓝色像素。色彩可以使用CIE坐标度量,它是现有技术中公知的。
[0007] 发绿光分子的一个实例是三(2-苯基吡啶)铱,它记为Ir(ppy)3,具有式I的结构:
[0008]
[0009] 在本文的该图以及后面的图中,我们将从氮到金属(此处为Ir)的配位键表示为直线。
[0010] 本文中使用的术语“有机”包括可以用于制备有机光电器件的聚合物材料和小分子有机材料。“小分子”指的是非聚合物的任何有机材料,并且“小分子”实际上可以相当大。在某些情况下小分子可以包含重复单元。例如,使用长链烷基作为取代基并不会将该分子排除在“小分子”类别之外。小分子也可以纳入聚合物中,例如作为聚合物主链的侧挂基团或者作为主链的一部分。小分子也可以充当树枝状化合物的核心结构部分,该化合物包括一系列构建在核心结构部分上的化学壳。树枝状化合物的核心结构部分可以是荧光或磷光小分子发光体。树枝状化合物可以是“小分子”,并且据信目前在OLEDs领域使用的所有树枝状化合物都是小分子。
[0011] 本文中使用的“顶部”指的是离基片最远,而“底部”指的是离基片最近。在将第一层描述为“位于第二层上”的情况下,第一层距离基片更远。在第一层和第二层之间可以存在其它层,除非明确指出第一层与第二层“接触”。例如,可以将阴极描述为“位于阳极上”,即使其间存在多种有机层。
[0012] 本文中使用的“可溶液处理”指的是能够以溶液或悬浮液形式在液体介质中溶解、分散或输送和/或从液体介质中沉积。
[0013] 当认为配体直接有助于发光材料的光活性性质时,可以将该配体称为“光活性”的。当认为配体不有助于发光材料的光活性性质时,可以将该配体称为“辅助”的,尽管辅助配体可以改变光活性配体的性质。
[0014] 如本文中所使用,并且如本领域技术人员通常所理解,第一“最高已占分子轨道”(HOMO)或“最低未占分子轨道”(LUMO)能级“大于”或“高于”第二HOMO或LUMO能级,如果该第一能级更接近于真空能级。由于电离势(IP)作为相对于真空能级的负能量进行测量,因此更高的HOMO能级对应于具有更小的绝对值的IP(负性较低的IP)。类似地,更高的LUMO能级对应于具有更小的绝对值的电子亲和性(EA)(负性较低的EA)。在常规的能级图上,真空能级位于顶部,材料的LUMO能级高于相同材料的HOMO能级。与“较低”的HOMO或LUMO能级相比,“较高”的HOMO或LUMO能级显得更接近该图的顶部。
[0015] 如本文中所使用,并且如本领域技术人员通常所理解,第一功函数“大于”或“高于”第二功函数,如果该第一功函数具有更高的绝对值。因为功函数通常作为相对于真空能级的负数进行测量,这意味着“更高”的功函数更负。在常规的能级图上,真空能级位于顶部,“较高”的功函数表示为沿向下的方向更远离真空能级。因而,HOMO和LUMO能级的定义采用与功函数不同的惯例。
[0016] 关于OLEDs以及上述定义的更多细节,可以见美国专利No.7,279,704,其全部公开内容通过引用纳入本文。

发明内容

[0017] 提供了新的磷光发射化合物。这些化合物包含具有下式的杂配位铱配合物:
[0018]
[0019] 该化合物包含具有以下结构的配体
[0020] X选自NR、O、S、BR和Se。R选自氢和烷基。优选地,R具有4个或更少的碳原子。R1、R2、R3和R4可以表示单取代、二取代、三取代或四取代。R1、R2、R3和R4各自独立地选自氢、烷基和芳基。优选地,式I的R1、R2、R3和/或R4位的烷基具有四个或更少的碳原子(例如甲基、乙基、丙基、丁基和异丁基)。优选地,R1和R4独立地为氢或者具有四个或更少的碳原子的烷基;更优选地,R1和R4独立地为氢或甲基。优选地,R2和R3独立地为氢或者具有四个或更少的碳原子的烷基;更优选地,R2和R3独立地为氢或甲基;最优选地,R2和R3为氢。
[0021] 优选地,R1和R4独立地为氢、具有四个或更少的碳原子的烷基或者在环中具有6个或更少的原子的芳基;更优选地,R1和R4独立地为氢、甲基或苯基。优选地,R2和R3独立地为氢、具有四个或更少的碳原子的烷基或者在环中具有6个或更少的原子的芳基;更优选地,R2和R3独立地为氢、甲基或苯基;最优选地,R2和R3为氢。
[0022] 一方面,提供了化合物,其中R1、R2、R3和R4独立地选自氢和具有四个或更少的碳原子的烷基。另一方面,提供了化合物,其中R1、R2、R3和R4独立地选自氢和甲基。再一方面,提供了化合物,其中R1、R2、R3和R4为氢。
[0023] 另一方面,提供了化合物,其中R1、R2、R3和R4独立地选自氢、具有四个或更少的碳原子的烷基以及在环中具有6个或更少的原子的芳基。另一方面,提供了化合物,其中R1、R2、R3和R4独立地选自氢、甲基和苯基。再一方面,提供了化合物,其中R1、R2、R3和R4为氢。
[0024] 还提供了具体的杂配位铱配合物。一方面,提供了具有下式的杂配位铱配合物:
[0025]
[0026] 另一方面,提供了具有下式的杂配位铱配合物:
[0027]
[0028] 再一方面,提供具有下式的杂配位铱配合物:
[0029]
[0030] 提供了包括化合物1-36的杂配位铱配合物的具体实例。特别是,提供了其中X为O(即吡啶基二苯并呋喃)的杂配位化合物,例如化合物1-12。此外,提供了其中X为S(即吡啶基二苯并噻吩)的杂配位化合物,例如化合物13-24。此外,提供了其中X为NR(即吡啶基咔唑)的杂配位化合物,例如化合物25-36。
[0031] 还提供了杂配位铱配合物的其它具体实例,包括化合物37-108。特别是,提供了其中X为O的杂配位化合物,例如化合物37-60。此外,提供了其中X为S的杂配位化合物,例如化合物61-84。此外,提供了其中X为NR的杂配位化合物,例如化合物85-108。
[0032] 此外,还提供了有机发光器件。该器件具有阳极、阴极以及位于该阳极和该阴极之间的有机层,其中该有机层包含具有式I的化合物。特别是,该器件的有机层可以包含选自化合物1-36的化合物。该有机层可以进一步包含主体。优选地,该主体含有三亚苯结构部分和二苯并噻吩结构部分。更优选地,该主体具有下式:
[0033] R’1、R’2、R’3、R’4、R’5和R’6可以表示单取代、二取代、三取代或四取代。R’1、R’2、R’3、R’4、R’5和R’6独立地选自氢、烷基和芳基。
[0034] 该器件的有机层可以包含选自化合物1-108的化合物。特别是,该器件的有机层也可以包含选自化合物37-108的化合物。
[0035] 还提供包含器件的消费产品。该器件含有阳极、阴极和位于该阳极和该阴极之间的有机层,其中该有机层进一步包含具有式I的化合物。

附图说明

[0036] 图1示出了有机发光器件。
[0037] 图2示出了不具有独立的电子传输层的倒置有机发光器件。
[0038] 图3示出了杂配位铱配合物。

具体实施方式

[0039] 通常,OLED包括位于阳极和阴极之间并且与阳极和阴极电连接的至少一个有机层。当施加电流时,阳极向有机层中注入空穴,阴极向有机层中注入电子。注入的空穴和电子各自向带相反电荷的电极迁移。当电子和空穴局限于同一分子中时,形成“激子”,它是具有激发能态的局域化的电子-空穴对。当激子通过发光机理弛豫时,发射出光。在一些情况下,激子可以局域化在激发体或激发复合体上。也可以发生非辐射机理,例如热弛豫,但是通常将其视为不合需要的。
[0040] 最初的OLEDs使用从其单线态发光(“荧光”)的发光分子,例如美国专利No.4,769,292中所公开,其全部内容通过引用纳入本文中。荧光发射通常发生在小于10纳秒的时间范围内。
[0041] 最近,已展示了具有从三线态发光(“磷光”)的发光材料的OLEDs。见Baldo等人的“Highly Efficient Phosphorescent Emission From Organic Electroluminescent Devices”(有机电致发光器件的高效磷光发射),Nature,第395卷,151-154,1998;(“Baldo-I”)和Baldo等人的“Very high-efficiency green organic light-emitting devices based on electrophosphorescence”(基于电磷光的极高效绿色有机发光器件),Appl.Phys.Lett,第75卷,第3期,4-6(1999)(“Baldo-II”),它们全部通过引用纳入本文。磷光更详细地记载于美国专利No.7,279,704的第5-6栏,其通过引用纳入本文。
[0042] 图1显示了有机发光器件100。这些图不一定按比例绘制。器件100可以包括基片110、阳极115、空穴注入层120、空穴传输层125、电子阻挡层130、发光层135、空穴阻挡层
140、电子传输层145、电子注入层150、保护层155和阴极160。阴极160是具有第一导电层162和第二导电层164的复合阴极。器件100可以通过将上述层按顺序沉积而制备。这些不同的层的性质和功能以及材料实例更具体地记载于US 7,279,704的第6-10栏中,其通过引用纳入本文。
[0043] 可以获得这些层中的每种的更多实例。例如,柔性且透明的基片-阳极组合公开于美国专利No.5,844,363中,其全部内容通过引用纳入本文。p型掺杂的空穴传输层的一个实例是以50:1的摩尔比用F4-TCNQ掺杂的m-MTDATA,公开于美国专利申请公布No.2003/0230980中,其全部内容通过引用纳入本文。发光材料和主体材料的实例公开于Thompson等人的美国专利No.6,303,238中,其全部内容通过引用纳入本文。n型掺杂的电子传输层的一个实例是以1:1的摩尔比用Li掺杂的BPhen,公开于美国专利申请公布No.2003/0230980中,其全部内容通过引用纳入本文。美国专利No.5,703,436和5,707,745(其全部内容通过引用纳入本文)公开了包括复合阴极的阴极的实例,其具有金属如Mg:Ag的薄层,具有覆盖的透明导电溅射沉积ITO层。阻挡层的理论和用途更详细地记载于美国专利No.6,097,147和美国专利申请公布No.2003/0230980中,其全部内容通过引用纳入本文中。注入层的实例提供于美国专利申请公布No.2004/0174116中,其全部内容通过引用纳入本文。关于保护层的说明可以见于美国专利申请公布No.2004/0174116中,其全部内容通过引用纳入本文。
[0044] 图2显示了倒置OLED 200。该器件包括基片210、阴极215、发光层220、空穴传输层225和阳极230。器件200可以通过按顺序沉积所述层而制备。因为大多数常规OLED构造具有位于阳极上的阴极,而器件200具有位于阳极230下的阴极215,因此可以将器件200称为“倒置”OLED。与针对器件100所说明的类似的材料可以用于器件200的相应的层中。图2提供了可以如何将某些层从器件100的结构中省略的实例。
[0045] 图1和2所示的简单分层结构以非限制性实例的方式提供,并且应当理解,本发明的实施方案可以与很多种其它结构结合使用。所述的具体材料和结构是示例性的,并且可以使用其它材料和结构。基于设计、性能和成本因素,可以通过以不同方式将上述多种层相结合或者将层完全省略而获得功能性OLEDs。也可以包括未明确说明的其它层。可以使用明确说明的材料以外的材料。尽管本文中提供的很多实例将很多层描述成包含单一的材料,但是应当理解,可以使用材料的组合,例如主体与掺杂剂的混合物或者更一般的混合物。另外,层可以具有多个亚层。本文中给予各种层的名称并不打算具有严格的限制性。例如在器件200中,空穴传输层225传输空穴并向发光层220中注入空穴,并且可以描述为空穴传输层或空穴注入层。在一种实施方案中,OLED可以被描述为具有位于阴极和阳极之间的“有机层”。该有机层可以包含单一的层,或者可以进一步包含如针对图1和2中所述的不同有机材料的多个层。
[0046] 也可以使用未明确说明的结构和材料,例如包括聚合物材料的OLEDs(PLEDs),例如Friend等人的美国专利No.5,247,190中所公开的,其全部内容通过引用纳入本文中。作为进一步的实例,可以使用具有单一有机层的OLEDs。OLEDs可以叠置,例如如Forrest等人的美国专利No.5,707,745中所述,其全部内容通过引用纳入本文中。OLED结构可以偏离图1和2中所示的简单的层状结构。例如,基片可以包括成角的反射表面以改善外耦合(out-coupling),例如Forrest等人的美国专利No.6,091,195中所记载的平台(mesa)结构和/或Bulovic等人的美国专利No.5,834,893中所记载的陷阱(pit)结构,其全部内容通过引用纳入本文中。
[0047] 除非另外说明,各种实施方案的任何层可以通过任何合适的方法沉积。对于有机层,优选方法包括热蒸发、喷墨,例如如美国专利No.6,013,982和6,087,196中所记载,其全部内容通过引用纳入本文中;有机气相沉积(OVPD),例如如Forrest等人的美国专利No.6,337,102中所记载,其全部内容通过引用纳入本文中;以及通过有机气相喷涂(OVJP)的沉积,例如如美国专利申请No.10/233,470中所记载,其全部内容通过引用纳入本文中。其它合适的沉积方法包括旋涂和其它基于溶液的方法。基于溶液的方法优选在氮气或惰性气氛中进行。对于其它层,优选方法包括热蒸发。优选的成图案方法包括通过掩模沉积、冷焊,例如如美国专利No.6,294,398和6,468,819中所记载,其全部内容通过引用纳入本文中;以及与某些沉积方法如喷墨和OVJD相关的成图案方法。也可以使用其它方法。可以对待沉积的材料进行改性以使它们与具体的沉积方法相容。例如,可以在小分子中使用取代基例如支化或非支化的并优选含有至少3个碳的烷基和芳基,以增强它们进行溶液处理的能力。可以使用具有20个或更多个碳的取代基,3至20个碳是优选范围。具有非对称结构的材料可以比具有对称结构的材料具有更好的可溶液处理性,因为非对称材料可以具有较低的重结晶倾向。树枝状化合物取代基可以用于提高小分子进行溶液处理的能力。
[0048] 根据本发明的实施方案制备的器件可以纳入很多种消费产品中,包括平板显示器、计算机监视器、电视、广告牌、室内或室外照明灯和/或信号灯、危险警告显示器、全透明显示器、柔性显示器、激光打印机、电话、移动电话、个人数字助理(PDAs)、笔记本电脑、数码相机、可携式摄像机、取景器、微型显示器、交通工具、大面积墙、剧场或体育场屏幕或标志。多种控制机制可以用于控制根据本发明制备的器件,包括无源矩阵和有源矩阵。很多器件拟用于对人体而言舒适的温度范围内,例如18℃至30℃,更优选室温(20至25℃)。
[0049] 本文中记载的材料和结构可以应用于除OLEDs以外的器件中。例如,其它光电器件如有机太阳能电池和有机光电探测器可以使用这些材料和结构。更一般地说,有机器件例如有机晶体管可以使用这些材料和结构。
[0050] 术语卤、卤素、烷基、环烷基、烯基、炔基、芳烷基(arylkyl)、杂环基团、芳基、芳香基团和杂芳基是本领域已知的,并且定义于US 7,279,704的第31-32栏中,该专利通过引用纳入本文中。
[0051] 提供了新的化合物,这些化合物包含杂配位铱配合物(如图3中所示)。特别是,该配合物具有两个苯基吡啶配体和一个具有结构 (式II)的配体。具有式II结构的配体由结合到二苯并呋喃、二苯并噻吩、咔唑、二苯并硼杂环戊二烯或二苯并硒吩上的吡啶组成(本文中也称为“吡啶基二苯并取代”)。这些化合物可以有利地用于有机发光器件中作为发光层中的发光掺杂剂。
[0052] 已报道了含有两个或三个吡啶基二苯并呋喃、二苯并噻吩、咔唑和芴配体的铱配合物。通过将三(2-苯基吡啶)铱中的苯基用二苯并呋喃、二苯并噻吩、咔唑和芴基团代替,可以显著影响得到的配合物的HOMO-LUMO能级、光物理性能和电子性能。通过使用具有吡啶基二苯并取代配体的不同组合的配合物(即二元配合物(bis complexes)和三元配合物(tris complexes)),已获得从绿到红的多种发光颜色。然而,已有的配合物会具有实用限制。例如,具有两个或三个这些类型的配体(例如吡啶基二苯并呋喃、二苯并噻吩或咔唑)的铱配合物具有高的分子量,这经常导致高的升华温度。在一些情况下,由于升高的分子量,这些配合物会变得不可升华。例如,三(2-(二苯并[b,d]呋喃-4-基)吡啶)铱(III)在试图升华的过程中分解。此外,包含吡啶基芴配体的已知化合物可具有降低的稳定性。芴基团(例如C=O和CRR’)破坏配体结构中的共轭,导致降低的使电子稳定的能力。因此,需要具有吡啶基二苯并取代配体(例如二苯并呋喃、二苯并噻吩、咔唑、二苯并硼杂环戊二烯和二苯并硒吩)的有利性能和相对较低的升华温度的化合物。
[0053] 此外,具有两个或三个式II配体的铱配合物具有高的分子量和较强的分子间相互作用,这经常导致高的升华温度。在一些情况下,由于升高的分子量和强的分子间相互作用,这些配合物可变得不可升华。
[0054] 本文中提供了新的杂配位铱配合物。这些配合物含有具有式II结构的吡啶基二苯并取代配体。特别是,这些新的杂配位配合物包括单个的吡啶基二苯并取代配体和两个苯基吡啶配体,其中该吡啶基二苯并取代配体含有O、S、N、Se或B(即,该配体为吡啶基二苯并呋喃、吡啶基二苯并噻吩、吡啶基咔唑、吡啶基二苯并硒吩或吡啶基二苯并硼杂环戊二烯)。作为本文中公开的杂配位化合物中配体的特定组合的结果,这些化合物既可以提供改善的光化学性能,又可以提供改善的电学性能,还提供改善的器件制造。特别是,通过仅含有一个具有式II的二苯并取代吡啶配体,本文中提供的配合物将可具有较低的升华温度(与降低的分子量和/或较弱的分子间相互作用相关)。此外,这些化合物保持所有与吡啶基二苯并取代配体有关的益处,例如改善的稳定性、效率和窄的线宽。因此,这些化合物可以用于提供改善的有机发光器件和包含这些器件的改善的商业产品。特别是,这些化合物可以在红色和磷光有机发光器件(PHOLEDs)中特别有用。
[0055] 如上所述,含有式II配体的二元或三元铱配合物由于配合物的高的升华温度而会在实际使用中受限。然而,本发明化合物具有较低的升华温度,这可以改善器件制造。表1提供了本文中提供的多种化合物以及相应的二元或三元配合物的升华温度。例如,化合物1具有243℃的升华温度,而相应的三元配合物不能升华。此外,包含三个吡啶基二苯并取代配体的其它三元配合物(即包含吡啶基二苯并噻吩的三元配合物)不能升华。因此,本文中提供的化合物使得可以得到与先前报道的二元和三元化合物相比改善的器件制造。
[0056] 表1
[0057]
[0058]
[0059] 通常,将预计二苯并取代吡啶配体具有比苯基吡啶配体更低的三线态能量,并因此将预计二苯并取代吡啶配体来控制化合物的发光性能。因此,对二苯并取代吡啶配体的修饰可用于调节化合物的发光性能。本文中公开的化合物含有二苯并取代吡啶配体,该二苯并取代吡啶配体含有杂原子(例如O、S或NR)并且任选地在R1和R4位进一步被化学基团取代。因而,可以通过选择特定的杂原子和/或改变二苯并取代吡啶配体上存在的取代基而调节化合物的发光性能。
[0060] 本文中记载的化合物包含具有下式的杂配位铱配合物:
[0061]
[0062] 式I化合物的特征包括包含一个具有式II 结构的配体以及两个可具有进一步的取代的苯基吡啶配体,其中所有配体与Ir配位。
[0063] X选自NR、O、S、BR和Se。R选自氢和烷基。R1、R2、R3和R4可以表示单取代、二取代、三取代或四取代;并且R1、R2、R3和R4各自独立地选自氢、具有四个或更少的碳原子的烷基以及芳基。
[0064] 另一方面,R1、R2、R3和R4独立地选自氢、具有四个或更少的碳原子的烷基以及在环中具有6个或更少的原子的芳基。
[0065] 本文中使用的术语“芳基”指的是未稠合到苯基吡啶配体的苯环上的包含碳原子或杂原子的芳基(即,芳基是非稠合的芳基)。本文中使用的术语“芳基”包括单环基团和多元环体系。多元环可以具有两个或更多个环,其中两个碳被两个邻接的环共有(这些环是“稠合”的),其中至少一个环是芳族的,例如其它环可以是环烷基、环烯基、芳基、杂环和/或杂芳基。此外,芳基可以任选地被选自卤素、CN、CO2R、C(O)R、NR2、环氨基、NO2和OR的一个或多个取代基取代。“芳基”也包括杂芳基,例如可以包含一至三个杂原子的单环杂芳族基团,例如吡咯、呋喃、噻吩、咪唑、噁唑、噻唑、三唑、吡唑、吡啶、吡嗪和嘧啶等。这包括多环杂芳族体系,该体系具有两个或更多个环,其中两个原子被两个邻接的环共有(这些环是“稠合”的),其中至少一个环是杂芳基,例如其它环可以是环烷基、环烯基、芳基、杂环和/或杂芳基。此外,杂芳基可以任选地被选自卤素、CN、CO2R、C(O)R、NR2、环氨基、NO2和OR的一个或多个取代基取代。例如,R1、R2、R3和/或R4可以为未稠合到苯基吡啶的苯基环上的芳基,包括杂芳基。
[0066] 本文中使用的术语“烷基”包括直链和支链烷基两者。实例包括甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基等。此外,该烷基可以任选地被选自卤素、CN、CO2R、C(O)R、NR2、环氨基、NO2和OR的一个或多个取代基取代,其中R各自独立地选自H、烷基、烯基、炔基、芳烷基、芳基和杂芳基。优选地,为了使得这些化合物可升华和/或为了降低升华温度,式I的R1、R2、R3和/或R4位的烷基具有四个或更少的碳原子(例如甲基、乙基、丙基、丁基和异丁基)。
[0067] 通常,本文中提供的化合物具有与先前报道的化合物相比较低的升华温度。因此,这些新的化合物提供改善的器件制造以及其它有益性能。此外,据信具有其中R1、R2、R3和R4选自较小取代基的式I的杂配位化合物会是特别有利的。较小的取代基包括例如氢或烷基。特别是,据信其中取代基R1、R2、R3和/或R4选自较小取代基的化合物可以具有更进一步低的升华温度,从而进一步改善制造,同时保持具有式II结构的配体所提供的期望的性能(例如改善的稳定性和寿命)。
[0068] 通常,所提供的具有式I的化合物所具有的取代基使得R1、R2、R3和R4独立地选自氢、烷基和芳基。优选地,任何烷基具有四个或更少的碳原子。为将分子量最小化并从而降低升华温度,在配体上具有较小取代基的具有式II结构的化合物是优选的。优选地,R1和R4独立地选自氢和具有四个或更少的碳原子的烷基;更优选地,R1和R4独立地选自氢和甲基。
[0069] 由于类似的原因,具有存在于苯基吡啶配体上的较小取代基的化合物是优选的。此外,据信苯基吡啶配体对配合物的发光贡献较小。此外,配合物含量两个苯基吡啶配体,从而苯基吡啶配体上存在的取代基更多地贡献于配合物的总的分子量。至少由于这些原因,优选地,R2和R3独立地选自氢和具有四个或更少的碳原子的烷基;更优选地,R2和R3独立地选自氢和甲基;最优选地,R2和R3为氢。
[0070] 具有可降低分子间相互作用的烷基和芳基取代基的化合物也是优选的。
[0071] 另一方面,优选地,R2和R3独立地选自氢、具有四个或更少的碳原子的烷基以及在环中具有6个或更少的原子的芳基;更优选地,R2和R3独立地选自氢、甲基和苯基;最优选地,R2和R3为氢。
[0072] 优选的是其中配合物的总分子量低的化合物,以降低升华温度并改善器件制造。为此目的,其中所有的取代基相对较小的化合物是优选的。一方面,优选地,R1、R2、R3和R4独立地选自氢和具有四个或更少的碳原子的烷基;更优选地,R1、R2、R3和R4独立地选自氢和甲基;最优选地,R1、R2、R3和R4为氢。
[0073] 另一方面,优选地,R1、R2、R3和R4独立地选自氢、具有四个或更少的碳原子的烷基以及在环中具有6个或更少的原子的芳基;更优选地,R1、R2、R3和R4独立地选自氢、甲基和苯基;最优选地,R1、R2、R3和R4为氢。
[0074] 如以上所讨论,X也可以为BR。优选地,R具有4个或更少的碳原子。由于与以上所讨论的类似的原因,取代的配体的咔唑部分上的较小烷基(即具有4个或更少的碳原子的烷基)将可降低配合物的升华温度并从而改善器件制造。
[0075] 还提供了具体的杂配位铱配合物。一方面,提供了具有下式的杂配位铱配合物:
[0076]
[0077] 另一方面,提供了具有下式的杂配位铱配合物:
[0078]
[0079] 再一方面,提供具有下式的杂配位铱配合物:
[0080]
[0081] 提供了杂配位铱配合物的具体实例,其包括选自以下的化合物:
[0082]
[0083]
[0084]
[0085] 提供了杂配位铱配合物的其它具体实例,其包括选自以下的化合物:
[0086]
[0087]
[0088]
[0089]
[0090]
[0091]
[0092]
[0093]
[0094]
[0095] 杂配位铱化合物可以选自化合物1-化合物108。
[0096] 其中X选自O、S和NR的式I化合物可以是特别有利的。不希望受限于理论,据认为,包含二苯并呋喃、二苯并噻吩或咔唑结构部分(即X为O、S或NR)的配体的芳香性提供电子离域,这可导致改善的化合物稳定性和改善的器件。此外,据信其中X为O的化合物可以比其中X为S或NR的化合物更优选。在很多情况下,含有二苯并呋喃的化合物和包含这样的化合物的器件表现出尤其合乎需要的性能。
[0097] 一方面,提供了其中X为O的化合物。其中X为O的示例性化合物包括但不限于化合物1-12。其中X为O的化合物可以是特别优选的,这至少是因为这些化合物可以产生具有期望的性能的器件。例如,这些化合物可以提供具有改善的效率和长的寿命的器件。此外,这些化合物的降低的升华温度也可以导致这些合乎需要的器件的改善的制造。
[0098] 提供了其中X为O的其它示例性化合物,其非限制性地包括化合物37-60。化合物1-12和37-60可以提供具有改善的效率、寿命和制造的器件。
[0099] 另一方面,提供了其中X为S的化合物。其中X为S的示例性化合物包括但不限于化合物13-24。含有吡啶基二苯并呋喃配体的这些化合物也可以用于表现出良好性能的器件中。例如,其中X为S的化合物可以提供具有改善的稳定性和制造的器件。
[0100] 提供了其中X为S的其它示例性化合物,其非限制性地包括化合物61-84。化合物13-24和61-84可以提供具有改善的稳定性和制造的器件。
[0101] 再一方面,提供了其中X为NR的化合物。其中X为NR的示例性化合物包括但不限于化合物25-36。含有吡啶基咔唑配体的这些化合物也可以用于提供具有良好性能例如改善的效率的器件。
[0102] 提供了其中X为NR的其它示例性化合物,其非限制性地包括化合物85-108。化合物26-36和85-108可以提供具有改善的效率的器件。
[0103] 此外,还提供了有机发光器件。该器件包含阳极、阴极以及位于该阳极和该阴极之间的有机层,其中该有机层包含具有式I的化合物。X选自NR、O、S、BR和Se。R选自氢和烷基。优选地,R具有4个或更少的碳原子。R1、R2、R3和R4可以表示单取代、二取代、三取代或四取代。R1、R2、R3和R4各自独立地选自氢、具有四个或更少的碳原子的烷基以及芳基。优选地,R2和R3独立地选自氢以及具有四个或更少的碳原子的烷基。对于式I化合物描述为优选的杂原子和取代基的选择,对于在包含式I化合物的器件中的使用也是优选的。这些选择包括对X、R、R1、R2、R3和R4所述的那些。
[0104] 另一方面,R1、R2、R3和R4各自独立地选自氢、具有四个或更少的碳原子的烷基以及在环中具有6个或更少的原子的芳基。优选地,R2和R3独立地选自氢、具有四个或更少的碳原子的烷基以及在环中具有6个或更少的原子的芳基。
[0105] 特别是,提供了其中化合物选自化合物1-36的器件。
[0106] 此外,提供了含有选自化合物37-108的化合物的器件。此外,提供的器件可以含有选自化合物1-108的化合物。
[0107] 一方面,有机层为发光层并且具有式I的化合物为发光掺杂剂。该有机层可以进一步包含主体。优选地,该主体包含三亚苯结构部分和二苯并噻吩结构部分。更优选地,该主体具有下式:
[0108] R’1、R’2、R’3、R’4、R’5和R’6可以表示单取代、二取代、三取代或四取代。R’1、R’2、R’3、R’4、R’5和R’6各自独立地选自氢、烷基和芳基。
[0109] 如以上所讨论,本文中提供的杂配位化合物可以有利地用于有机发光器件中以提供具有期望性能例如改善的寿命、稳定性和制造的器件。
[0110] 还提供了包含器件的消费产品。该器件进一步包含阳极、阴极和有机层。该有机层进一步包含具有式I的杂配位铱配合物。
[0111] 本文中所述的可以用于有机发光器件中的特定层的材料可以与器件中存在的多种其它材料组合使用。例如,本文中公开的发光掺杂剂可以与多种主体、传输层、阻挡层、注入层、电极和可以存在的其它层组合使用。所述的或下述的材料是可以与本文中公开的化合物组合使用的材料的非限制性实例,本领域技术人员可以容易地查阅文献来确定可以组合使用的其它材料。
[0112] 除了本文中公开的材料,和/或与本文中公开的材料相组合,可以在OLED中使用很多空穴注入材料、空穴传输材料、主体材料、掺杂剂材料、激子/空穴阻挡层材料、电子传输和电子注入材料。可以在OLED中与本文中公开的材料组合使用的材料的非限制性实例列于下表2中。表2列举了非限制性的材料类别、每一类化合物的非限制性实例和公开这些材料的文献。
[0113] 表2
[0114]
[0115]
[0116]
[0117]
[0118]
[0119]
[0120]
[0121]
[0122]
[0123]
[0124]
[0125]
[0126]
[0127]
[0128]
[0129]
[0130]
[0131]
[0132]
[0133]
[0134] 实验
[0135] 化合物实施例
[0136] 实施例1 化合物1的合成
[0137]
[0138] 2-(二苯并[b,d]呋喃-4-基)吡啶的合成。将4-二苯并呋喃硼酸(5.0g,23.6mmol)、2-氯吡啶(2.2g,20mmol)、二环己基(2’,6’-二甲氧基联苯-2-基)膦(S-Phos)(0.36g,
0.8mmol)和磷酸钾(11.4g,50mmol)混合于100mL甲苯和10mL水中。将氮气直接鼓泡到该混合物中30分钟。然后,加入Pd2(dba)3(0.18g,0.2mmol)并将混合物在氮气下加热回流8小时。
将混合物冷却并将有机层分离。将有机层用盐水洗涤,用硫酸镁干燥,过滤,并蒸发至残余物。将残余物通过柱色谱用二氯甲烷洗脱而纯化。在纯化后获得4.5g目标产物。
[0139]
[0140] 化合物1的合成。将三氟甲磺酸铱前体(0.97g,1.4mmol)和2-(二苯并[b,d]呋喃-4-基)吡啶(1.0g,4.08mmol)混合于50mL乙醇中。将该混合物在氮气下加热回流24小时。在回流过程中形成沉淀。将反应混合物通过C盐(celite)床过滤。将产物用甲醇和己烷洗涤。
将固体溶解于二氯甲烷中并使用1:1的二氯甲烷和己烷通过柱纯化。在柱纯化后获得0.9g纯产物(HPLC纯度:99.9%)。
[0141] 实施例2 化合物2的合成
[0142]
[0143] 3-硝基二苯并呋喃的合成。向250mL圆底烧瓶中的80mL三氟乙酸中加入二苯并呋喃(7.06g,42mmol)并强烈搅拌以将内容物在室温下溶解。然后将溶液在冰上冷却,并将20mL三氟乙酸中的70%的HNO3 1.2当量(4.54g,50.40mmol)缓慢倒入搅拌的溶液中。在搅拌30分钟后,将内容物从烧瓶倒入150mL冰水中并再搅拌15分钟。然后过滤出灰白色沉淀,并最终用2M的NaOH和水洗涤。然后将湿的物料以浅黄色晶体的形式从1.5L沸腾的乙醇重结晶。分离出7.2g产品。
[0144]
[0145] 3-氨基二苯并呋喃的合成。将3-硝基二苯并呋喃(6.2g,29.08mmol)溶解于360mL乙酸乙酯中,并通过将氮气通过溶液而脱气5分钟。将500mg Pd/C加入溶液中并将内容物在60psi的压力下加氢。使反应一直进行到加氢设备中的压力在60psi稳定15分钟。然后将反应内容物通过小的C盐垫过滤,并获得灰白色产物(5.3g,28.9mmol)。
[0146]
[0147] 3-溴二苯并呋喃的合成。将NaNO2(2.21g,32.05mmol)溶解于保持在0℃的锥形烧瓶中的20mL浓H2SO4中。然后将2-氨基二苯并呋喃(5.3g,28.9mmol)在最小体积的冰醋酸中的溶液缓慢加入烧瓶中,使得温度从不升至5-8℃以上,并将混合物在0℃再搅拌1.5小时。将100mL醚加入搅拌的混合物中,并且对应于重氮盐的沉淀立即沉降下来。将褐色的重氮盐立即过滤出来,并转移到含有150mL 48%HBr中的CuBr(6.25g,43.5mmol)的烧瓶中。然后将烧瓶置于保持在64℃的水浴中并搅拌2小时。在冷却至室温后,将深色的反应内容物过滤出来,并将沉淀用水洗涤两次。然后将分离的固体使用5-10%DCM/己烷快速通过硅胶柱,得到
4.79g最终化合物。
[0148]
[0149] 2-(二苯并[b,d]呋喃-3-基)-4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷的合成。将3-溴二苯并呋喃(4.79g,19.39mmol)、双频那醇合二硼(6.4g,25.2mmol)、KOAc(7.61g,
77.54mmol)加入圆底烧瓶中的100mL二氧杂环己烷中。将内容物在鼓泡的氮气下脱气30分钟,并向反应混合物中加入Pd(dppf)2Cl2(158mg,0.019mmol)。在脱气另外10分钟后,将反应混合物加热至80℃并搅拌过夜。然后将反应烧瓶冷却至室温并通过C盐垫过滤。然后将深褐色溶液在盐水和乙酸乙酯之间分配。收集有机层,用无水Na2SO4干燥,并将过量的溶剂在真空下蒸发。然后将褐色固体以干燥形式加载到硅胶柱中,并用5%乙酸乙酯/己烷/0.005%三乙胺快速通过,得到5.08g最终产物。
[0150]
[0151] 2-(二苯并呋喃-3-基)吡啶的合成。将二苯并呋喃硼酸酯(5.85g,20mmol)、2-溴吡啶(2.93mL,30mmol)、30mL 2M Na2CO3(60mmol)在500mL三颈圆底烧瓶中的200mL甲苯/乙醇(1:1)中浆液化,并在鼓泡的氮气下脱气30分钟。将Pd(dppf)2Cl2(160mg,0.2mmol)加入浆液中并继续脱气另外10分钟。然后将反应内容物回流过夜。将反应内容物冷却至室温并通过小的C盐垫过滤。然后将褐色的两相溶液在盐水和乙酸乙酯之间分配。将有机层用无水Na2SO4干燥,并将过量的溶剂在真空下除去。将来自前一步骤的残余物以干燥形式加载到硅胶柱中,并用5-8%乙酸乙酯/己烷洗脱,得到4.3g最终产物。
[0152]
[0153] 化合物2的合成。将三氟甲磺酸铱前体(2.8g,3.9mmol)、2-(二苯并呋喃-3-基)吡啶(4g,16.3mmol)在100mL乙醇中回流过夜。将浅黄色沉淀过滤出来,干燥,并以干燥形式加载到硅胶柱中。在用3:2的DCM/己烷洗脱后分离210mg最终化合物。
[0154] 实施例3 化合物4的合成
[0155]
[0156] 化合物4的合成。将三氟甲磺酸铱前体(1.6g,2.2mmol)和2-(二苯并[b,d]呋喃-4-基)吡啶(1.6g,6.5mmol)混合于50mL乙醇中。将该混合物在氮气下加热回流24小时。在回流过程中形成沉淀。将反应混合物通过C盐床过滤。将产物用甲醇和己烷洗涤。将固体溶解于二氯甲烷中并使用1:1的二氯甲烷和己烷通过柱纯化。在柱纯化后获得1.4g纯产物。
[0157] 实施例4 化合物10的合成
[0158]
[0159] 4-甲基-2-(二苯并[b,d]呋喃-4-基)吡啶的合成。将4-二苯并呋喃硼酸(5.0g,23.6mmol)、2-氯-4-甲基吡啶(2.6g,20mmol)、二环己基(2’,6’-二甲氧基联苯-2-基)膦(S-Phos)(0.36g,0.8mmol)和磷酸钾(11.4g,50mmol)混合于100mL甲苯和10mL水中。将氮气直接鼓泡到该混合物中30分钟。然后,加入Pd2(dba)3(0.18g,0.2mmol)并将混合物在氮气下加热回流8小时。将混合物冷却并将有机层分离。将有机层用盐水洗涤,用硫酸镁干燥,过滤,并蒸发至残余物。将残余物通过柱色谱用二氯甲烷洗脱而纯化。在纯化后获得4.7g目标产物。
[0160]
[0161] 化合物10的合成。将三氟甲磺酸铱前体(2.0g,2.7mmol)和4-甲基-2-(二苯并[b,d]呋喃-4-基)吡啶(2.1g,8.1mmol)混合于60mL乙醇中。将该混合物在氮气下加热回流24小时。在回流过程中形成沉淀。将反应混合物通过C盐床过滤。将产物用甲醇和己烷洗涤。将固体溶解于二氯甲烷中并使用1:1的二氯甲烷和己烷通过柱纯化。在柱纯化后获得1.6g纯产物。
[0162] 实施例5 化合物29的合成
[0163]
[0164] 4’-溴-2-硝基联苯的合成。将邻碘硝基苯(9.42g,37.84mmol)、4-溴苯硼酸(7.6g,37.84mmol)、碳酸钾(21g,151.36mmol)加入190mL DME/水(3:2)溶液中,并脱气30分钟。将Pd(PPh3)4(437mg,0.38mmol)在氮气下加入该浆液中并将浆液脱气另外5分钟。将反应在氮气下回流6小时。将烧瓶的内容物通过C盐垫过滤并在乙酸乙酯和盐水中分配。将有机相用无水Na2SO4干燥并在真空下蒸发。将粗的黄色油状物使用5%乙酸乙酯/己烷快速通过硅胶。
将最终化合物以无色油状物的形式分离(9.8g,35.4mmol)。
[0165]
[0166] 2-溴-9H-咔唑的合成。将4’-溴-2-硝基联苯(9.8g,35.4mmol)与30mL亚磷酸三乙酯回流过夜。在将溶液冷却至室温后,向其中缓慢加入40mL 6(N)HCl,并在80℃加热3小时。将酸性溶液的一半用浓NaOH中和,将剩余的酸性溶液用固体Na2CO3中和。将混浊的溶液用乙酸乙酯(500mL)萃取三次。将合并的有机层在真空下蒸发,并将粗产物快速通过硅胶(15%至30%乙酸乙酯/己烷)。以灰白色固体的形式分离4.1g最终化合物。
[0167]
[0168] 2-溴-9-异丁基-9H-咔唑的合成。将2-溴-9H-咔唑(4.1g,16.74mmol)溶解于DMF中。向搅拌的该溶液中分三批缓慢加入NaH(1.8g,75.5mmol)。向搅拌的该浆液中加入异丁基溴(4.8mL,43.2mmol),并在等待20分钟后升温至60℃,保持4小时。将反应混合物冷却至室温,并通过滴加饱和的NH4Cl溶液而小心地骤停。然后将内容物在盐水和乙酸乙酯中分配。将有机层用无水Na2SO4干燥并在真空下蒸发。将粗产物用10%乙酸乙酯/己烷快速通过硅胶。以白色固体的形式分离最终产物(4.45g,14.8mmol)。
[0169]
[0170] 9-异丁基-2-频那醇合硼-9H-咔唑的合成。将2-溴-9-异丁基-9H-咔唑(4.45g,14.78mmol)、二硼频那醇酯(4.7g,18.5mmol)、乙酸钾(5.8g,59.1mmol)加入75mL无水甲苯中并脱气30分钟。将Pd2dba3(362mg,0.443mmol)在氮气下加入该浆液中并将浆液脱气另外5分钟。在回流过夜后,将反应内容物冷却并通过C盐垫过滤。将甲苯溶液在水和乙酸乙酯中分配。将有机层用无水Na2SO4干燥并将溶剂在真空下蒸发。将固体粗产物使用10%乙酸乙酯/己烷快速通过硅胶。使分离的固体在133℃进行球管(Kugelrohr)蒸馏以除去痕量的二硼频那醇酯。以灰白色固体的形式分离最终产物(4.77g,13.7mmol)。
[0171]
[0172] 9-异丁基-2-(吡啶-2-基)-9H-咔唑的合成。将9-异丁基-2-频那醇合硼-9H-咔唑(1.45g,4mmol)、2-溴吡啶(760mg,4.8mmol)、2-二环己基膦基-2’,6’-二甲氧基联苯(67mg,0.16mmol)、K3PO4.H2O(3.68g,16mmol)加入9:1的甲苯和水的混合物40mL中。将内容物脱气
30分钟,然后加入Pd2dba3(37mg,0.04mmol),并脱气另外5分钟。在回流过夜后,将反应内容物冷却至室温并通过C盐垫过滤。将滤液在水和乙酸乙酯中分配。将有机层分离,用无水Na2SO4干燥,并在真空下蒸发。然后将粗产物使用10%-30%乙酸乙酯/己烷快速通过硅胶,以除去酸解脱硼(protodeborylation)产物。以白色固体形式分离最终化合物(620mg,
2.1mmol)。
[0173]
[0174] 化合物29的合成。将来自上一步骤的咔唑配体(620mg,2.1mmol)溶解于乙醇中,并在氮气下向其中加入中间体1。然后将溶液回流过夜。将深橙色沉淀过滤出来并使用50%DCM/己烷快速通过硅胶。然后将分离的产物升华,得到310mg 99.7%的纯产物。
[0175] 实施例6 化合物7的合成
[0176]
[0177] 化合物7的合成。将三氟甲磺酸铱前体(2.0g,2.7mmol)和4-甲基-2-(二苯并[b,d]呋喃-4-基)吡啶(2.1g,8.1mmol)混合于60mL乙醇中。将该混合物在氮气下加热回流24小时。在回流过程中形成沉淀。将反应混合物通过C盐床过滤。将产物用甲醇和己烷洗涤。将固体溶解于二氯甲烷中并使用1:1的二氯甲烷和己烷通过柱纯化。在柱纯化后获得1.0g纯产物。
[0178] 实施例7 化合物37的合成
[0179]
[0180] 化合物37的合成。将2-(二苯并[b,d]呋喃-4-基)吡啶(5.0g,20.39mmol)和三氟甲磺酸铱(5.0g,5.59mmol)加入具有100mL的乙醇和甲醇1:1溶液的250mL圆底烧瓶中。将反应混合物回流24小时。获得浅黄色沉淀。将反应冷却至室温并用乙醇稀释。加入C盐,并将反应混合物通过硅胶短柱过滤。将短柱用乙醇(2 X 50mL)然后用己烷(2 X 50mL)洗涤。将留在硅胶短柱上的产物用二氯甲烷洗脱到清洁的接收烧瓶中。将二氯甲烷在真空下去除,并将产物用二氯甲烷和异丙醇的组合进行重结晶。将黄色固体过滤,用甲醇然后用己烷洗涤,得到浅黄色结晶产物。将产物通过用甲苯重结晶然后用乙腈重结晶而进一步纯化,得到HPLC纯度为99.5%的产物1.94g(产率37.5%)。
[0181] 器件实施例
[0182] 所有的实例器件通过高真空(<10-7Torr)热蒸发进行制作。阳极为 的氧化铟锡(ITO)。阴极由 的LiF以及随后的 的Al组成。所有的器件在制作后立即在氮气手套箱(<1ppm的H2O和O2)用环氧树脂密封的玻璃盖进行封装,并在包装中加入吸湿剂。
[0183] 提供了其中本发明化合物(化合物1、2、4、7、10或29)为发光掺杂剂且H1为主体的特定器件。器件实施例1-11的有机叠层从ITO表面起依次由作为空穴注入层(HIL)的E1、作为空穴传输层(HTL)的 4,4’-双[N-(1-萘基)-N-苯基氨基]联苯(α-NPD)、作为发光层(EML)的 的用7%或10%本发明化合物(一种Ir磷光化合物)掺杂的H1、作为阻挡层(BL)的 H1以及作为ETL1的 Alq3(三-8-羟基喹啉铝)组成。
[0184] 对比实施例1和2以与器件实施例类似的方式制作,不同之处在于分别将E1和E2用作发光掺杂剂。
[0185] 如本文中所使用,下列化合物具有下列结构:
[0186]
[0187] 器件结构和器件数据汇总于下表3和表4中。表3示出了器件结构,表4示出了这些器件相应的测量结果。
[0188] 表3
[0189]
[0190] 表4
[0191]
[0192]
[0193] 从器件实施例1-11可以看出,本发明化合物作为绿色磷光器件中的发光掺杂剂提供了高的器件效率和更长的寿命。特别是,含有化合物1、2、7和29的器件的寿命RT80%(定义为在40mA/cm2的恒定电流密度下、在室温下,初始亮度L0衰减至其值的80%所用的时间)比使用工业标准发光掺杂剂Ir(ppy)3的对比实施例2所测量的显著更高。此外,器件实施例12
中的化合物1获得高的器件效率(即在1000cd/m下60cd/A的LE),表明包含单个的取代吡啶基配体(例如吡啶基二苯并呋喃)的本发明化合物具有对于有效的绿色电致磷光而言足够高的三线态能量。
[0194] 其它器件结构和器件数据汇总于下面。器件结构和器件数据汇总于下表5和表6中。表5示出器件结构,表6示出器件的相应测量结果。
[0195] 本文中使用的下列化合物具有下列结构:
[0196]
[0197] H2是可以从日本东京的Nippon Steel公司(NSCC)以NS60获得的化合物。
[0198] 表5
[0199]
[0200] 表6
[0201]
[0202] 从器件实施例12-21可以看出,本发明化合物作为绿色磷光器件中的发光掺杂剂提供了具有高效率和长寿命的器件。特别是,含有化合物29和37的器件的寿命RT80%(定义为在40mA/cm2的恒定电流密度下、在室温下,初始亮度L0衰减至其值的80%所用的时间)比对比实施例所测量的显著更高。特别是,器件实施例18中的化合物29和器件实施例21中的化合物37分别测得740小时和315小时。如实施例12中所示,具有H2中的化合物1的器件具有78.6cd/A的异常高的效率和长寿命。出人意料的是,化合物1在H2中非常好地工作。此外,器件实施例12、15、17、19和20中的化合物1、4、7、29和37分别获得高的器件效率(即在1000cd/m2下大于60cd/A的LE),表明包含单个的取代吡啶基配体(例如吡啶基二苯并呋喃)的本发明化合物具有对于有效的绿色电致磷光而言足够高的三线态能量。
[0203] 以上数据表明,本文中提供的杂配位铱配合物可以是用于磷光OLEDs的出色的发光掺杂剂,提供了具有改善的效率和更长的寿命的器件,该器件还可以具有改善的制造。
[0204] 应当理解,本文中所述的多种实施方案仅仅作为示例,不用于限制本发明的范围。例如,在不偏离本发明的精神的情况下,本文中所述的很多材料和结构可以用其它材料和结构替代。因此,要求保护的本发明可以包括对于本领域技术人员而言显而易见的本文所述具体实施例和优选实施方案的变化形式。应当理解,关于为什么本发明能够成立的多种理论是非限制性的。