涂布有防CMAS的涂层的部件转让专利

申请号 : CN201680049720.4

文献号 : CN107923049B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : P·F·比耶A·H·L·马利

申请人 : 赛峰飞机发动机公司

摘要 :

本发明涉及涂布了保护涂层(2)的部件,该保护涂层形成热屏障,并且包含第一陶瓷层(22)。该保护涂层还包括在第一层上的第二层(23),该第二层包含占主要重量的熔点高于或等于1010℃的第一长石矿物,并且第二层的厚度大于或等于10μm。本发明还提供一种制备和使用这种部件的方法。

权利要求 :

1.一种被涂布的部件,其包含金属和/或金属互化物基材(1)和保护涂层(2;2';2";

2"'),所述保护涂层(2;2';2";2"')形成覆盖所述基材的热屏障,所述保护涂层包括第一陶瓷层(22),所述部件的特征在于,所述保护涂层还包括存在于第一层上的第二层(23;26),所述第二层包含占主要重量的熔点高于或等于1010℃的第一长石矿物,并且所述第二层的厚度(e2)大于或等于10μm,其中所述第二层的结晶度大于或等于5%。

2.如权利要求1所述的部件,其特征在于,所述第二层的厚度(e2)大于或等于20μm。

3.如权利要求1所述的部件,其特征在于,所述第一陶瓷层(22)包含氧化锆。

4.如权利要求3所述的部件,其特征在于,所述第一陶瓷层(22)包含钇稳定的氧化锆。

5.如权利要求1所述的部件,其特征在于,所述第二层(23;26)包含占主要重量的钙长石。

6.如权利要求1所述的部件,其特征在于,涂层(2')还包括第三层(24),所述第三层(24)包含占主要重量的熔点大于或等于1010℃的第二长石矿物,所述第三层位于所述第一层(22)之下。

7.如权利要求1所述的部件,其特征在于,涂层(2")还包括覆盖第二层(23;26)且包含氧化铝和/或氧化钛的第四层(25)。

8.如权利要求1所述的部件,其特征在于,所述第二层(26)还包含氧化铝和/或氧化钛。

9.一种制造被涂布的部件的方法,所述被涂布的部件包含金属和/或金属互化物基材(1)和保护涂层(2;2';2",2"'),所述保护涂层(2;2';2",2"')形成覆盖所述基材的热屏障,所述方法包括在金属和/或金属互化物基材上形成第一陶瓷层(22),其特征在于,所述方法还包括在第一陶瓷层上形成第二层(23;26),所述第二层包含占主要重量的熔点高于或等于1010℃的长石矿物,并且所述第二层的厚度大于或等于10μm,其中所述第二层的结晶度大于或等于5%。

10.一种使用如权利要求1所述的被涂布的部件的方法,所述方法包括在高于1000℃的温度下的氧化环境中,在钙和镁的铝硅酸盐存在下,使用所述部件。

说明书 :

涂布有防CMAS的涂层的部件

[0001] 发明背景
[0002] 本发明涉及形成热屏障的涂层的一般领域,所述热屏障用于在高温环境中绝热金属部件。本发明更具体但不限于涉及用于在航空燃气轮机中保护超合金部件的热屏障。
[0003] 在沙漠地区或污染严重地区运行的航空涡轮发动机的热部分中存在的部件由于受到发动机吸入的空气中存在的沙子和碱性组分的攻击而非常迅速地劣化。这些化合物称为"CMAS"(具体包括钙、镁、铝和硅的氧化物),它们能劣化作为热屏障的涂层,并且覆盖涡轮发动机的热部分中的某些部件。
[0004] 在热屏障被CMAS化合物破坏的机理中,特别存在CMAS化合物在液态下渗入屏障中,以及热屏障(通常由基于钇稳定的氧化锆的陶瓷构成)的溶解-再沉淀(以氧化钇耗尽的孤立的氧化锆结节的形式)。这两种机理降低了热屏障的机械性质,并导致热屏障在发动机冷却阶段期间开裂。而且,吸入固体颗粒导致以下现象:热屏障被腐蚀和碎裂,这样底下的金属基材裸露,从而部件的寿命缩短。
[0005] 存在用于限制CMAS渗入热屏障的解决方案。例如,可提及的是使用保护热屏障的涂层,该涂层基于掺杂钆的氧化锆(例如,称为锆酸钆),或事实上使用氧化铝或氧化钛。这些涂层当与CMAS反应时,促进CMAS沉淀,从而用于限制CMAS渗入热屏障中。然而,这些涂层的缺点在于它们是牺牲性的,因此需要持续的维护,以及对部件状态的连续监控。此外,这些涂层中存在的化学元素(特别是稀土元素)的获得越来越受限,这造成对使用这些涂层的进一步限制。
[0006] 因此,需要提供一种涂布了保护涂层的部件,该保护涂层形成热屏障,并在环境和航空涡轮发动机的运行条件下提供长使用寿命。
[0007] 发明目的和概述
[0008] 因此,本发明的主要目的是通过提出一种被涂布的部件来减轻这些缺陷,所述被涂布的部件包含金属和/或金属互化物基材和保护涂层,所述保护涂层形成覆盖所述基材的热屏障,所述保护涂层包括第一陶瓷层,该部件的特征是所述保护涂层还包括存在于第一层上的第二层,所述第二层包含占主要重量的熔点等于或高于1010℃的第一长石矿物,并且所述第二层的厚度等于或大于10微米(μm)。
[0009] 术语"覆盖"用于表示部件的基材被完全覆盖,或者其表面中容易被接触或必需进行热保护的部分被覆盖。
[0010] 本发明的被涂布的部件的涂层的显著特点首先在于其包含CMAS无法渗透的外层,或者换言之该外层能够防CMAS。特别地,第二层在高温下保持固体形式,防止液体CMAS渗入底下的第一陶瓷层(其构成涂层的绝热层)。术语"高温"用于表示如航空涡轮发动机运行时发生的约1000℃的温度。
[0011] 这种层不再如现有技术涂层中那样是牺牲层,特别是因为它在高温下保持了固体形式。术语"牺牲"用于表示以这种方式沉积的层一旦制备后表现出与CMAS化学相容的能力(因为该层具有与CMAS相似的化学组成)。因此,与现有技术的涂层相比,这种层的的寿命增加。
[0012] 另外,第二层的矿物对二氧化硅和氧化铝(CMAS中存在的化合物)和可能被涡轮发动机吸入的沙子或水泥是化学稳定的。特别地,长石(或长石族的矿物)是二氧化硅相为主的铝硅酸盐。而且,这些矿物能够兼容水的存在,这些矿物被水经分解反应而裂解的速度非常慢。
[0013] 第一陶瓷层的组成不会因为添加第二层而改变,第二层独立于第一层(特别是它们彼此独立地沉积在另一个上)。因此,第一陶瓷层的性能不会因为存在第二保护层或其沉积方法而被破坏。
[0014] 第二层的厚度大于或等于10μm,有助于首先改善其承受CMAS的能力,以及该涂层承受腐蚀和冲击的能力。因此,本发明的被涂布的部件具有的第二涂层的厚度受到控制,并且足以获得上述优点。例如,在运行的涡轮发动机内形成具有保护层的涂层是不真实的,因为例如涉及热屏障层和CMAS的化学反应。具体而言,在涡轮发动机内原位形成保护层与在首次用于涡轮发动机中之前形成保护层相比,可表现出不受控制的较薄的厚度,并且在部件上不均匀,这是因为该保护层的形成具体取决于CMAS向热屏障的扩散,以及涡轮发动机内变化的环境条件(温度,CMAS组成)。
[0015] 最后,本发明的第二涂层还使得可以堵塞第一陶瓷层的表面中存在的大孔。例如,当第一陶瓷层包含氧化钇稳定的氧化锆时,该层显示具有非零表面粗糙度的层状结构或杆(柱)结构,因此,将保护层设置到能覆盖并堵塞其表面孔的位置是有利的。
[0016] 在一个实施方式中,涂层的第二层的厚度大于或等于20μm,例如大于或等于50μm。
[0017] 在一个实施方式中,涂层的第二层的厚度大于或等于第一层厚度的三分之一。
[0018] 在一个实施方式中,第二层的结晶度大于或等于5%,例如大于或等于10%。可按照常规方式,使用X-射线衍射或拉曼光谱之类的技术来测量该结晶度。第二层的结晶度特别有利于改善涂层的第一层和第二层之间的粘合性。
[0019] 优选地,第一陶瓷层包含氧化锆。
[0020] 还优选地,第一陶瓷层包含钇稳定的氧化锆。或者,第一陶瓷层还可包含掺杂有稀土元素或基于三元氧化物的组合物的氧化锆。在三元体系族中,可提及的是例如掺杂有另一种第三氧化物的基于氧化钇稳定的氧化锆的体系,所述第三氧化物例如是以下化学元素中的一种的氧化物:镱(Yb);钕(Nd);镝(Dy);钆(Gd);铌(Nb);钽(Ta);和钐(Sm)。
[0021] 在一个实施方式中,第二层包含占主要重量的钙长石。术语"钙长石"用于表示一般组成为CaAl2Si2O8的长石矿物,其包括钙长石的多形矿物。
[0022] 钙长石的优点在于它具有高熔点(高于1500℃),它在熔化前后是一致的(即,固/液相发生改变,但化学组成不变,并且没有离解为次生化合物)。钙长石也非常稳定,在例如航空涡轮发动机中施加的压力和温度条件下几乎不发生分解。另外,钙长石具有低密度(使得与更致密的涂层相比,可以降低旋转部件上的离心机械力),接近超合金的热膨胀系数,与涂层的第一层的绝热陶瓷可比的热导率(钙长石的热导率约为2瓦/米/开(W.m-1.K-1))。最后,钙长石易于使用,因为合成和沉积钙长石的几种方法是已知的(例如,溶胶-凝胶,浆化、化学气相沉积、喷涂、热喷涂等)。
[0023] 在某些实施方式中,涂层还包括第三层,该第三层包含占主要重量的熔点大于或等于1010℃的第二长石矿物,该第三层位于第一层之下。如果第一陶瓷层被破坏,使得熔融的CMAS能通过并向下层渗透,则上述沉积物为基材提供了额外的保护。这种沉积是可行的,因为形成第二层的材料具有氧化铝相,使其能与底下的结合层(通常设置在基材和第一陶瓷层之间)相容,所述结合层常常富含铝,以致于具有铝形成特征。
[0024] 在某些实施方式中,保护涂层还包含覆盖第二层且包含氧化铝/氧化钛的第四层。氧化铝和氧化钛(TiO2)是成核剂,用于导致熔融CMAS在到达涂层的下层之前沉淀。
[0025] 此外,出于上述相同的理由,第二层还可包含氧化铝和/或氧化钛。氧化铝和/或氧化钛可在沉积长石的同时沉积,使得第二层具有分散在主要的长石相中的氧化铝和/或氧化钛相。
[0026] 本发明的被涂布的部件可以是航空涡轮发动机的部件,例如涡轮桨叶、涡轮喷嘴、涡轮叶片、涡轮环、燃烧室、煤油喷射喷嘴等。
[0027] 本发明还提供一种制造被涂布的部件的方法,所述被涂布的部件包含金属和/或金属互化物基材和保护涂层,所述保护涂层形成覆盖所述基材的热屏障,所述方法包括在金属和/或金属互化物基材上形成第一陶瓷层,所述的方法的特征在于,该方法还包括在第一陶瓷层上形成第二层,所述第二层包含占主要重量的熔点等于或高于1010℃的长石矿物,并且所述第二层的厚度大于或等于10μm。
[0028] 用于制造被涂布的部件的本发明方法可在首次在涡轮发动机中使用该部件之前进行。换言之,在首次在发动机中使用该部件之前,在本发明的被涂布的部件上形成涂层。因此,无论部件之后的使用条件如何,本发明部件的保护涂层的组成和厚度在整个部件上是均匀的。
[0029] 最后,本发明提供使用上述被涂布的部件的方法,该方法包括在高于1000℃的温度下的氧化环境中,在钙和镁的铝硅酸盐(CMAS)存在下,使用所述部件。这些条件相当于涡轮发动机运行中所遭遇的条件。
[0030] 附图简要说明
[0031] 参考附图,根据以下说明可以清楚地了解本发明的其它特征和优点,附图以非限制性方式图示了一些实施方式。在附图中:
[0032] -图1-4显示在本发明不同实施方式中,包含被保护涂层覆盖的基材的各种部件,其中所述保护涂层形成热屏障。
[0033] 发明详述
[0034] 图1是在本发明的被涂布的部件的金属(和/或金属互化物)基材1上的形成热屏障的保护涂层2的截面图。例如,该部件可以是航空涡轮发动机的涡轮桨叶。通常,基材1可包含基于铁、钴或镍的超合金。应注意,基材1还可包含一种金属互化物(intermetallic)材料,该金属互化物材料可以是包含铝化钛或硅化铌、硅化钼等的类型。涂层2覆盖基材1,并且直接与基材1接触。
[0035] 按照已知的方式,涂层2首先包含结合层20,该结合层20用于提供保护避免基材1的腐蚀和氧化。该已知的结合层20在其表面是部分氧化的,并且在将其升高到高温时其表面以下一定深度也是部分氧化的,由此形成氧化物层21,该氧化物层21可以称为"热生长氧化物"(TGO)。例如,结合层20可包含单纯或改性的铝化物。
[0036] 然后,第一陶瓷层22覆盖氧化物层21。在该例子中,第一层22直接与氧化物层21接触,其中氧化物层21用作第一层22的粘附下层。
[0037] 通常,该第一层22可包含具有杆或柱形结构的氧化钇稳定的氧化锆(YSZ)。第一层22可在其外表面(即远离基材1的表面)上具有非零粗糙度。第一层22为涂层2提供绝热,形成热屏障,保护基材1避免受到通过涡轮发动机的气流中气体的加热。该第一层22还可能在高温下受到CMAS的作用而发生劣化。本发明的被涂布的部件的涂层2用于限制这种劣化。
[0038] 或者,第一层22可包含掺杂有稀土元素或基于三元氧化物的组合物的氧化锆。例如,在三元体系族中,可提及的是掺杂有另一种第三氧化物的基于氧化钇稳定的氧化锆的体系,所述第三氧化物例如是以下化学元素中的一种的氧化物:镱(Yb);钕(Nd);镝(Dy);钆(Gd);铌(Nb);钽(Ta);和钐(Sm)。
[0039] 依据本发明,涂层2还具有第二层23,该第二层23包含占主要重量的熔点高于或等于1010℃的长石矿物。该层的厚度e2大于或等于10μm,例如大于20μm,或者大于或等于50μm。第二层23的厚度e2可大于或等于第一层22的厚度的三分之一。
[0040] 第二层23或保护层23用于保护第一陶瓷层22,具体是通过形成能够防CMAS并且与CMAS化学相容的屏障来进行保护。特别地,熔点高于1010℃的长石族矿物首先在它所暴露的涡轮发动机中的高温下是固体。而且,它们的主相中具有基于氧化铝和氧化硅的化学结构,使得它们在涡轮发动机的环境中与CMAS具有良好的化学相容性。例如,这种矿物可以是钙长石或其多形体中的一种。
[0041] 总之,涂层2从最接近基材1的层开始到最远离基材1的层依次包括:直接与基材1接触的结合层20;直接与结合层20接触的氧化物层21;直接与氧化物层21接触的第一陶瓷层22;直接与第一陶瓷层22接触的第二保护层23。
[0042] 图2显示另一种实施方式的部件,该部件包括被本发明的涂层2'覆盖的基材1。在该例子中,涂层2'还包括第三保护层24,该第三保护层覆盖氧化物层21并设置在第一陶瓷层22之下。在该例子中,第三保护层24直接与氧化物层21和第一陶瓷层22接触。
[0043] 该构造的有利之处在于,使得可以在第一陶瓷层22之下具有另一个防CMAS层24或第三防CMAS层24,该层24用于在CMAS通过层22的情况中防止CMAS到达基材1并使其劣化。第三层24具有与第二层23相同类型的组成,可包含占主要重量的熔点高于或等于1010℃的第二长石矿物。该第二长石矿物可与第二层23的第一矿物完全相同,或者可以不同。
[0044] 这种构造对于现有技术的保护层而言是不可行的,因为这些层通常与氧化物层21的材料不相容。例如,现有技术的基于掺杂钆的氧化锆的保护层因为与氧化铝反应形成铝化钆而劣化。形成这种铝化钆导致体积增加,并且还会导致形成孔洞,因此明显削弱了涂层的整体性质。本发明的第三层24具体包含氧化铝相,所以它与氧化物层21的氧化铝相容。
[0045] 图3的涂层2"包括覆盖第二保护层23的第四层25,目的是进一步增强对陶瓷层22的保护。与第二层23接触的该第四层25包含氧化铝和/或氧化钛。氧化铝和氧化钛是能与液体CMAS反应并促进其沉淀的化合物。应注意,第四层25还可以使用稀土氧化物,例如钇、锆、钆、镧、钐等的氧化物。因此,具有这种额外层,涂层2"的寿命可以进一步延长。
[0046] 或者,可以在第二保护层26中添加氧化铝和/或氧化钛(如图4的涂层2"'),以增强涂层的保护效力。例如,氧化铝和/或氧化钛可以粉末的形式在沉积第二保护层的同时添加。实施例
[0047] 在以下实施例中,描述了使用钙长石作为第二层23或第三保护层24的长石矿物,以及沉积该钙长石的方法。
[0048] 钙长石(化学式CaAl2Si2O8)比其它长石具有额外的优点,特别是在高于1500℃的熔点时熔化前后的一致性方面,从而使其具有高温下更佳的化学稳定性。而且,该长石的热膨胀系数接近超合金的热膨胀系数,其热导率与形成第一层22的陶瓷的热导率相容。
[0049] 一般而言,化学计量的钙长石包含:20.16重量%氧化钙(CaO)、36.66重量%氧化铝(Al2O3)和43.19重量%二氧化硅(SiO2)。出于以下原因,该组成是有利的。
[0050] 在沙漠地区,沙子中氧化钙的含量为15重量%,而二氧化硅是沙子中的主要化合物。当这种沙子被涡轮发动机吸入时,第二保护层23与这些化合物化学相容。因此,主要包含(基于重量)钙长石的该层23保持晶体形式,并且保持对CMAS的防御。
[0051] 另外,已经知道铝硅酸盐化合物能够与水反应,所述水可以是当涡轮发动机停止时以残余湿气形式存在,或者是通过燃料与空气燃烧产生的。但是,在涡轮发动机的运行条件下,水对钙长石的分解反应非常缓慢。同样,钙长石的其它分解反应是已知的,但是它们的速率在考虑的压力和温度条件下太慢,因此在涡轮发动机应用中对此并不关心。
[0052] 下文简要描述沉积基于钙长石的第二保护层23的方法。
[0053] 该方法从合成钙长石开始。制备高岭土(硅和铝源)、氧化铝或氢氧化铝(铝源)和石灰或碳酸钙(钙源)之类的试剂。下表1给出了各组分用量的两个实施例(E1,E2),以制备约90克(g)钙长石(用下述操作步骤得到的产率约为90%)。为了提高产率,例如,可以添加1重量%的硼酸H3BO3。
[0054] 表1
[0055]
[0056] 在用蒸馏水润滑的研磨器中将粉末形式的各试剂混合。然后,利用陶瓷珠(例如由氧化锆制成)向混合物施加压缩压力,采取以下主要参数:压力在100兆帕(MPa)-150MPa的范围内,转速在100转/分钟(rpm)-500rpm的范围内,研磨时间在20分钟(min)-60min的范围内。当然,这些值只是示例性给出的。
[0057] 然后,对已经研磨的混合物进行干燥,以消除所有残留的水分,通常干燥在100℃-120℃范围内的温度下进行。
[0058] 然后,合成方法最后包括将经过研磨和干燥的混合物在900℃-1080℃范围内的温度下培烧1小时(h)-6h。然后,在干燥空气下进行冷却。
[0059] 最后,以此方式合成的钙长石可使用本领域技术人员已知的各种手段沉积,例如:溶胶-凝胶,浆化,化学气相沉积,喷涂,悬浮等离子体喷涂(SPS),或溶液前体等离子体喷涂(SPPS),高速氧-燃料(HVOF)型喷涂,或电子束物理气相沉积(EB-PVD)。对于这种沉积,合成的钙长石优选为平均粒度在几微米的粉末形式。在钙长石已经沉积后,可以进行热处理,以在基材上最终形成保护涂层,并控制第二保护层23的结晶度。
[0060] 应注意,在沉积钙长石粉末以制备第二层23(图1和2)或第三层24(图3)时,可以在沉积过程中在钙长石粉末中引入氧化铝和/或氧化钛粉末,以形成多相第四层26(图4)。