分离装置转让专利

申请号 : CN201680050751.1

文献号 : CN107921351B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : R.尼科劳

申请人 : 戴森技术有限公司

摘要 :

本发明涉及一种再生过滤器,包括至少一个过滤器,所述过滤器具有多层过滤材料,所述过滤器具有:第一过滤配置,其中所述多层过滤材料被保持在一起,使得它们被相对于彼此固定;以及第二再生配置,其中过滤材料层在至少一个点处被保持在一起,以致至少多层过滤材料中的一层的一部分可从过滤材料层的剩余部分间隔开用于再生;过滤器可从过滤区域,在过滤区域第一过滤器处于其过滤配置中,运动到再生区域,其从过滤区域间隔开且在再生区域处第一过滤器处于其再生配置中;以及过滤器再生器,用于再生过滤材料,过滤器再生器布置为当过滤器被容纳在再生区域中时运动至少一层过滤材料的至少一部分。

权利要求 :

1.一种再生过滤器,包括至少一个过滤器,所述过滤器具有多层过滤材料,所述过滤器具有:过滤配置,其中所述多层过滤材料被保持在一起,使得它们被相对于彼此固定;以及再生配置,其中过滤材料层在至少一个点处被保持在一起,以致至少多层过滤材料中的一层的一部分可从过滤材料层的剩余部分间隔开用于再生;

过滤器可从过滤区域运动到再生区域,在过滤区域第一过滤器处于其过滤配置中,再生区域从过滤区域间隔开且在再生区域处第一过滤器处于其再生配置中;以及过滤器再生器,用于再生过滤材料,过滤器再生器布置为当过滤器被容纳在再生区域中时运动至少一层过滤材料的至少一部分。

2.根据权利要求1所述的再生过滤器,其中在过滤配置和再生配置中,所述多层过滤材料沿一个边缘被保持在一起以形成册型过滤器。

3.根据前述权利要求中任一项所述的再生过滤器,其中在使用中,当过滤器被容纳在再生区域中时该过滤器再生器运动至少一层过滤材料的至少一部分,以致沉积在过滤材料上的任何脏物从过滤材料被敲下或摇下。

4.根据权利要求1或2所述的再生过滤器,其中在使用中,当过滤器被容纳在再生区域中时该过滤器再生器重复接触一层或多层过滤材料的至少一部分,以致沉积在过滤材料上的任何脏物从过滤材料被敲下或摇下。

5.根据权利要求1或2所述的再生过滤器,其中当过滤器在它的再生配置中时,过滤器被连接到过滤器再生器,且在使用中该过滤器再生器运动过滤器的至少一部分以致过滤材料上的任何脏物被从过滤材料摇下。

6.根据权利要求1或2所述的再生过滤器,包括多个过滤器。

7.根据权利要求6所述的再生过滤器,其中至少一个过滤器在过滤配置中,且至少一个过滤器在再生配置中。

8.根据权利要求6所述的再生过滤器,其中多个过滤器在过滤配置中。

9.根据权利要求6所述的再生过滤器,其中多个过滤器在再生配置中。

10.根据权利要求1或2所述的再生过滤器,其中该或每个过滤器被安装在框架上,该框架可在过滤区域和再生区域之间移动。

11.根据权利要求1或2所述的再生过滤器,其中过滤材料具有静电特性。

12.一种分离器具,包括根据前述权利要求中任一项所述的再生过滤器。

13.根据权利要求12所述的器具,其中每个过滤器可响应再生过滤器被附接到器具的剩余部分而在过滤区域和再生区域之间移动。

14.根据权利要求12所述的器具,其中每个过滤器可响应再生过滤器被从器具的剩余部分移除而在过滤区域和再生区域之间移动。

说明书 :

分离装置

技术领域

[0001] 本发明涉及一种分离装置,用于从流体流分离颗粒。特别地,分离装置可为真空吸尘器或形成真空吸尘器的一部分。

背景技术

[0002] 已知的分离装置包括被使用在真空吸尘器中的那些,例如旋风分离装置。这样的旋风分离装置已知包括用于分离较大颗粒的较低效率的旋风器和位于较低效率旋风器的下游的用于分离任何细小颗粒(其保持被夹带在空气流中)的较高效率旋风器(例如参见EP0042 723B)。
[0003] 不论使用的分离装置的类型,存在小量脏物和灰尘穿过分离装置且被输送到电机驱动风扇单元的风险。脏物和灰尘颗粒穿过电机和风扇单元的风扇是不期望的,因为风扇可能被损坏或可能更低效率地操作。
[0004] 为了减少这个问题,一些真空吸尘器包括分离装置和空气流产生器之间的空气流动路径中的精细过滤器。这个过滤器俗称电机前过滤器,且被用于提取穿过分离装置之后保持在空气流中的任何细小的脏物和灰尘颗粒。
[0005] 还已知提供过滤器在空气流产生器下游的空气流动路径中,以便在空气流排出器具之前提取任何残留的脏物和灰尘颗粒。这种类型的过滤器俗称为电机后过滤器。电机后过滤器也可捕捉由电机的任何刷子产生的颗粒。
[0006] 过滤组件被使用在戴森的真空吸尘器系列上,例如型号DC04,DC07,DC12,DC14和DC15。这个类型的过滤组件操作的原理被描述在GB 2349105和EP 1239760B中。
[0007] 在真空吸尘器应用中,期望在保持适当的过滤器寿命的同时实现尽可能高的灰尘分离效率。过滤器通常通过捕获灰尘颗粒在过滤介质的体部内而工作。较大的灰尘颗粒可被捕获在过滤介质内,因为它们太大而不能穿过过滤介质中的间隙。由于静电力,较小的灰尘颗粒可通过被粘附到过滤介质而被捕获。在使用中,这样的过滤器通常随着时间由被捕获的灰尘堵塞,且它们对于空气流动的阻力增大。这个对于空气流动的阻力影响真空吸尘器的性能。
[0008] 这个问题的一个解决方案为更换过滤器。存在一些过滤器是可清洗的,然而由于这些过滤器的结构,一些灰尘将总是保持在过滤器中,不利地影响机器的性能且有些时候不期望地缩短真空吸尘器的寿命。由此,存在对于改进的过滤器的需要。

发明内容

[0009] 因此,本发明的第一方面提供了一种分离装置,该分离装置包括第一旋风分离单元,再生过滤器和过滤器再生器,该再生过滤器包括至少一个过滤器,该至少一个过滤器具有多层过滤材料,该过滤器具有过滤配置(其中该多层过滤材料被保持在一起)和再生配置(其中至少过滤材料中的一层的一部分从过滤材料层的剩余部分间隔开用于再生),该过滤器再生器用于再生过滤材料。
[0010] 具有再生过滤器比之先前的技术具有巨大的优势。过滤器的再生意味着它帮助确保过滤器不被堵塞且由此帮助确保穿过分离装置的空气流不被过度限制,其将增加分离装置的寿命且保持性能。它也意味着昂贵的更换过滤器不再被需要。本文中使用的术语“再生过滤器”的意思是一种过滤器,其中载有的灰尘的一部分可被从过滤器移除。该术语“再生过滤器”不覆盖从分离装置移除用于清洁的过滤器。该术语“再生过滤器”覆盖在分离装置正常使用期间或清洁周期期间被清洁的过滤器。优选地,再生过滤器可在再生期间移除足够的灰尘以确保分离装置的原始性能参数被保持,或大体被保持。理想地,首次使用和再生之后之间的压力上升将至多30%,但优选至多25%,或20,或15,或10,或5,或1%。
[0011] 再生过滤器优选被布置在第一旋风分离单元的下游。然而,它可被布置在第一旋风分离单元的上游。
[0012] 在优选实施例中,再生过滤器包括多个过滤器。具有多个过滤器是有利的,因为它在分离装置使用期间允许连续的过滤和再生。在优选实施例中,至少一个过滤器在过滤配置中,且至少一个过滤器在再生配置中。这意味着当一个过滤器被作为过滤器使用时,另一个被再生。
[0013] 在特殊实施例中,多个过滤器可被布置在过滤配置中。这有利地增加过滤器的总体表面面积。还可能具有多个过滤器在再生配置中。
[0014] 再生过滤器优选具有过滤区域和再生区域。过滤区域和再生区域优选间隔开。过滤器(一个或多个)优选可在过滤区域和再生区域之间运动。当被容纳在过滤区域内时,该过滤器(一个或多个)在它的过滤配置中,且当被容纳在再生区域内时,过滤器在它的再生配置中。
[0015] 在一个实施例中,在过滤配置中的多层过滤材料优选被保持在一起以使它们相对于彼此被固定。它们优选被保持在过滤器册框架中,其允许空气穿过过滤材料但压缩过滤材料的层在一起。在再生配置中,其中过滤材料层可在至少一个点处被保持在一起,以致至少多层过滤材料中的一层的一部分可从过滤材料层的剩余部分间隔开用于再生。
[0016] 理想地,在过滤配置和再生配置两者中,过滤材料层沿一个边缘被保持在一起以形成册型过滤器,其中多层过滤材料沿一个边缘被固定在一起。每个册型过滤器由多个过滤材料的方形或矩形层构成,这些层沿一个边缘被绑定为书脊。层可通过缝合,粘合或任何其他适当的技术绑定以形成脊。这意味着当过滤器在再生配置中时,没有绑定的边缘自由地运动。以这种方式,过滤器层可与书册的书叶一样运动。
[0017] 在使用中,过滤器再生器可运动容纳在再生区域内的至少过滤层中的一层的一部分,以致沉积在过滤材料上的任何脏物被从过滤材料敲下或摇下。存在可以实现的数个方式。过滤器再生器可为独立部件,其在使用中被布置为反复与被容纳在再生区域内的至少过滤器的一层或多层过滤材料的一部分接触,以致被沉积在过滤材料上的任何脏物被从过滤材料敲下或摇下。再生器能够例如为搅拌棒的形式,其被布置为碰撞被容纳在再生区域内的过滤材料层。
[0018] 在另一实施例中,当至少一个过滤器在它的再生配置中时,过滤器可被连接到过滤器再生器,在使用中,过滤器再生器可运动过滤器以致被沉积在过滤材料上的任何脏物从过滤材料被敲下或摇下。
[0019] 分离装置还可包括涡轮,用于驱动过滤器再生器,该涡轮在它的使用期间由穿过分离装置的流体流驱动。
[0020] 在上述实施例中,过滤材料可为任何适当的材料,例如金属,玻璃,绒头织物,聚酯,聚丙烯,聚氨酯,聚四氟乙烯,尼龙,或任何其他适当的塑料材料。在替代实施例中,过滤介质可由有机材料(比如棉花,纤维素或纸)形成。过滤材料可具有静电特性。
[0021] 该过滤介质可具有从3,或10,或50,或100,或500,或1000孔每英寸(PPI),具有从1微米,或2微米,或3微米,或10微米,或50微米,或100微米,或200微米,或400微米的孔直径的孔尺寸。
[0022] 过滤介质的孔尺寸或类型可沿过滤介质的长度和或宽度变化。例如,孔尺寸可沿下游方向减少或增加。
[0023] 分离装置具有纵向轴线。再生过滤器的纵向轴线与分离装置的纵向轴线对齐。第一旋风分离单元和再生过滤器可绕分离装置的公共中心轴线同心地布置。
[0024] 在优选实施例中,再生过滤器可被布置纵向地穿过分离装置。理想地,再生过滤器可沿着分离装置的中心被容纳。第一旋风分离单元或其一部分可被布置为围绕再生过滤器以致该再生过滤器部分地或完全地由第一旋风分离单元围绕。理想地,再生过滤器的外表面不经受第一旋风分离单元内部的旋风空气流。换句话说,该再生过滤器不在单个圆柱形旋风器内,但被容纳在第一旋风分离单元内且被第一旋风分离单元围绕。
[0025] 理想地,该第一旋风分离单元包括单个圆柱形旋风器和灰尘收集箱。该灰尘收集箱可由圆柱形旋风器自身的下部区段形成或它可为可移除地附接到圆柱形旋风器的基底的独立灰尘收集箱的形式。
[0026] 分离装置还可包括第二旋风分离单元。第二旋风分离单元可被布置在第一旋风分离单元的下游和再生过滤器的上游。第二旋风分离装置可包括一个或多个旋风器。第二旋风分离单元中的旋风器优选为截头锥形的形状。理想地,该第二旋风清洁单元包括灰尘收集箱。该灰尘收集箱可被布置在第二旋风器(一个或多个)的下方。取代具有单独的再生过滤器灰尘收集器,其用于收集通过过滤器再生器从过滤器(一个或多个)移除的灰尘,从再生过滤器移除的灰尘可收集在第二旋风分离单元的灰尘收集箱中。
[0027] 在优选实施例中,该第一旋风分离单元可被布置为围绕第二旋风分离单元或第二旋风分离单元的一部分,以致该第二旋风分离单元或它的一部分由第一旋风分离单元围绕。在此实施例中,该第二旋风分离单元或它的一部分可由此被容纳在第一旋风分离单元向内或在第一旋风分离单元内。在优选实施例中,该第二旋风分离单元或它的一部分可定位为纵向地穿过第一旋风分离单元。第一旋风分离单元可由此为环形形状。
[0028] 在特殊实施例中,该第二旋风分离单元可包括被布置为平行的多个次级旋风器和灰尘收集箱,该灰尘收集箱可被布置在次级旋风器下方。在优选实施例中,次级旋风器可形成为第一旋风分离单元之上或至少部分地在第一旋风分离单元之上的环。理想地,该次级旋风器绕第一旋风分离单元的纵向轴线居中。
[0029] 在优选实施例中,第二旋风分离单元的灰尘收集箱可被布置为纵向地穿过分离装置,以致它由第一旋风分离单元围绕且被容纳在第一旋风分离单元内侧。
[0030] 在特殊实施例中,再生过滤器位于第二旋风分离单元内侧。理想地,再生过滤器定位为纵向地穿过第二旋风分离单元的中心。在这个实施例中,该第二旋风分离单元的灰尘收集箱也可为环形形状。在这个实施例中,该第一旋风分离单元,第二旋风分离单元和再生过滤器可同中心地布置。优选地,它们被布置为围绕分离装置的公共中心轴线。优选地,该次级旋风器围绕再生过滤器的顶部部分,且第二旋风分离单元的灰尘收集箱围绕再生过滤器的下部部分。
[0031] 在优选实施例中,再生过滤器从第二旋风分离单元分离开但与第二旋风分离单元流体连通。本文中使用的术语“分离”应为意思在使用期间,再生过滤器不经受旋风分离单元内侧建立的旋风空气流。
[0032] 在替代实施例中,至少一个过滤器可包括卷型过滤器,当它在过滤配置中时,要被过滤的空气可穿过该卷型过滤器。在再生配置中,它可包括单层过滤材料。在这个实施例中,至少一个过滤器当在它的再生配置中时穿过再生区域用于再生。
[0033] 理想地,在此实施例中,再生过滤器包括一对卷型过滤器,要被过滤的空气穿过该卷型过滤器,再生过滤器被布置以致过滤材料可在第一和第二卷之间沿两个方向运动,当过滤材料在它们之间运动时使得单层过滤材料穿过过滤器再生器。然而,可能空气仅通过卷中的一个过滤。在这类型的实施例中,其中存在一个或多个卷过滤器,优选两个卷过滤器,该过滤器再生器包括一对相对的刷子,在分离装置使用期间,在它的再生配置中的至少一个过滤器将穿过该刷子之间。在优选实施例中,有两个卷型过滤器,要被清洁的空气穿过两个过滤器。在这个实施例中,管道可被提供在第一卷型过滤器的出口和第二卷型过滤器的入口之间。
[0034] 在上述实施例中,再生过滤器还可包括再生过滤器灰尘收集器,其用于收集通过过滤器产生器从过滤器移除的灰尘。
[0035] 在一个实施例中,分离装置是真空吸尘器或真空吸尘器的一部分的形式,例如筒式,立式,棒式或机器人真空吸尘器。在一个实施例中,在分离装置是真空吸尘器的情况下,第一旋风分离单元优选被布置为可移除地安装到真空吸尘器的主体部。当第一旋风分离装置被移除时,再生过滤器保持被附接到分离单元的剩余部分。
[0036] 在一个实施例中,其中分离装置是真空吸尘器的一部分的形式,整个分离装置可移除地安装到真空吸尘器的主体部。替代地,仅仅第一旋风分离单元可为可移除的,且当第一旋风分离单元被移除时,再生过滤器可保持被附接到真空吸尘器的剩余部分。
[0037] 优选地,再生过滤器可被再生到在再生之后真空吸尘器的吸力不受损害的程度。这个再生在不需要操作者将它从真空吸尘器移除用于清洁,或执行那些使用真空吸尘器和/或倒空它的箱的正常过程关联的操作之外的任何额外的工作的情况下发生。再生过滤器可从机器移除但它不需要被移除用于清洁。
[0038] 真空吸尘器可具有控制机构,该控制机构用于响应分离装置和/或再生过滤器从真空吸尘器的剩余部分移除或被安装到真空吸尘器的剩余部分,而在再生区域和过滤区域之间运动再生过滤器的至少一部分。替代地,真空吸尘器可具有动力控制机构,用于在再生区域和过滤区域之间运动再生过滤器的至少一部分。例如,一个或多个电机可被用于在再生区域和过滤区域之间运动再生过滤器的至少一部分。
[0039] 再生过滤器可被固定到分离装置。再生过滤器优选不可从分离装置移除。再生过滤器可被固定到真空吸尘器。再生过滤器优选不可从真空吸尘器移除。当它们被容纳在分离装置内时,再生过滤器的一个或多个过滤器可被再生。当分离装置在使用中时,再生过滤器的一个或多个过滤器可被再生。当真空吸尘器在使用中时,再生过滤器的一个或多个过滤器可被再生。当真空吸尘器在再生模式时,再生过滤器的一个或多个过滤器可被再生[0040] 分离装置还可被其它期望过滤穿过该器具的空气流的器具。这样的器具的示例可为风扇,风扇加热器,净化器或加湿器。
[0041] 本发明的第二方面提供了一种表面清洁装置,包括再生过滤器,该再生过滤器具有至少一个过滤器,所述过滤器具有多层过滤材料,所述过滤器具有:第一过滤配置,其中所述多层过滤材料被保持在一起,使得在表面处理装置使用期间要被清洁的空气可穿过所述多层过滤介质;以及第二过滤配置,其中至少多层过滤材料中的一层的一部分可从过滤材料层的剩余部分间隔开用于再生;以及过滤器再生器,用于再生过滤材料。
[0042] 这样的布置是有利的,因为要被过滤的空气必须穿过多层过滤材料。将至少多层过滤材料中的一层的一部分从过滤材料层的剩余部分间隔开用于再生,意味着相比于如果过滤器被清洁时所有层被保持在一起的情况,更多脏物可从过滤器移除。
[0043] 再生过滤器可包括多个过滤器。至少一个过滤器可在过滤配置中,且至少一个过滤器可在再生配置中。在优选实施例中,多个过滤器可在过滤配置中。理想地,多个过滤器在再生配置中。这是有利的,因为它意味着至少一个过滤器可被使用为过滤器同时另一过滤器被再生。
[0044] 再生过滤器可包括过滤区域和再生区域,其被间隔开。所述至少一个过滤器优选地可在过滤区域,在该过滤区域处至少一个过滤器在它的过滤配置中,和再生区域,在该再生区域处该至少一个过滤器在它的再生配置中,之间运动。这是有利的,因为脏过滤器(其已被用于过滤)可被运动到再生区域用于再生,且被再生过滤器可被运动到过滤区域且被用于过滤。
[0045] 优选地,在过滤配置和再生配置中,所述多层过滤材料沿一个边缘被保持在一起以形成册型过滤器。在使用中,过滤器再生器可运动在再生配置下的至少过滤层中的一层的一部分,以致沉积在过滤材料上的任何脏物被从过滤材料敲下或摇下。
[0046] 在使用中,过滤器再生器优选地重复接触在再生配置中的过滤器的过滤材料的一个或多个叶的至少一部分,以致沉积在过滤材料上的任何脏物被从过滤材料敲下或摇下。替代地,当该至少一个过滤器在它的再生配置中时,至少一个过滤器可被连接到过滤器再生器。在使用中,过滤器产生可运动过滤器以致被沉积在过滤材料上的任何脏物可从过滤材料被摇下。
[0047] 在第二方面的替代实施例中,至少一个过滤器当它在过滤配置中时可包括卷型过滤器,且在再生配置中时包括单层过滤材料。理想地,在再生配置中的至少一个过滤器可被布置为穿过再生区域用于再生。
[0048] 在特殊实施例中,该表面处理器具可包括一对卷型过滤器,要被过滤的空气可穿过该对卷型过滤器。该再生过滤器可被布置为使得该过滤材料可沿两个方向在第一和第二卷之间被运动,当它在第一和第二卷之间运动时使得单层过滤材料穿过过滤器再生器。在此实施例中,过滤器再生器可包括一对相对刷子,在分离装置使用期间,在再生配置中的至少一个过滤器可在该对刷子之间穿过。
[0049] 表面清洁器具还可包括表面接触头。还可包括分离装置。分离装置可包括另一过滤器。
[0050] 分离装置优选地可从表面清洁器具的剩余部分移除。该再生过滤器可被容纳在分离装置内。
[0051] 本发明的第三方面提供了一种再生过滤器,包括至少一个过滤器,所述过滤器具有多层过滤材料,所述过滤器具有:第一过滤配置,其中所述多层过滤材料被保持在一起,使得它们被相对于彼此固定;以及第二再生配置,其中过滤材料层在至少一个点处被保持在一起,以致至少多层过滤材料中的一层的一部分可从过滤材料层的剩余部分间隔开用于再生;过滤器可从过滤区域,在过滤区域第一过滤器处于其过滤配置中,运动到再生区域,其从过滤区域间隔开且在再生区域处第一过滤器处于其再生配置中;以及过滤器再生器,用于再生过滤材料,过滤器再生器布置为当过滤器被容纳在再生区域中时运动至少一层过滤材料的至少一部分。
[0052] 这是有利的,因为脏过滤器(其已被用于过滤)可被运动到再生区域用于再生,且被再生过滤器可被运动到过滤区域且被用于过滤。
[0053] 优选地,在过滤配置和再生配置中,所述多层过滤材料沿一个边缘被保持在一起以形成册型过滤器。在使用中,当过滤器被容纳在再生区域中时过滤器再生器理想地运动至少一层过滤材料的至少一部分,以致沉积在过滤材料上的任何脏物从过滤材料被敲下或摇下。在特定实施例中,在使用中,当过滤器被容纳在再生区域中时过滤器再生器可重复接触一层或多层过滤材料的至少一部分,以致沉积在过滤材料上的任何脏物从过滤材料被敲下或摇下。
[0054] 在本发明的第三方面的替代实施例中,当过滤器在它的再生配置中时,过滤器可被连接到过滤器再生器,且在使用中该过滤器再生器运动过滤器的至少一部分以致过滤材料上的任何脏物被从过滤材料摇下。
[0055] 再生过滤器可包括多个过滤器。优选地,至少一个过滤器在过滤配置中,且至少一个过滤器在再生配置中。多个过滤器可在过滤配置中。多个过滤器可在再生配置中。
[0056] 该或每个过滤器可被安装在框架上,该框架可在过滤区域和再生区域之间运动。
[0057] 再生过滤器可移除地附接到器具。该或每个过滤器可响应再生过滤器被附接到器具的剩余部分而在过滤区域和再生区域之间运动。
[0058] 替代地或附加地,该或每个过滤器可响应再生过滤器被从器具的剩余部分移除而在过滤区域和再生区域之间运动。
[0059] 本发明的第四方面提供了一种再生过滤器,包括一段过滤材料,第一穿孔过滤器支撑件,第二穿孔过滤器支撑件,过滤器再生器和中间管道,该过滤材料的第一端部围绕第一穿孔过滤器支撑件缠绕以形成第一卷型过滤器,要被过滤的空气可行经穿过该第一卷型过滤器,过滤材料的第二端部围绕第二穿孔过滤器支撑件缠绕以形成第二卷型过滤器,要被过滤的空气可行经穿过该第二卷型过滤器,该再生过滤器被布置以致过滤材料可沿两个方向在第一和第二穿孔过滤器支撑件之间运动,当过滤材料在第一和第二穿孔过滤器支撑件之间运动时使得单层过滤材料行经穿过过滤器再生器,在再生过滤器使用期间,该中间管道被布置以引导穿过第一卷型过滤器的空气流到第二卷类过滤器的空气流用于过滤。
[0060] 这个布置是有利的,因为它意味着空气穿过过滤材料的所有层。要被清洁的空气必须穿过的过滤材料层的数量从不下降到某一数量之下。
[0061] 在优选实施例中,第一卷型过滤器被容纳在第一卷壳体内。优选地,第二卷型过滤器被容纳在第二卷壳体内。在这个实施例中,该中间管道可将第一卷壳体连接到第二卷壳体。使用该卷壳体和管道帮助确保所有空气穿过卷型过滤器。
[0062] 过滤器再生器被容纳在再生区域内。过滤器再生器可位于第一和第二卷型过滤器之间。过滤器再生器可包括一对相对刷子,在再生过滤器使用期间,单层过滤材料可行进穿过该对刷子之间。
[0063] 再生过滤器可包括空气入口。在优选实施例中,再生过滤器可包括空气出口。
[0064] 再生过滤器还可包括卷缠绕设备,用于将过滤材料在第一和第二穿孔过滤器支撑件之间运动。该卷缠绕设备可为至少一个电机。在优选实施例中,每个穿孔过滤器支撑件可被安装在驱动轴上,该驱动轴可被连接到关联电机。
[0065] 再生过滤器的过滤材料段可在每个端部处具有尾部区段,该尾部区段具有比过滤材料的剩余部分更大的孔尺寸。
[0066] 在特殊方面中,机器人表面处理器具具有上述再生过滤器。再生过滤器可被容纳在器具的主体部内。机器人表面处理器具还可包括分离装置,例如旋风分离装置。分离装置可从机器人表面处理器具的剩余部分移除。再生过滤器优选被固定到机器人表面处理器具。当再生过滤器被附接到机器人表面处理器具的剩余部分时再生可发生。在机器人表面处理器具的正常使用期间例如当它被用于清洁表面时再生可发生。替代地,或附加地,该机器人表面处理器具可被布置为具有再生周期,当机器人表面处理器具不正常使用时其可运行。例如这可被布置为当机器人表面处理器具再充电时发生。
[0067] 本发明的第五方面提供了一种器具,该器具包括用于过滤流体流动的再生过滤器,过滤器再生器,涡轮,该再生过滤器具有至少一个过滤器,该过滤器再生器用于再生该再生过滤器,涡轮用于驱动过滤器再生器,涡轮由在它使用期间行经穿过该器具的流体流驱动。
[0068] 这是有利的,因为不需要任何额外的电源驱动过滤器再生器。
[0069] 优选地,涡轮被布置为由在该器具使用期间从再生过滤器排出的流体驱动。在特殊实施例中,涡轮可被布置在再生过滤器的下游。涡轮可通过一个或多个齿轮连接到过滤器再生器。理想地,涡轮通过驱动轴连接到过滤器再生器。
[0070] 在优选实施例中,再生过滤器的所述至少一个过滤器可包括多个过滤材料层,过滤器具有第一过滤配置,其中多层过滤材料被保持在一起且要被清洁的空气行进穿过该多层过滤介质,和第二再生配置,其中至少多层过滤材料中的一层的一部分从过滤材料层的剩余部分间隔开用于再生。
[0071] 再生过滤器可包括多个过滤器。优选地,再生过滤器包括过滤区域和再生区域,其被间隔开。理想地,所述至少一个过滤器在过滤区域和再生区域之间运动。在使用中,过滤器再生器可运动再生过滤器的至少一部分,以致被沉积在再生过滤器上的任何脏物被从再生过滤器敲下或摇下。在特定实施例中,在器具使用中,过滤器再生器重复接触再生过滤器的至少一部分,以致被沉积在再生过滤器上的任何脏物可被从再生过滤器敲下或摇下。
[0072] 在替代实施例中,再生过滤器可被连接到过滤器再生器,且在使用中过滤器再生器可运动再生过滤器,以致被沉积在再生过滤器上的任何脏物可从再生过滤器摇下。
[0073] 本发明的第六方面提供了一种再生过滤器,包括一段材料,该段材料具有第一支撑尾部和过滤器部分,该材料的第一端部围绕第一穿孔支撑件缠绕以形成第一卷型过滤器,要被过滤的空气可穿过该第一卷型过滤器,该材料的第二端部被固定到过滤器支撑件,该再生过滤器被布置为使得材料可沿两个方向在第一穿孔支撑件和过滤器支撑件之间运动,当它在第一穿孔支撑件和过滤器支撑件之间运动时行进穿过过滤器再生器,该材料的第一端部形成第一支撑尾部,当该材料从第一穿孔支撑件解开时,该第一支撑尾部从第一穿孔支撑件至少延伸到过滤器再生器,该第一支撑件尾部具有比过滤器部分的结构更敞开的结构。
[0074] 这是有利的,因为支撑尾部不穿过过滤器再生器。如果该支撑尾部不具有比过滤器部分的结构更敞开的结构,那么该尾部部分将会被脏物和灰尘堵塞。更敞开的结构意味着脏物和灰尘不被陷落在尾部中。支撑尾部可具有非常敞开的结构,只要它保持足够强度以将过滤材料的剩余部分附接到过滤器支撑件。敞开的结构可允许至少400微米的颗粒穿过。
[0075] 第一支撑尾部具有比过滤器部分的孔尺寸更大的孔尺寸。本文中使用的术语“孔”是指任何孔或开口。
[0076] 在优选实施例中,该过滤器支撑件可为第二穿孔支撑件。理想地,该材料的第二端部可围绕第二穿孔支撑件缠绕,以形成第二卷型过滤器,要被过滤器的空气可穿过该第二卷型过滤器。这是有利的,因为它意味着空气可通过两个卷型过滤器过滤。在这个实施例中,第二支撑尾部可被提供。当该材料从第二穿孔支撑件解开时,该第二支撑尾部可从第二穿孔支撑件至少延伸到过滤器再生器。
[0077] 第一卷型过滤器可被容纳在第一卷壳体内。第二卷型过滤器可被容纳在第二卷壳体内。过滤器再生器被容纳在再生区域内。理想地,过滤器再生器可位于第一卷类过滤器和过滤器支撑件之间。
[0078] 优选地,过滤器再生器包括一对相对刷子,在再生过滤器使用期间,材料的过滤器部分可行进穿过该对刷子之间。再生过滤器优选还包括空气入口和/或空气出口。在一些实施例中,该再生过滤器还可包括卷绕设备,用于将该段材料在第一穿孔过滤器支撑件和过滤器支撑件之间运动。该卷绕设备可为至少一个电机。在优选实施例中,第一穿孔过滤器支撑件和过滤器支撑件可被安装在驱动轴上,该驱动轴可被连接到关联电机。
[0079] 支撑尾部可具有从2.5mm-15mm的孔尺寸。优选地,该支撑尾部具有从5mm-15mm的孔尺寸。优选地,支撑尾部中的孔布置为在围绕第一和第二穿孔支撑件缠绕的每层中重叠,以致存在无障碍通道用于空气流动穿过孔。支撑尾部中的孔可为方型,圆形或矩形形状。
[0080] 在优选实施例中,过滤部分可具有从1微米-400微米的孔尺寸。优选地,过滤器部分具有从3至1000孔每英寸(PPI)。在特殊实施例中,过滤部分的孔尺寸可沿过滤器部分的长度增加或减少。过滤部分的孔尺寸和/或支撑尾部的孔尺寸可沿下游方向增加。
[0081] 本发明的第七方面提供了一段材料,该材料具有第一支撑尾部和过滤部分,其中第一支撑尾部具有敞开的结构,且过滤部分具有过滤结构。
[0082] 如上关于第六方面所述,敞开结构可允许至少400微米的颗粒穿过。
[0083] 在优选实施例中,第一支撑尾部可被连接到过滤部分的第一端部,第二支撑尾部可被连接到过滤部分的第二端部。在优选实施例中,该支撑尾部可具有从2.5mm-15mm的孔尺寸。第一支撑尾部可具有比过滤部分的孔尺寸更大的孔尺寸。本文中使用的术语“孔”是指任何孔或开口。
[0084] 优选地,该支撑尾部具有从5mm-15mm的孔尺寸。
[0085] 在特殊实施例中,该支撑尾部可由平行布置的至少两条材料形成,以致一个或多个矩形孔被布置在材料条之间。其他布置也被设想,例如,有材料的条的对角或交叉布置。支撑尾部中的孔可为例如方形,菱形,圆形或矩形形状。
[0086] 优选地,过滤部分具有从1微米至400微米的孔尺寸。过滤部分可具有从3-1000孔每英寸(PPI)。过滤部分的孔尺寸可沿过滤部分的长度增加或减少。过滤部分的孔尺寸和/或支撑尾部的孔尺寸可沿下游方向增加。
[0087] 本发明的第八方面提供了一种表面处理器具,该表面处理器具包括再生过滤器和控制机构,该再生过滤器具有至少一个过滤器,该再生过滤器可移除地安装到表面处理器具,该至少一个过滤器可从过滤区域运动到再生区域,该过滤区域从再生区域间隔开,该控制机构用于响应再生过滤器从表面处理器具移除或被安装到该表面处理器具而将该至少一个过滤器在再生区域和过滤区域之间运动。
[0088] 这是有利的,因为它意味着至少一个过滤器在再生区域和过滤区域之间的运动在该器具的正常使用期间自动地发生,且用户不需要记住去运动过滤器。
[0089] 再生过滤器优选被容纳在分离装置内,该分离装置可移除地安装到表面处理器具的剩余部分。理想地,表面处理器具包括多个过滤器。优选地,至少一个过滤器位于再生区域中,且至少一个过滤器优选地位于过滤区域中。多个过滤器可在过滤区域中。多个过滤器可在再生区域中。
[0090] 该或每个过滤器可被安装在框架上,该框架可在过滤区域和再生区域之间运动。框架优选被连接到控制机构。控制机构可包括齿条和齿轮驱动机构。控制机构可包括棘爪驱动轴环。任何其他适当的控制机构可被使用。
[0091] 优选地,控制机构被布置以确保该至少一个过滤器在过滤区域和再生区域之间只能沿一个方向运动。
[0092] 在特定实施例中,当再生过滤器从表面处理器具的剩余部分移除时弹性构件可从再生过滤器向外突出,该弹性构件可被定位为使得当再生过滤器被安装到表面处理器具的剩余部分上时它将被压缩,弹性构件的压缩导致控制机构的激活,以引起至少一个过滤器在过滤区域和再生区域之间的运动。在这个实施例中,其中该再生过滤器被容纳在分离装置内,而分离装置可移除地安装到表面处理器具,当它从表面处理器具的剩余部分移除时,弹性构件可从分离装置向外突出。
[0093] 本发明的第九方面提供了一种表面处理器具,该表面处理器具包括:
[0094] 再生过滤器和过滤器再生器,再生过滤器包括一段过滤材料,其被滚为第一卷型过滤器和第二卷型过滤器,要被过滤的空气可穿过该第一和第二卷型过滤器,再生过滤器被布置以致该过滤材料可在第一和第二卷过滤器之间沿两个方向运动,在使用期间当它们在第一和第二卷型过滤器之间运动时使得过滤材料穿过过滤器再生器,该分离装置还包括至少一个驱动器件,在表面处理器具使用期间驱动器件将过滤材料在第一和第二卷之间不断地运动以致当它穿过过滤器再生器时该过滤材料不断地被再生。
[0095] 这个系统是有利的,因为当该器具在使用中时该过滤器不断地被再生。
[0096] 在优选实施例中,该驱动器件可包括至少一个电机。每个卷型过滤器可被安装在驱动轴上,该驱动轴可被连接到关联电机。该过滤器再生器优选包括一对相对刷子,单层过滤材料可穿过该对刷子之间。
[0097] 再生过滤器可被固定到表面处理器具,在该表面处理器具使用期间,该再生过滤器的再生不断地发生。
[0098] 第一卷型过滤器优选被安装在第一穿孔支撑件上。第二卷型过滤器优选被安装在第二穿孔支撑件上。第一卷型过滤器可被容纳在第一卷型过滤器壳体内。第二卷型过滤器可被容纳在第二卷型过滤器壳体内。
[0099] 表面处理器具还可包括至少一个旋风分离器。表面处理器具还可包括其它过滤器,例如泡沫过滤器,压紧过滤器,静电过滤器,袋式过滤器,折叠过滤器或任何其他适当的过滤器。至少一个旋风分离器和/或其它过滤器可被布置在再生过滤器的上游或下游。
[0100] 在具有至少一个旋风分离器的实施例中,该分离器能可移除地附接到表面处理器具的剩余部分。
[0101] 上述与本发明的第一方面相关的特征描述同样适用于本发明的第二到第九方面的每一个,反之亦然。在上述所有方面中,再生过滤器可形成器具的一部分,例如表面处理器具。它可例如形成机器人表面处理器具的一部分。

附图说明

[0102] 现在将以举例的方式参照附图描述本发明,附图中:
[0103] 图1是结合依照本发明的第一实施例的分离装置的筒式真空吸尘器,其中管道处于降低位置;
[0104] 图2是穿过图1中所示的真空吸尘器的横截面图;
[0105] 图3是图2中所示的分离装置的放大图,示出了再生过滤器;
[0106] 图4示出了沿线B-B截取的穿过图3中所示的分离装置的横截面图;
[0107] 图5示出了沿线C-C截取的穿过图3中所示的分离装置的横截面图;
[0108] 图6示出了第一实施例的分离装置的再生过滤器的过滤器册框架的透视图;
[0109] 图7示出了图3中所示的再生过滤器的放大视图;
[0110] 图8示出了沿线C-C截取的穿过图7中所示的再生过滤器的横截面图;
[0111] 图9示出了来自第一实施例的分离装置的再生过滤器的局部透视图;
[0112] 图10示出了第一实施例的分离装置的再生过滤器的过滤器笼的透视图;
[0113] 图11示出了图10中所示的过滤器笼的俯视图;
[0114] 图12示出了图1中所示的真空吸尘器的透视图,其中管道10在升起位置中;
[0115] 图13示出了穿过图12中所示的真空吸尘器的横截面图;
[0116] 图14示出了图13中所示的再生过滤器的端部视图;
[0117] 图15示出了图13中所示的再生过滤器的放大图;
[0118] 图16示出了沿线C-C截取的穿过图15中所示的再生过滤器的横截面图;
[0119] 图17示出了穿过依照本发明的第二实施例的分离装置的横截面图;
[0120] 图18示出了沿线B-B截取的穿过图17中所示的分离装置的横截面图;
[0121] 图19a示出了沿线C-C截取的穿过图17中所示的分离装置的横截面图;
[0122] 图19b示出了沿线D-D截取的穿过图17中所示的分离装置的横截面图;
[0123] 图20a示出了沿线G-G截取的穿过图17中所示的分离装置的横截面图;
[0124] 图20b示出了沿线L-L截取的穿过图17中所示的分离装置的横截面图;
[0125] 图21a示出了沿线E-E截取的穿过图17中所示的分离装置的横截面图;
[0126] 图21b示出了沿线F-F截取的穿过图17中所示的分离装置的横截面图;
[0127] 图22示出了第二实施例的过滤器笼的详细视图,其中驱动机构在关闭位置中;
[0128] 图23示出了图22中所示的过滤器笼的替代视图;
[0129] 图24示出了图23中所示的过滤器笼的平面图;
[0130] 图25示出了第二实施例的过滤器笼的平面图,其中驱动机构在打开位置中;
[0131] 图26示出了图25中所示的过滤器笼的透视图;
[0132] 图27示出了机器人真空吸尘器的前部透视图,其示出了依照本发明的第三实施例的分离装置;
[0133] 图28示出了图27中所示的真空吸尘器,其中旋风分离器被移除且灰尘收集抽屉打开;
[0134] 图29示出了图27中所示的真空吸尘器的后部透视图,其中外部壳体被移除;
[0135] 图30示出了图27中所示的真空吸尘器的前部透视图,其中外部壳体被移除;
[0136] 图31示出了图27中所示的真空吸尘器的下侧前部透视图,其中外部壳体被移除;
[0137] 图32示出了图27中所示的真空吸尘器的侧视图;
[0138] 图33示出了沿线C-C截取的穿过图32中所示的真空吸尘器的横截面图;
[0139] 图34示出了沿线J-J截取的穿过图32中所示的真空吸尘器的横截面图;
[0140] 图35示出了沿线F-F截取的穿过图32中所示的真空吸尘器的横截面图;
[0141] 图36示出了沿线H-G截取的穿过图35中所示的真空吸尘器的横截面视图G;
[0142] 图37示出了沿线H-G截取的穿过图35中所示的真空吸尘器的横截面视图H;
[0143] 图38示出了图35中所示的再生过滤器的侧视图;
[0144] 图39示出了沿线A-A截取的穿过图38中所示的再生过滤器的横截面图;
[0145] 图40示出了图38中所示的再生过滤器的透视图;以及
[0146] 图41示出了具有静态系统的分离装置的示意性图示。

具体实施方式

[0147] 贯穿说明书相同的参考标号指示相同的部分。
[0148] 参考图1至16,真空吸尘器被示出且通常由参考标号1指示。
[0149] 在图1,2,12和13中,真空吸尘器1包括主体部2和一对轮子4,该对轮子被安装在主体部2上用于跨要被清洁的表面操纵真空吸尘器1。主体部2和轮子4一起形成滚动组件11。滚动组件11是大体球形形状。轮子4是穹顶形形状。真空吸尘器1还包括可移除安装的分离装置6。
[0150] 通常,地面接合清洁器头(未示出)通过棒(未示出)被联接到软管(未示出)的末端,以帮助在要被清洁的表面上操纵脏空气入口(未示出)。软管通过入口管道13与分离装置6连通。电机和风扇单元8被容纳在主体部2内,用于抽吸携带灰尘的空气通过软管进入分离装置6。
[0151] 底座3被连接到主体部2。底座3大体为箭头形状,其从主体部2向前指向。底座3包括侧部边缘5,该侧部边缘从底座3的前部末端7向后且向外延伸。侧部边缘5的角度可帮助在转角,家具或从地面表面立起的其他物品周围操纵真空吸尘器1,当与这样的物品接触时,这些侧部边缘5趋于滑动抵靠立起的物品以在立起物品周围引导主体部2。
[0152] 用于接合地面表面的一对底座轮子9被连接到底座3。底座轮子9位于底座3的侧部边缘5的后方。每个底座轮子9被安装在安装到底座3的相应的轴上,以便底座轮子9可相对于轴旋转,且由此相对于底座3旋转。
[0153] 底座轮子9还提供支撑构件,当真空吸尘器1在地面表面上被操纵时其用于支撑滚动组件11。为了增强对滚动组件11的支撑,底座轮子9与地面的接触点之间的距离大于滚动组件11的轮子4与该地面的接触点之间的距离。
[0154] 分离装置6可被安装在主体部2,入口管道13,底座3或任何其他适当的部件上。在图1,2,12和13中,分离装置6被安装在入口管道13上。入口管道13包括入口区段15和出口区段17,该入口区段用于从软管和棒组件接收带脏物的流体流,该出口区段用于将入口区段15联接到分离装置6以将带脏物流体流输送到分离装置6中。入口区段15可枢转地连接到底座3,而出口区段17被连接到滚动组件11的主体部2,以便入口区段15可相对于出口区段17枢转。替代地,出口区段17可被连接到底座3。
[0155] 在使用中,通过软管被吸入分离装置6的带灰尘空气在分离装置6中灰尘颗粒被从空气分离。脏物和灰尘被收集在分离装置6内,而清洁的空气被引导穿过电机和风扇单元8,用于冷却目的,然后从真空吸尘器1发射。清洁的空气从分离装置6穿过管道10行进到电机和风扇单元8。
[0156] 形成真空吸尘器1的一部分的分离装置6在图2,3和13中更详细地示出。分离装置6的具体的整体形状可根据使用分离装置6的真空吸尘器1的类型而被改变。例如,分离装置6的整体长度可相对于分离装置6的直径增加或减少。
[0157] 分离装置6包括第一旋风分离单元12,第二旋风分离单元14和再生过滤器16。
[0158] 第一旋风分离单元12可观察到为位于外壁20(其大体圆柱形形状)和中间壁22(其定位在外壁20径向内部且从外壁间隔开)之间的环形腔18。第一旋风分离单元12的下部端部被基底24封闭,该基底24通过枢转件26可枢转地附接到外壁20且通过卡持部28保持在关闭位置中。在关闭位置中,基底24被密封抵靠壁20,22的下部端部。释放卡持部28允许基底24枢转远离外壁20和中间壁22,用于倒空第一旋风分离单元12和收集箱36。
[0159] 在这个实施例中,环形腔18的顶部部分形成第一旋风分离单元12的圆柱形旋风器30,且下部部分形成第一灰尘收集箱32。该第二旋风分离单元14包括并联布置的14个次级旋风器34,和第二灰尘收集箱36。
[0160] 带灰尘空气入口38被提供在圆柱形旋风器30的外壁20中。带灰尘空气入口38被相对于外壁20切向地布置,以便确保进入的带灰尘空气被迫遵循绕环形腔18的螺旋形路径行进。自第一旋风分离单元12的流体出口被提供为罩40的形式。罩40包括圆柱形壁42,大量穿孔41被形成在圆柱形壁42中。自第一旋风分离单元12的唯一流体出口由罩40中的穿孔41形成。
[0161] 通道44形成在罩40的下游。通道44与第二旋风分离单元14连通。通道44可为环形腔的形式(其通向次级旋风器34的入口46),或可为多个不同的空气通道的形式(其每个通向各自的次级旋风器34)。
[0162] 上壁48从涡流溢流器板50(其形成每个次级旋风器34的顶部表面)向下延伸。上壁48是管状的,且它的下部端部49被密封到内壁52。内壁52是管状的且定位在中间壁22的径向内部且从中间壁22间隔开,以在它们之间形成第二环形腔54。
[0163] 当基底24在其关闭位置时,内壁52可向下延伸到基底24且抵靠基底24密封。替代地,该壁52可不到达基底24且可与过滤器基板56结合。
[0164] 次级旋风器34以圆形大体或完全地布置在第一旋风分离单元12上方。次级旋风器34的一部分可由第一旋风分离单元12的顶部的一部分围绕。次级旋风器34被布置为环,其居中在第一旋风分离单元12的轴线上。每个次级旋风器34具有轴线,其向下且朝向第一旋风分离单元12的轴线倾斜。
[0165] 每个次级旋风器34是截头锥形形状,且包括锥形开口58,该开口58敞开入第二环形腔54的顶部。在使用中,通过次级旋风器34的分离的灰尘将穿过锥形开口58离开且将被收集在第二环形腔54中。第二环形腔54由此形成第二旋风分离单元14的第二灰尘收集箱36。涡流溢流器62被提供在每个次级旋风器34的上部端部处。涡流溢流器62可为涡流溢流器板50的一体部分或它们可穿过涡流溢流器板50。在所示实施例中,涡流溢流器62与再生过滤器16流体连接。
[0166] 在所示实施例中,涡流溢流器62通向气室65,该气室通向再生过滤器16。
[0167] 可看出再生过滤器16至少部分地由第一和第二旋风分离单元12,14围绕。再生过滤器16由此被沿着分离装置6的中心纵向布置,以致次级旋风器34和第二灰尘收集箱36的至少一部分围绕再生过滤器16。可看出次级旋风器34围绕再生过滤器16的顶部部分,且第二灰尘收集箱36围绕再生过滤器16的下部部分。也可看出,再生过滤器16从靠近涡流溢流器板50处延伸到靠近基底26处。第一旋风分离单元12围绕次级旋风器34的下部部分和第二灰尘收集箱36。由此,该第一旋风分离单元12也围绕再生过滤器16。第一旋风分离单元12,第二旋风分离单元14和再生过滤器16由此绕分离装置6的公共中心轴线同中心地布置。
[0168] 再生过滤器16更详细地示出在图4-11和14-16。再生过滤器16具有入口管道壳体68,其限定过滤器入口管道70。在图7和15中可最佳看出,过滤器入口管道70是细长的且沿分离装置6的长度延伸。从图4,5,8和16中可看出,当垂直于分离装置6的轴线X截取的横截面中观察时它还是马蹄形形状。过滤器入口管道70与气室65空气流连通。入口管道壳体68具有实心外壁72,底壁73,侧壁75和上部壁79。侧壁75沿固体外壁72的长度延伸且从固体外壁72朝向再生过滤器16的纵向轴线以直角突出。入口管道壳体68还包括带孔内壁,该内壁如图8中所示是肋部74和一对凸缘77的形式。肋部74同中心地位于固体外壁72内部,与其中心点相对且从底壁73的内部边缘立起。凸缘77从侧壁75悬垂,且沿环形路径(其遵循实心外壁72的曲线行进以形成马蹄形过滤器入口管道70)朝向肋部74指向。上部壁79结合肋部74和遵循环形路径行进的凸缘77的顶部边缘。
[0169] 在真空吸尘器1使用期间,空气可沿入口管道70的上部开口71在任何地方从气室65进入过滤器入口管道70的顶部。空气于是通过肋部74和凸缘77之间的带孔内壁从入口管道70流出。
[0170] 同中心地位于过滤器入口管道70内部的是过滤器笼76。过滤器笼在图8中可见。外部过滤器笼壁78(其也是马蹄形形状横截面)通过肋部74,上部壁79,底壁73和凸缘77被抵靠带孔内壁保持在位。这个外部过滤器笼壁78具有多个矩形孔81。内部过滤器笼壁80同中心地设置在外部过滤器笼壁78的内部。这个内部过滤器笼壁80具有多个矩形孔81。外部过滤器笼壁78上的孔81可具有与内部过滤器笼壁80上的孔81相当的形状,尺寸和/或位置。孔81当然能够是其他形状,比如方形或菱形。
[0171] 过滤器笼76被布置以致内部过滤器笼壁80从外部过滤器笼壁78间隔开一距离(其刚好足够宽以容纳圆柱管形过滤器册框架82的一部分)。过滤器笼76被布置为固定在位,以致该过滤器笼76不相对于分离装置6的剩余部分运动。过滤器册框架82被布置为使得当期望时其可在过滤器笼76内旋转。使得过滤器册框架82可被运动且过滤器笼76被固定的机构将在下文中详细地描述。
[0172] 过滤器册框架82最佳地示出在图6中。过滤器册框架82由敞开的圆柱形顶部部分84,敞开的圆柱形底部部分86和三个支撑柱88(其将顶部部分84连接到底部部分86)形成。
支撑柱88围绕过滤器册框架82的圆周相等地间隔开。被附接到支撑柱88的每个的是一对过滤器册90,其沿支撑柱88的长度轴向地间隔开。每个过滤器册90由多个过滤材料91的方形或矩形叶(其沿一个边缘绑定为书脊92)构成。叶可通过缝合,粘合或任何其他适当的技术绑定以形成脊92。这些多个层可结合工作,以捕捉比正常网眼孔尺寸小得多的灰尘颗粒。多个层可通过撞击捕捉灰尘颗粒(在某一尺寸之上的灰尘颗粒具有动量以致它们不能随着空气流绕过阻碍的纤维转向的情况下),或通过拦截捕捉灰尘颗粒(在灰尘颗粒具有足够尺寸使得即使它们随着空气流绕阻碍的纤维运动,它们仍然接触纤维且被捕捉的情况下)。
[0173] 书脊92被附接到支撑柱88。书脊92可通过包覆模制,缝合,粘合或其他任何适当的技术被附接到支撑柱88。总体而言,这意味着,有六个过滤器册90,布置为两个过滤器册90的三组,其中每个支撑柱88附接两个过滤器册。当然可能仅具有一个过滤器册90被附接到每个支撑柱88。还可能再生过滤器16能够具有少于或多于三个支撑柱88,每个支撑柱88可具有一个或多个过滤器册90。
[0174] 如图4,5和8所示,可看出在任何一个时间处,四个过滤器册90将被容纳在过滤器笼76的外部和内部笼壁78,80之间。当过滤器册90被容纳在过滤器笼76内时,它们在它们的内部和外部表面两者上由过滤器笼76的内部和外部壁78,80保持,其用于压缩过滤器册90的过滤材料91的叶,以最小化且优选移除过滤材料91的邻近叶之间的任何间隙。这些被压缩的过滤器册90在它们的过滤配置中,且可被用于过滤来自过滤器入口管道70的脏空气。
[0175] 内部过滤器笼壁80还形成分离装置6的出口管道94的一部分。当在沿垂直于分离装置的纵向轴线截取的横截面中观察时时,该出口管道94是管状的,但具有大体新月形(crescent moon shape)。出口管道94的局部圆柱形部分由内部过滤器笼壁80形成,且出口管道94的剩余部分由向内弯曲实心壁96形成。出口管道底板97,其在图7中可见,被定位在出口管道94的下部端部处,以密封它的下部端部,确保穿过再生过滤器16的所有空气穿过再生过滤器16的敞开的上部端部23排出。出口管道底板97还向外延伸以封闭过滤器笼76的下部端部以确保在使用中所有空气穿过过滤器册90。
[0176] 剩余的两个过滤器册90被容纳在再生腔98中。再生腔98是细长形的。被容纳在再生腔98内的过滤器册90不被压缩且由此在过滤材料91的一个或多个叶之间存在间隙。搅拌棒100沿再生腔98的长度延伸。搅拌棒100是细长的且蜿蜒的。在图7和15中,可看出搅拌棒100具有两个向外突出的搅拌部分102。搅拌棒100在它的基部处被安装在搅拌棒齿轮104上。这个搅拌棒齿轮104形成齿轮组的一部分,该齿轮组包括中间齿轮106和主齿轮108。该主齿轮108被安装在旋转轴110上,该旋转轴110穿过出口管道94的中心延伸且在它的上部端部处被连接到涡轮112。在真空吸尘器1的使用中,已行经穿过过滤器册90且进入出口管道94的空气向上行进穿过涡轮112。这导致旋转轴110旋转,其进而通过齿轮组导致搅拌棒
100旋转。当搅拌棒100旋转时,向外突出的搅拌部分102碰撞被容纳在再生腔98内的过滤器册90。任何灰尘(其驻留在过滤器册90上)可由此由搅拌棒100驱逐出。以这种方法,当真空吸尘器被用于清洁表面时,被容纳在再生腔98内的过滤器册90可被清洁和再生。由搅拌棒
100驱逐出的任何灰尘落入第二旋风分离单元14的灰尘收集腔36内。涡轮112和旋转轴110居中在分离装置6的纵向轴线上。
[0177] 在上述实施例的使用期间,带灰尘空气通过带灰尘空气入口38进入分离装置6,且由于入口38的切向布置,带灰尘空气遵循绕第一旋风分离单元12的外壁20的螺旋形路径行进。较大的脏物和灰尘颗粒通过在第一环形腔18里的旋风作用沉积并被收集在灰尘收集箱32中。部分清洁的带灰尘的空气经由罩40中的穿孔41离开环形腔18并进入通道44。部分清洁的带灰尘空气于是行进到次级旋风器34的切向入口46。旋风分离在次级旋风器34内部发生,从而仍然保留在空气流内的灰尘颗粒的一些的分离发生。在次级旋风器34中从空气流分离出的灰尘颗粒被沉积在第二环形腔54(其形成第二旋风分离单元14的第二灰尘收集箱
36的至少一部分)中。进一步清洁的带灰尘空气然后通过涡流溢流器62离开次级旋风器34进入气室65。进一步清洁的带灰尘空气然后进入再生过滤器16。进一步清洁的带灰尘空气离开气室65且沿着过滤器入口管道70行进。该空气于是行进穿过过滤器笼76且穿过过滤器册90(其被容纳在过滤器笼76内)。当带灰尘空气穿过过滤器册90时,脏物和灰尘被沉积在过滤材料91的叶上。进一步清洁的空气然后向上行进穿过出口导管94且穿过涡轮112。如上所述,空气穿过涡轮112使得旋转轴110旋转,其旋转主齿轮108。被连接到这个主齿轮108的齿轮组使得搅拌棒100旋转。当搅拌棒100旋转时,突出的搅拌部分102碰撞被容纳在再生腔
98内的过滤器册90的过滤材料的叶91。这个碰撞使得过滤器册90的叶91摇动和运动,导致被沉积在叶91上的任何脏物和灰尘被移除。灰尘和脏物从叶91落下进入第二灰尘收集箱
36。当真空吸尘器被用于清洁表面时,这个过滤和再生持续地发生。
[0178] 在任何一个时间,四个过滤器册90被定位在过滤器笼76内且两个过滤器册90被定位在再生腔98内用于再生。然而,可能运动过滤器册框架82和通过过滤器笼76附接到它的过滤器册90,以致被用于过滤的两个过滤器册90可被运动到再生腔98用于清洁。同时,已在再生腔98内被再生的过滤器册90可被运动入过滤器笼76以提供再生的过滤器用于过滤脏空气。在过滤器册框架80运动期间,该过滤器笼76保持静止。运动过滤器框架82且由此运动过滤器册90的这个操作可根据需要被重复多次。
[0179] 过滤器册框架82且由此过滤器册90的运动由当管道10被连接到分离装置6时激活的机构控制。这个机构将在下文中详细地描述。
[0180] 管道10具有空气入口19,空气入口19包括环形密封构件21,用于接合分离装置6的出口管道9的敞开的上部端部23。参考图1,2,12和13,可看出管道10的空气入口19为大体穹顶形,且通过再生过滤器16的敞开的上部端部23进入分离装置6以接合密封构件21,且与其形成气密密封。在装配期间,密封构件21可包覆模制到管道10,或以其他方式附接到管道10。替代地,密封构件21可与再生过滤器16的敞开的上部端部23一体形成或被附接到上部端部23。
[0181] 管道10大体为弯曲臂部的形式,在分离装置6和滚动组件11之间延伸。管道10可相对于分离装置6运动以允许分离装置6从真空吸尘器1移除。管道10的远离空气入口19的端部被可枢转地连接到滚动组件11的主体部2,以使管道10能够在降低位置(其中管道10与分离装置6流体连通)和升起位置(其允许分离装置6从真空吸尘器1移除)之间运动。
[0182] 管道10通过位于主体部2上的弹性构件被朝向升起位置偏压。主体部2包括被偏压的卡持部114,其用于抵抗弹性构件的力保持管道10在降低位置中,和卡持部释放按钮116。管道10包括手柄118,以当管道10被保持在它的降低位置中时允许真空吸尘器1由用户搬运。替代地,管道10可被用于搬运真空吸尘器1。卡持部114被布置为与被连接到管道10的指部120协作以保持管道10在它的降低位置中。卡持部释放按钮116的按下使得被偏压的卡持部114抵抗被应用到卡持部114的偏压力运动远离指部120,允许弹性构件将管道10运动到它的升起位置。
[0183] 图1和2示出了当管道10在它的降低位置时的真空吸尘器1,且图12和13示出了当管道10在它的升起位置时的真空吸尘器1。图1-11示出了当管道10在降低位置中时的真空吸尘器1的各个部件的位置。图12-16示出了当管道10在升起位置中时的真空吸尘器1的各个部件的位置。在图15中,其中管道10在它的升起位置中,可看出分离装置6具有顶部盖122,该顶部盖122被弹簧124向上推。顶部盖122具有三个臂部126,其朝向分离装置6的中心轴线向内且向上突出。这些臂部126可在图12和14中最佳可视。这些臂部126在螺杆轴盖128处连接。螺杆轴盖128容纳螺杆轴130的顶部部分。螺杆轴130和顶部盖122相对于彼此被固定,且关于分离装置6的轴线旋转锁定。
[0184] 顶部盖122具有三个突出部123,该突出部123从顶部盖122的外部表面125向外突出。这些可在图11中最佳可见。这些突出部123位于定位在防转锁131的内表面上三个相应的缩进部127内。这个防转锁131被固定到入口管道壳体68的实心外壁72。缩进部127是细长的,沿顶部盖122的长度平行于分离装置6的纵向轴线延伸,且允许突出部123有上下行进的空间。入口管道壳体68形成再生过滤器16的一部分。再生过滤器16是非圆柱形的,由此当它被放置在分离装置6内时,它不能够旋转,由此确保即使顶部盖122可上下运动,它和过滤器笼76不能旋转。
[0185] 螺杆轴130的下部端部位于棘爪驱动轴环132的内部轴134内。该棘爪驱动轴环132的内部轴134具有螺旋凹槽,其对应于螺杆轴130上的螺旋凹槽。棘爪驱动轴环132附接有三个棘爪驱动臂部136,其向下且远离分离装置6的纵向轴线延伸。这些棘爪驱动臂部可在图16中最佳可见。棘爪驱动臂部132结合棘爪驱动壳体140,其为环形形状且位于旋转笼138(其被附接到过滤器册框架82的顶部)内部。旋转笼138具有三个凸片142,其从它的内表面朝向棘爪驱动壳体140向内突出。棘爪驱动壳体140具有三个细长的弹性构件144,其在一个端部处被连接到棘爪驱动壳体140。细长的弹性构件144围绕棘爪驱动壳体140的内表面等距间隔开。每个细长的弹性构件144从棘爪驱动壳体140延伸,沿顺时针方向遵循棘爪驱动壳体140的环形曲线。在细长的弹性构件144的每个的端部处的是棘爪146。在图16中所示的配置中,其中管道10被升起,每个棘爪146的邻接表面148抵靠着相应的凸片142的止动表面
150。在这个布置中,过滤器册框架82被保持在固定位置。在这个位置中,分离装置6可从真空吸尘器1的剩余部分移除,且第一和第二灰尘收集箱32,36可通过释放卡持部28以允许基底24枢转远离外部,中间和内部壁20,22,52,由此允许被收集在灰尘收集箱32,36中的任何灰尘掉出分离装置6而被倒空。
[0186] 在用户倒空灰尘收集箱32,36之后,分离装置6必须在其再次被使用之前放回到真空吸尘器1的剩余部分。这个由此是运动过滤器册框架82以运动使用过的过滤器册90的至少一些进入再生腔98,同时运动过滤器册90(其在先前真空吸尘器操作期间被再生)入过滤器笼76用于使用为过滤器的良好的时间。当管道10被运动到它的关闭位置时,这个运动自动地发生。
[0187] 当管道10被向下推动时,空气入口19推动抵靠带弹簧的顶部盖122。顶部盖122上的向下推动使得螺杆轴130和内部轴134上的螺纹接合。如上所述,螺杆轴130关于分离装置6的轴线被固定且旋转锁定,由此当螺杆轴被向下推时,棘爪驱动轴环132、棘爪驱动臂部
136且由此棘爪驱动壳体140全部被迫沿顺时针方向旋转。棘爪146的邻接表面148由此在凸片142的止动表面150上推动,使得旋转笼138旋转。旋转笼138被附接到过滤器册框架82的顶部,且由此过滤器册框架82和它保持的过滤器册90也旋转。过度旋转阻止凸片139(其可在图6和10中最佳可视)被提供在旋转笼138的外表面上以阻止旋转笼138的过度旋转。这些过度旋转阻止凸片139接合从顶部盖122的最低边缘切除的缺口141。这可以在图10中清晰可见。
[0188] 过滤器册框架82的这个旋转导致两个轴向布置的过滤器册90从过滤器笼76运动入再生腔98,且被布置在再生腔98内的两个轴向布置的过滤器册90运动入过滤器笼76用于使用为过滤器。被运动入再生腔98的过滤器册90于是将在之后的真空清洁操作期间通过搅拌棒100的动作而被清洁。
[0189] 当用户想要移除分离装置6用于箱倒空时,他们将按下卡持部释放按钮116使得被偏压的卡持部114抵抗被应用到卡持部114的偏压力运动远离指部120,允许弹性构件将管道10运动到它的升起位置。当这发生时,弹簧124作用在螺杆轴盖128上,向上推螺杆轴盖,螺杆轴130和顶部盖122。螺杆轴130的向上运动使得棘爪驱动轴环132沿逆时针方向旋转。将棘爪驱动轴环132沿逆时针方向运动使得棘爪驱动壳体140和弹性构件144沿逆时针方向运动。在这个逆时针运动期间,细长的弹性构件144能够弯曲以致棘爪146运动越过凸片
142。这意味着棘爪146不被推动抵靠凸片142,且由此旋转笼138不旋转。这意味着当管道10被打开时,过滤器册90保持在固定位置。当管道10被关闭时,过滤器册90旋转。
[0190] 从描述中应理解为分离装置6包括旋风分离的两个不同级和通过过滤材料的叶91的不同过滤级。第一旋风分离单元12包括单个圆柱形旋风器30。外壁20的相对大的直径意味着比较大的脏物颗粒和碎屑将从空气中分离,因为应用于脏物和碎屑的离心力是相对小的。一些细小的灰尘同样将被分离。大部分较大的碎屑将被可靠地沉积在第一灰尘收集箱32中。
[0191] 存在14个次级旋风器34,每个次级旋风器34具有小于圆柱形旋风器30的直径,且由此能够分离比圆柱形旋风器30更细的脏物和灰尘颗粒。它们还具有额外的益处:要应对的空气已经被圆柱形旋风器30清洁过,所以携带的灰尘颗粒的数量和平均尺寸小于不同于此的其他情形。次级旋风器34的分离效率显著高于圆柱形旋风器30的分离效率,然而,一些小的颗粒将仍然穿过次级旋风器34到再生过滤器16。
[0192] 分离装置206的第二实施例被示出在图17-26中。从图17和18可看出旋风分离单元的布置非常相似于第一实施例中所示的旋风分离单元的布置。分离装置206包括第一旋风分离单元212,第二旋风分离单元214和再生过滤器216。同样,分离装置206的具体的整体形状可根据使用分离装置206的真空吸尘器1的类型而被改变。
[0193] 第一旋风分离单元212可观察到为位于外壁220(其大体圆柱形形状)和中间壁222(其定位在外壁220径向内部且从外壁间隔开)之间的环形腔218。第一旋风分离单元212的下部端部被基底224封闭,该基底24通过枢转件可枢转地附接到外壁220且通过卡持部保持在关闭位置中。在关闭位置中,基底224被密封抵靠壁220,222的下部端部。释放卡持部允许基底224枢转远离外壁220和中间壁222,用于倒空第一旋风分离单元212。
[0194] 在这个实施例中,环形腔218的顶部部分形成第一旋风分离单元212的圆柱形旋风器230,且下部部分形成第一灰尘收集箱232。该第二旋风分离单元214包括并联布置的12个次级旋风器234,和第二灰尘收集箱236。
[0195] 带灰尘空气入口238被提供在圆柱形旋风器230的外壁220中。带灰尘空气入口238被相对于外壁220切向地布置,以便确保进入的带灰尘空气被迫遵循绕环形腔218的螺旋形路径行进。自第一旋风分离单元212的流体出口被提供为罩240的形式。罩240包括圆柱形壁242,大量穿孔241被形成在圆柱形壁中。自第一旋风分离单元212的唯一流体出口由罩240中的穿孔241形成。
[0196] 通道244形成在罩240的下游。通道244与第二旋风分离单元214连通。通道244可为环形腔的形式(其通向次级旋风器234的入口246),或可为多个不同的空气通道的形式(其每个通向各自的次级旋风器234)。
[0197] 上壁248从涡流溢流器板250(其形成每个次级旋风器234的顶部表面)向下延伸。上壁248是管状的,且它的下部端部249被密封到内壁252。内壁252是管状的且定位在中间壁222的径向内部且从中间壁22间隔开,以在它们之间形成第二环形腔254。这个第二环形腔254形成第二灰尘收集箱236。
[0198] 当基底224在其关闭位置时,内壁252可向下延伸到基底224且抵靠基底24密封。替代地,内壁252可不到达基底224且可与过滤器基板结合。
[0199] 次级旋风器234以部分圆形大体或完全地布置在第一旋风分离单元212上方。次级旋风器234的一部分可由第一旋风分离单元212的顶部的一部分围绕。次级旋风器234被布置为马蹄形环,其居中在第一旋风分离单元212的轴线上。每个次级旋风器234具有轴线,其向下且朝向第一旋风分离单元212的纵向轴线的轴线倾斜。
[0200] 每个次级旋风器234是截头锥形形状,且包括锥形开口258,该开口58敞开入第二灰尘收集箱236的顶部。在使用中,通过次级旋风器234的分离的灰尘将穿过锥形开口258离开且将被收集在第二灰尘收集箱236中。涡流溢流器被提供在每个次级旋风器234的上部端部处。涡流溢流器可为涡流溢流器板250的一体部分或它们可穿过涡流溢流器板250。涡流溢流器与再生过滤器216流体连接。涡流溢流器通向气室265,该气室通向再生过滤器216。
[0201] 可看出再生过滤器216至少部分地由第一和第二旋风分离单元212,214围绕。再生过滤器216由此被沿着分离装置206的中心纵向布置,以致次级旋风器234和第二灰尘收集箱236的至少一部分围绕再生过滤器216。可看出次级旋风器234围绕再生过滤器216的顶部部分,且第二灰尘收集箱236的上部部分围绕再生过滤器216的下部部分。第一旋风分离单元212围绕次级旋风器234的下部部分和第二灰尘收集箱236。由此,该第一旋风分离单元212也围绕再生过滤器216的一部分。第一旋风分离单元212,第二旋风分离单元214和再生过滤器216由此绕分离装置206的公共中心轴线同中心地布置。
[0202] 再生过滤器216具有入口管道壳体268,其限定过滤器入口管道270。在图17和18中可最佳看出,过滤器入口管道270是细长的且沿再生过滤器216的长度延伸。然而,当沿垂直于分离装置206的纵向轴线截取的横截面观察时,它是马蹄形的。该马蹄形可在图20b和21a中最佳可视。过滤器入口管道270与气室265空气流连通。入口管道壳体268由数个部件形成。实心外壁272的一部分形成入口管道壳体268的外壁。入口管道壳体还具有底壁273。实心外壁272是大体圆柱形的但仅其一部分形成入口管道壳体268的一部分,如图20b和21a中可见。实心外壁227的纵向轴线与分离装置206的纵向轴线对齐。实心外壁272内部定位的是外部过滤器笼壁278。在此实施例中,外部过滤器笼壁278的一部分还形成入口管道壳体268的内壁。在此实施例中,该外部过滤器笼壁278(其为大体圆柱形)被布置以致它可相对于实心外壁272运动。这意味着形成入口管道壳体268的内壁的外部过滤器笼壁278一部分随着外部过滤器笼壁278运动而改变。
[0203] 外部过滤器笼壁278在图22,23和26中可见。可见外部过滤器笼壁278包括两个过滤区域279,该两个过滤区域279具有多个矩形孔281。过滤区域279每个被附接到相应的过滤器册保持器283。这些过滤器册保持器283也形成外部过滤器笼壁278的一部分。过滤器册保持器283每个容纳曲柄杆285。每个曲柄杆285的顶部端部278穿过在每个过滤器册保持器283的顶部处的上部轴承233,且每个曲柄杆285的下部端部289穿过在每个过滤器册保持器
283的底部处的下部轴承235。上部和下部轴承233,235彼此相对。曲柄杆285自由地在上部和下部轴承233,235内旋转。过滤器册290被附接到每个曲柄杆285。
[0204] 在任何一个时间处,该矩形孔281的过滤区域279中的一个连同它相应的过滤器册保持器283将形成入口管道壳体268的内壁。矩形孔281的另一过滤区域279和它相应的过滤器册保持器283将被容纳在实心外壁272的界限内,但将不形成入口管道壳体268的一部分。它们将反而位于再生区域298内。入口管道密封件237被定位在实心外壁272和过滤器册保持器283的每个的第一端部292之间。这些入口管道密封件237确保从气室265进入过滤器入口管道270的所有空气穿过形成入口管道壳体268的内壁的矩形孔281。
[0205] 内部过滤器笼壁280同中心地设置在外部过滤器笼壁278的内部。内部过滤器笼壁280具有多个矩形孔(未示出),其被布置为与外部过滤器笼壁278上的多个矩形孔281相对。
外部过滤器笼壁278上的孔281可具有与内部笼壁280上的孔相当的形状,尺寸和/或位置。
孔当然能够是其他形状,比如方形或菱形。
[0206] 内部过滤器笼壁280和外部过滤器笼壁278的一部分被布置使得内部过滤器笼壁280从外部过滤器笼壁278上的孔281间隔开一距离,其刚好足够宽以容纳过滤器册290。如上所述,外部过滤器笼壁278被布置为旋转以致它可相对于分离装置206的剩余部分运动。
外部过滤器笼壁278的这个旋转还使得过滤器册290(其被附接到外部过滤器笼壁278)旋转。可使得外部过滤器笼壁278运动的机构将在下文详细地描述。
[0207] 每个过滤器册290由多个过滤材料291的方形或矩形叶(其沿一个边缘绑定为书脊293)构成。叶可通过缝合,粘合或任何其他适当的技术绑定以形成脊293。书脊293被附接到曲柄杆285。书脊293可通过包覆模制,缝合,粘合或其他任何适当的技术被附接到曲柄杆
285。总体而言,这意味着,有两个过滤器册290在再生过滤器216中,其中每个曲柄杆285附接一个过滤器册290。书脊293允许曲柄杆285自由地旋转。当然可能具有多于一个过滤器册
290被附接到每个曲柄杆285。还可能再生过滤器216能够具有多于两个曲柄杆285,每个曲柄杆285可具有一个或多个过滤器册290。
[0208] 如图20b和21a所示的实施例中,可看出在任何一个时间处,一个过滤器册290将被容纳在过滤区域295中的外部和内部笼壁278,280之间。当过滤器册290被容纳在过滤区域275内时,它们在它们的内部和外部表面两者上由内部和外部壁278,280保持,其用于压缩过滤器册290的过滤材料291的叶,以最小化且优选移除邻近叶291之间的任何间隙。这个被压缩的过滤器册290在过滤配置中,且可被用于过滤来自过滤器入口管道270的脏空气。
[0209] 内部过滤器笼壁280还形成分离装置206的出口管道294的一部分。当在沿垂直于分离装置206的纵向轴线截取的横截面中观察时时,该出口管道294是管状的,但具有大体新月形(crescent moon shape)。出口管道294的局部圆柱形部分由内部过滤器笼壁280形成,且出口管道的剩余部分由向内弯曲实心壁296形成。出口管道底板297被定位在出口管道294的下部端部处,以密封它的下部端部,确保穿过再生过滤器216的所有空气穿过过滤器223的敞开的上部端部排出。出口管道底板297(图17中最佳可视)还向外延伸以封闭外部和内部笼壁278,280的下部端部,以确保在使用中所有空气穿过过滤器册290。
[0210] 剩余过滤器册290被容纳在再生区域298内。再生区域298是细长形的。被容纳在再生区域298内的过滤器册290不被压缩且由此在过滤材料291的一个或多个叶之间存在间隙。曲柄杆285沿再生区域298的长度延伸。曲柄杆285在它的下部端部289处被固定到曲柄杆齿轮204上。这个曲柄杆齿轮204形成齿轮组的一部分,该齿轮组包括中间齿轮205和主齿轮208。这些齿轮可在图21b中最佳可见。每个曲柄杆285具有曲柄杆齿轮204,但仅仅位于再生区域298内的曲柄杆齿轮204与齿轮组206,208的剩余部分联接。该主齿轮208被安装在旋转轴210上,该旋转轴110穿过出口管道294的中心延伸且在它的上部端部处被连接到涡轮213。在真空吸尘器1的使用中,已行经穿过过滤器册290且进入出口管道294的空气向上行进穿过涡轮213。这导致旋转轴210旋转,其进而通过齿轮组导致被容纳在再生区域298内的曲柄杆285旋转。当曲柄杆285旋转时,过滤器册290摇动。任何灰尘(其驻留在过滤器册290上)可由此被驱逐出。以这个方式,被容纳在再生区域298内的过滤器册290可被清洁和再生。通过过滤器册290的摇动驱逐出的任何灰尘落入第三灰尘收集腔299。涡轮213和旋转轴
210居中在分离装置206的纵向轴线上。
[0211] 在上述实施例的使用期间,带灰尘空气通过带灰尘空气入口238进入分离装置206,且由于入口238的切向布置,带灰尘空气遵循绕第一旋风分离单元212的外壁220的螺旋形路径行进。较大的脏物和灰尘颗粒通过在第一环形腔218里的旋风作用沉积并被收集在灰尘收集箱232中。部分清洁的带灰尘的空气经由罩240中的穿孔241离开环形腔218并进入通道244。部分清洁的带灰尘空气于是行进到次级旋风器234的切向入口246。旋风分离在次级旋风器234内部发生,从而仍然保留在空气流内的灰尘颗粒的一些的分离发生。在次级旋风器234中从空气流分离出的灰尘颗粒被沉积在第二环形腔254(其形成第二旋风分离单元214的第二灰尘收集箱236的至少一部分)中。进一步清洁的带灰尘空气然后离开次级旋风器234进入气室265。进一步清洁的带灰尘空气然后进入再生过滤器216。
[0212] 进一步清洁的带灰尘空气离开气室265且沿着过滤器入口管道270行进。空气然后行进穿过过滤器册290(其被容纳在过滤区域295内、内部和外部过滤器笼壁278,280之间)。当带灰尘空气穿过过滤器册290时,脏物和灰尘被沉积在过滤材料291的叶上。进一步清洁的空气然后向上行进穿过出口导管294且穿过涡轮213。如上所述,空气穿过涡轮213使得旋转轴210旋转,其进而旋转主齿轮208。主齿轮208的旋转使得中间齿轮旋转,其进而引起再生区域298内的曲柄杆齿轮204的旋转。这进而引起曲柄杆285旋转。当曲柄杆285旋转时,过滤器册290的过滤材料的叶291被摇动。这个摇动使得叶291上沉积的脏物和灰尘被移除。灰尘和脏物从叶291落下进入第三灰尘收集箱299。当真空吸尘器被用于清洁表面时,这个过滤和再生持续地发生。
[0213] 在任何一个时间,一个过滤器册290被定位在过滤区域295内且一个过滤器册290被定位于再生区域298内用于再生。然而,可能运动过滤器册框架278和它附接的过滤器册290,以致被用于过滤的过滤器册290可被运动到再生区域298用于清洁。同时,已在再生区域298内被再生的过滤器册290可被运动入过滤区域295以提供再生的过滤器用于过滤脏空气。外壁272和内部过滤器笼壁280在这个运动期间保持静止。运动过滤器册290的这个操作可根据需要被重复许多次。
[0214] 外部过滤器笼壁278且由此过滤器册290的运动由当分离装置206被连接到真空吸尘器的剩余部分时激活的机构控制。这个机构将在下文中详细地描述。
[0215] 分离装置206具有齿条和齿轮驱动器件,用于控制过滤器册290的运动。图19-24示出了齿条和齿轮驱动器件,当分离装置206被附接到真空吸尘器1的剩余部分时该器件在它的关闭位置。图25和26示出了齿条和齿轮驱动器件,当分离装置206从真空吸尘器1的剩余部分移除时该器件在它的打开位置。分离装置206可通过按下释放按钮(未示出)从真空吸尘器1的剩余部分移除。
[0216] 在图25和26中,其中该齿条和齿轮驱动器件被示出在它的打开位置中,可看出弹簧300作用在齿条301上,使得齿条301被迫入突出位置。可看出销302被附接到齿条301的前部端部303。这个销302从分离装置206的顶部侧表面突出。齿条301与小齿轮304接触。小齿轮304由杆305直接地链接到第二中间齿轮306。该第二中间齿轮306直接地布置在小齿轮304下方。第二中间齿轮306的齿307啮合位于棘爪驱动轴环316上的齿307,该轴环被布置为周向地围绕外部过滤器笼壁278的圆柱形外部上表面308。
[0217] 为了从图25和26中的打开位置运动到图19-24中所示的关闭位置,分离装置206可被附接到真空吸尘器1的剩余部分。在附接过程期间,销302将接触真空吸尘器1的剩余部分的一部分,且将抵抗弹簧300的作用而被向内推动,使得齿条301向内运动。齿条301的齿307啮合小齿轮304上的齿307,使得小齿轮旋转。小齿轮304的旋转使得第二中间齿轮306(小齿轮304通过杆305附接到第二中间齿轮306)旋转。这个旋转进而引起棘爪驱动轴环316的旋转。
[0218] 一对棘爪310位于棘爪驱动轴环316的顶部上。当棘爪驱动轴环316旋转时,棘爪310也被迫沿顺时针方向旋转。外部过滤器笼壁278的圆柱形外部上表面308被定位在棘爪
310的周向内部,且具有两个凸片313(其从它的外表面朝向棘爪310向外突出)。在齿条和齿轮驱动器件被示出在它的关闭位置的情况下,可看出每个棘爪310的邻接表面314靠在相应的凸片313的止动表面315之上。当棘爪驱动轴环316旋转且棘爪310旋转时,该棘爪310被推动抵靠凸片313使得外部过滤器笼壁278旋转。当外部过滤器笼壁278旋转时,使用的过滤器册290运动入再生区域298,同时在先前真空吸尘器清洁操作期间被再生的过滤器册290被运动入过滤区域295用于使用为过滤器。当分离装置206停驻在真空吸尘器1的剩余部分上时,当销302抵抗弹簧300的作用被向内运动时,这个运动自动地发生。
[0219] 当分离装置206从真空吸尘器的剩余部分移除时,例如使得第一,第二和第三灰尘收集箱232,236,299可被倒空,销在弹簧300的力的作用下向外运动使得棘爪310沿逆时针方向旋转。棘爪310是带弹簧的,且由此当棘爪驱动轴环316沿逆时针方向运动时,能够弯曲以致棘爪310可运动越过凸片313。这个机构由此确保外部过滤器笼壁278和附接的过滤器册290可仅沿一个方向运动。这意味着当分离装置206从真空吸尘器1的剩余部分移除时,过滤器册290保持在固定位置。当分离装置206被放回到真空吸尘器1的剩余部分上时,过滤器册290旋转以致它们运动一个位置。
[0220] 同样,从描述中应理解为分离装置206包括旋风分离的两个不同级和通过过滤材料的叶291的不同过滤级。第一旋风分离单元212包括单个圆柱形旋风器230。外壁220的相对大的直径意味着比较大的脏物颗粒和碎屑将从空气中分离,因为应用于脏物和碎屑的离心力是相对小的。一些细小的灰尘同样将被分离。大部分较大的碎屑将被可靠地沉积在第一灰尘收集箱232中。
[0221] 存在14个次级旋风器234,每个次级旋风器34具有小于圆柱形旋风器230的直径,且由此能够分离比圆柱形旋风器230更细的脏物和灰尘颗粒。它们还具有额外的益处:要应对的空气已经被圆柱形旋风器230清洁过,所以携带的灰尘颗粒的数量和平均尺寸小于不同于此的其他情形。次级旋风器234的分离效率显著高于圆柱形旋风器230的分离效率,然而,一些小的颗粒将仍然穿过次级旋风器234到再生过滤器216。
[0222] 在上述两个实施例中,过滤材料91,291可由任何适当的材料,例如塑料材料,比如尼龙,聚酯或聚丙烯形成,替代地该叶可由纸,纤维素,棉花或金属形成。
[0223] 过滤器叶91,291的材料优选具有从3,或10,或50,或100,或500,或1000孔每英寸(PPI),具有从1微米,或2微米,或3微米,或10微米,或50微米,或100微米,或200微米,或400微米的孔直径的范围内的孔尺寸。
[0224] 在优选实施例中,每个过滤器册90,290具有过滤材料91,291的2,或5,或10,或20,或50,或100叶。
[0225] 第三实施例被示出在图27-40中。该第三实施例示出了一种自主表面处理器具,该自主表面处理器具为机器人真空吸尘器400的形式(下文中称为‘机器人’),包括主体部,该主体部具有四个主要组件:底座401(图32中最佳可见),体部402,大致圆形外罩403和旋风分离装置406,体部402被承载在底座401上,该大致圆形外罩403可安装在底座401上且为机器人400提供大致圆形轮廓,该旋风分离装置406被承载在体部6的前部上且其突出穿过外罩403的互补形状的切口404。
[0226] 为了本实施例的目的,机器人400的情景中的术语“前”和“后”将按操作期间它的前进和倒退方向的意思来使用,其中旋风分离装置406被定位在机器人400的前部。从图27和28中可理解,机器人400的主体部具有大体相对短圆形圆筒的形式,主要为了机动性原因。
[0227] 底座401支撑机器人400的数个部件。底座401的主要功能是用作驱动平台和承载清洁装置,该清洁装置用于清洁机器人400行驶过的表面。
[0228] 底座401具有一对凹处407,408(如图35中最佳可见),相应的牵引单元409,410可安装在凹处407,408中。
[0229] 一对牵引单元409、410定位于底座401的相对侧上,且可独立地操作使机器人400能根据牵引单元409、410的旋转的速度和方向被沿前进和倒退方向驱动,以随着弯曲的路径朝向左或右行进,或当场沿任一方向转动。这样的布置有时被称为差动驱动,然而由于任何适当的牵引单元都可被使用,牵引单元409,410的细节将不在本文中详细地描述。为了简化目的,牵引单元不示出在所有图中。
[0230] 底座401的相对狭窄的前部部分向后部部分22变宽,该后部部分包括表面处理组件411或‘清洁器头’,其具有大致圆柱形形式且其横向地跨底座401的大致整个宽度延伸。
[0231] 还参考图31,其示出了机器人400的底面,清洁器头411限定矩形抽吸开口412,该开口26面向支撑表面且当机器人400运行时脏物和碎屑被抽吸进入该开口26。细长的刷棒413被容纳在清洁器头411内且以传统的方式通过减速齿轮和驱动带配置由电动机(未示出)驱动,虽然其他驱动配置如完全齿轮传动也被设想。
[0232] 底座401的底面还可带有多个从动轮或滚子,当它停靠在地面表面上或运动越过地面表面时,该从动轮或滚子进一步提供用于底座401的支撑点。
[0233] 在清洁操作期间被抽吸进入抽吸开口412的污垢通过刷棒出口管道415离开清洁头411,该管道从清洁头411向上延伸且通过约90°的弧度朝向底座401的前方弯曲直到它面朝前进方向。刷棒出口管道415在刷棒管道出口417处终止。刷棒管道出口417位于切口404的侧壁上。切口404可具有大体圆形基底平台(未示出)。切口404和平台(如果存在)提供了对接部,旋风分离装置406在使用中可被安装入该对接部,且可从对接部脱离接合用于排空目的。
[0234] 应当指出的是在这个实施例中,旋风分离装置406包括旋风分离器,如WO2008/009886中公开的,其内容通过引用并入于此。旋风分离装置406的配置是已知的,且不将在本文中进行任何更详细地描述,也就是说该旋风分离装置406包括旋风分离的两个不同的级。第一旋风分离单元418包括单个圆柱形旋风器419。外壁420的相对大的直径意味着比较大的脏物颗粒和碎屑将从空气中分离,因为应用于脏物和碎屑的离心力是相对小的。一些细小的灰尘同样将被分离。大部分较大的碎屑将被可靠地沉积在第一灰尘收集箱421中。
[0235] 第二旋风分离单元473中存在11个次级旋风器422,每个次级旋风器422具有小于圆柱形旋风器419的直径,且由此能够分离比圆柱形旋风器419更细的脏物和灰尘颗粒。它们还具有额外的益处:要应对的空气已经被圆柱形旋风器419清洁过,所以携带的灰尘颗粒的数量和平均尺寸小于不同于此的其他情形。次级旋风器422的分离效率显著高于圆柱形旋风器419的分离效率,然而,一些小的颗粒将仍然穿过次级旋风器419。下游的再生过滤器416将由此是有用的。在此实施例中,再生过滤器被容纳在机器人400的主体部402中。它不被容纳在旋风分离装置406内。旋风分离装置406可从机器人400的剩余部分移除。再生过滤器416被固定在主体部内。再生过滤器416不可随着或不随着旋风分离装置406移除。在此实施例中,整个机器人可被认为是“分离装置”。
[0236] 旋风分离装置406可通过适当的机构(比如快速释放紧固器件)可移除地附接到体部402,以当旋风分离装置406变满时允许旋风分离装置406被倒空。旋风分离装置406的性质不是本发明的重点且旋风分离装置可被在本领域中所知的其他装置(例如过滤膜,多孔箱式过滤器或一些其他形式的分离装置)代替以从空气流分离污垢。还可想到机器人400完全不具有这样的分离装置,且替代地全部依靠它的再生过滤器416从脏空气流中移除脏物和灰尘。
[0237] 当旋风分离装置406被接合在切口404中时,旋风分离装置406的脏空气入口423与刷棒管道出口417接触,以致刷棒出口管道415将脏空气从清洁器头411传送到旋风分离装置406。
[0238] 脏空气通过空气流产生器(在这个实施例中是电动马达和风扇单元(424))被抽吸穿过旋风分离装置406,该空气流产生器位于马达外壳425中。旋风分离装置406还包括清洁空气出口426,当旋风分离装置406接合在切口404中时,其与再生过滤器入口管道的嘴部428对准。在使用中,抽吸电机和风扇单元424可操作以在电机入口嘴部的区域建立低压,从而沿空气流路径从清洁器头411的抽吸开口412抽吸脏空气,穿过刷棒出口管道415,旋风分离装置406和清洁空气出口426,进入再生过滤器416。
[0239] 除了再生过滤器入口管道427之外,再生过滤器还包括第一过滤区域429,第二过滤区域430和再生区域431。过滤材料432的长度被布置以致它在两端处卷起,以在第一过滤区域429中形成第一过滤卷433且在第二过滤区域430中形成第二过滤卷434。该第一和第二过滤卷433,434通过单层过滤材料432(其被布置为穿过再生区域431)连接。如图33-37中所示,第一和第二卷433,434被间隔开,且被竖直地布置以使它们的纵向轴线平行于彼此且下部端部在相同平面上。再生区域431被布置在第一过滤区域429和第二过滤区域430之间。
[0240] 第一和第二卷433,434的结构导致多层过滤材料432被保持在一起,来自旋风分离装置406的空气流必须穿过该结构。第一过滤卷433被安装在第一支撑框架435上。第一支撑框架435在图40中可见。支撑框架435是线轴形状,因为它具有圆柱形中心管437和一对相对凸缘438,其从圆柱形中心管437向外延伸以在其间形成空间,过滤材料432可被缠绕在该空间上。相对的凸缘438是实心的,但圆柱形中心管437具有多个空气流孔440,其在本实施例中示出为方形形状。空气流孔440当然能够为任何适当的形状,只要圆柱形中心管437足够刚硬以支撑第一过滤卷433,而且具有足够的空气流孔440以确保它不给空气流提供太大阻碍且优选不会被脏物和灰尘堵塞。
[0241] 为了帮助确保圆柱形中心管437的刚硬度,三个支撑壁441被提供在圆柱形中心管437内。支撑壁441沿圆柱形中心管437的长度延伸,且围绕它的内壁等距地间隔开。该支撑壁441从圆柱形中心管437的内壁向内延伸以在圆柱形中心管437的纵向轴线处相会。这些支撑壁441有效地切割圆柱形中心管437的内部为三个部分。为了确保空气可自由地在这三个部分之间流动,支撑壁441还具有多个内部孔442(其在所示实施例中为方形形状)。内部孔442当然能够为任何适当的形状只要支撑壁441保持足够刚硬,以支撑圆柱形中心管437而不给空气流提供太大障碍且优选将不会被脏物和灰尘阻塞。
[0242] 过滤材料432的第一末端外部边缘468被附接到圆柱形中心管437,且一段过滤材料432被缠绕到圆柱形中心管437上以提供多层过滤材料432,其被紧密地保持在一起以便过滤材料的每个后面的层与过滤材料的先前的层接触。以这种方式,第一过滤卷433上的过滤材料432的层之间的间隙被最小化或被消除。第一过滤卷433(其被安装在第一支撑框架435上)被容纳在第一卷壳体443内。第一卷壳体443具有第一卷壳体入口444,其被连接到再生过滤器入口管道427的出口。第一卷壳体443还具有第一卷壳体出口446。第一卷壳体出口
446被连接到第一卷出口447。第一卷出口447是圆柱形中心管437的最低端部。气密密封(未示出)被提供在第一卷壳体443的内部下表面和下部相对凸缘438的下表面之间。这个密封确保进入第一卷壳体443的任何空气都穿过第一过滤卷433且从第一卷壳体出口446排出。
[0243] 从第一卷壳体443排出的空气进入中间管道448,其引导空气朝向第二卷壳体449。第二卷壳体449容纳第二过滤卷434和第二支撑框架436,第二过滤卷434被安装在该第二支撑框架436上。第二支撑框架436以与第一支撑框架435相同的方式被构造。第二卷壳体449具有第二卷壳体入口451,其被连接到中间管道448的出口。中间管道448将第一卷壳体443的底部连接到第二卷壳体449的底部。
[0244] 在第二卷壳体449中,进入的空气被迫行进穿过第二过滤卷434。空气然后行进穿过圆柱形中心管437中的孔440且然后从第二卷出口452流出。空气然后穿过第二卷壳体出口453进入排气管454,其使得清洁空气朝向电机和风扇单元424流动。一旦该空气已穿过电机和风扇单元424,它穿过电机后过滤器455,然后从机器人400排出。
[0245] 第一过滤卷433和第二过滤卷434两者被安装在驱动轴456,457上。这些驱动轴456,457被沿相同的第一和第二过滤卷433,434的纵向轴线布置。可看出第一支撑框架435的支撑壁441被安装在第一驱动轴456上。第二支撑框架436的支撑壁441被安装在第二驱动轴457上。第一驱动轴456突出穿过第一卷壳体443的下表面,且第二驱动轴457突出穿过第二卷壳体449的下表面。密封(未示出)被提供以帮助阻止驱动轴456,457和相应壳体443,
449之间的空气泄漏。驱动轴456,457的下部端部通过第一和第二传动带460,461被连接到相应的第一和第二驱动电机458,459。该第一和第二驱动电机458,459被布置为使得它们每个能依照需求的沿任一方向转动它们的相应的驱动轴456,457。例如,如果机器人400启动它的操作,其中所有过滤材料432被缠绕入第一过滤卷433,其中仅留下足够的过滤材料432未缠绕,以穿过再生区域431且附接到第二支撑框架436的圆柱形中心管437,那么从这个开始位置,第二驱动电机459可激活以沿顺时针方向转动第二驱动轴457(当在分离装置406最接近你的情况下观察机器人时)。当第二驱动电机459沿顺时针方向转动第二驱动轴457时,过滤材料432开始从第一支撑框架435解开且缠绕到第二支撑框架436上,在其路上穿过再生区域431。
[0246] 在机器人开始它的操作,其中所有过滤材料432被缠绕入第二过滤卷434,而仅留下足够的过滤材料未缠绕,以穿过再生区域431且附接到第一支撑框架435上的圆柱形中心管437的情况下,可反向工作。从这个开始位置,第一驱动电机458可激活以沿逆时针方向转动第一驱动轴456(当在分离装置406最接近你的情况下观察机器人时)。当第一驱动电机458沿逆时针方向转动第一驱动轴456时,过滤材料432开始从第二支撑框架436解开且缠绕到第一支撑框架435上,在路上穿过再生区域431。过滤材料432在第一和第二过滤区域429,
430之间的这个前后运动可在机器人操作期间不断地发生,或它被规划为在某一时刻发生,例如当机器人停靠以再充电它的电池462时。
[0247] 由于在机器人400使用期间,所有空气流必须穿过第一过滤卷433和第二过滤卷434两者,哪个过滤卷433,434具有大多数层过滤材料432并不重要,因为空气将穿过的过滤材料432的总数层将从不下降到最小层数值之下。
[0248] 再生区域431包括再生壳体463。在再生壳体463内的是一对相对的刷子464,其具有与过滤材料432相同的高度,且被布置为隔开一距离,以致当过滤材料432在它们之间行进时,刷子464接触过滤材料432的两侧。以这种方式,当过滤材料432从一个过滤卷433运动到另一卷434时,它被刷且由此通过刷子464清洁和再生。通过刷子464从过滤材料432移除的脏物和灰尘落入位于再生区域431下方的灰尘收集抽屉465中。灰尘收集抽屉465具有手柄466,其位于切口404内部。这意味着当旋风分离装置406已从切口404移除时用户可倒空灰尘收集抽屉465。由于过滤材料432在第一和第二支撑框架435,436之间前后行进,它每次行经穿过再生区域431时得到再生。这意味着第一和第二过滤卷433,434不断地被再生,且由此不会被脏物和灰尘堵塞,以致它们不能进一步过滤灰尘,和/或堵塞或过度地限制空气流穿过过滤材料432。
[0249] 从图39和40中,可看出过滤材料432的第一末端外部边缘468和第二末端外部边缘(未示出)具有尾部区域469(其与过滤结构相反,具有开口结构)。这是因为所有或大部分这些尾部区域469从不穿过再生区域431,且由此必须允许空气流自由地穿过它们,而不会被脏物和灰尘堵塞。在该实例中,尾部区域469具有多个过滤器孔467。这些孔在本实施例中被示出为方形形状,但它们可能为任何其他适当的形状,只要尾部区域469在过滤材料432的第一和第二末端外部边缘468处保持足够强以附接过滤材料的剩余部分到第一和第二支撑框架435,436,且足够敞开以减少空气流的堵塞。在所示实例中,可看出过滤器孔467与圆柱形中心管437上的空气流孔440对齐。
[0250] 过滤材料432可为任何适当的材料,例如塑料材料(比如聚酯或聚丙烯),替代地该过滤材料432可由纸、纤维素或棉花形成。尾部区域469可由与过滤材料432的剩余部分相同的材料形成或它可由不同材料制造,例如比过滤材料的剩余部分更刚硬的材料。
[0251] 过滤材料432优选具有从3,或10,或50,或100,或500,或1000孔每英寸(PPI),具有从1微米,或2微米,或3微米,或10微米,或50微米,或100微米,或200微米,或400微米的孔直径的范围内的孔尺寸。过滤材料432的孔尺寸或类型可沿过滤材料432的长度和或宽度变化。例如,孔尺寸可沿过滤材料432的长度或沿下游方向减少或增加。
[0252] 在优选实施例中,在尾部区域469中的过滤器孔467的孔尺寸大于在过滤材料432中的孔尺寸。过滤器孔467的孔尺寸优选为400微米或更大。过滤器孔467优选具有从2.5mm-15mm的孔尺寸。在优选实施例中,缠绕到支撑框架435,436上的每层中的过滤器孔467被布置为重叠,以致存在无障碍通道用于空气以流动穿过过滤器孔467。
[0253] 在使用中,当过滤材料432从第一过滤卷433缠绕到第二过滤卷434上时,过滤材料432在穿过再生区域431之前穿过第一组引导滚子470,且然后在最终缠绕到第二过滤卷434上之前穿过第二组引导滚子471。每组引导滚子470,471具有滚子472,该滚子被定位在线的每侧,该线穿过相对刷子464的中心延伸。这确保过滤材料432在刷子464之间直线行进。该组引导滚子470,471还帮助确保每个过滤卷433,434均匀地缠绕到相应的支撑框架435,436上。当过滤材料432从第二过滤卷434缠绕到第一过滤卷433上时,该组引导滚子470,471以相同方式运行。
[0254] 关于图27-40中描述的系统是动态系统,因为在使用期间,第一和第二卷433,434关于每个过滤区域429,430内有多少过滤层是不断变化的。当一个过滤卷上的过滤材料432的层载有灰尘时,它们不断地解开且行经穿过再生区域431,在那里它们被清洁且随后被再次使用在另一个过滤卷上。这是连续动态过程。
[0255] 替代布置也被设想。这个替代布置在图41中示意性地示出。它示出了静态系统而不是动态系统。在该静态系统中,过滤材料432全部被缠绕到第一过滤卷474上。这个过滤卷是静态的且在机器人操作期间被用于清洁。在方便的点处,例如,当机器人充电时,该过滤材料432可从第一过滤卷474解开,在再生区域475中穿过且被清洁,行进到保持卷476上,然后在下一次机器人使用中缠绕回到相同的第一过滤卷474用于使用。
[0256] 在操作中,机器人400能够由可充电蓄电池462提供动力来自主地推动自身在其周边行进。为了实现这个,机器人400承载适当的控制装置,该控制装置连接到蓄电池462,牵引单元409,410和适当的传感器组477,包括例如红外线和超声波发射器和接收器。该传感器组可向控制装置提供信息,该信息表示机器人与外界中的各种结构的距离和该结构的尺寸和形状。此外,该控制装置被连接到电机和风扇单元424和刷棒电机以便适当地驱动和控制这些部件。因此该控制装置可操作控制牵引单元409、410以便于在需要清洁的房间周围操纵机器人400。应当指出的是,运行和操纵机器人真空吸尘器的详细方法不是本发明的重点,而且一些这样的控制方法在技术领域中是已知的。例如,一种详细的操作方法在WO00/38025中更加详细地描述,其中操纵系统中使用了光检测装置。这允许机器人通过识别何时由光检测装置检测到的光水平和由光检测装置先前检测到的光水平相同或大致相同,来允许清洁器在房子中定位自身。