一种光催化还原氧化石墨烯用复合膜的制备方法转让专利

申请号 : CN201711149988.8

文献号 : CN107974671B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王耀金利华李成山冯建情梁明张平祥

申请人 : 西北有色金属研究院

摘要 :

本发明提供了一种光催化还原氧化石墨烯用复合膜的制备方法,包括以下步骤:一、采用丙酮对NiW合金基带进行超声清洗,清洗后的合金基带置于管式炉中,在低氧分压气体气氛中热处理获得NiO/WO3复合膜;二、将醋酸铜溶解于丙酸中,得到稳定铜前驱液;将该铜前驱液涂覆于步骤一中所获得的NiO/WO3复合膜上,然后置于管式炉中,在还原性气体保护下热处理,得到表面平整的NiO/WO3/Cu2O复合膜。本发明制备的NiO/WO3/Cu2O复合膜中Cu2O以(111)取向为主,且表面平整,对氧化石墨烯具有高效的光催化还原作用,该方法适宜于大规模生产NiO/WO3/Cu2O复合膜,同时也易于实现氧化石墨烯的快速连续光催化还原。

权利要求 :

1.一种光催化还原氧化石墨烯用复合膜的制备方法,其特征在于,该方法包括以下步骤:

步骤一、首先采用丙酮对NiW合金基带进行超声清洗,然后将表面清洗洁净的NiW合金基带置于管式炉中,在低氧分压气体气氛下以5℃/min~20℃/min的升温速率升温至900℃~1100℃后保温0.5h~1h,然后以2℃/min~10℃/min的降温速率降温至25℃室温,得到表面粗糙的NiO/WO3复合膜;

步骤二、将醋酸铜溶解于丙酸中,得到浓度为0.1mol/L~0.8mol/L的铜前驱液,然后将所述铜前驱液涂覆在步骤一中得到的NiO/WO3复合膜上,再置于管式炉中,在还原性气体保护下,以1℃/min~5℃/min的升温速率升温至900℃~1000℃后保温0.5h~1h,再以5℃/min~20℃/min的降温速率降温至25℃室温,最后得到表面平整的NiO/WO3/Cu2O复合膜。

2.根据权利要求1所述的一种光催化还原氧化石墨烯用复合膜的制备方法,其特征在于,步骤一中所述低氧分压气体由氧气和氩气混合而成,或者由氧气和氮气混合而成,所述低氧分压气体中氧气的体积含量为100ppm~600ppm。

3.根据权利要求1所述的一种光催化还原氧化石墨烯用复合膜的制备方法,其特征在于,步骤二中所述铜前驱液的具体配制过程为:将醋酸铜加到丙酸中,然后在温度为60℃~

100℃的条件下搅拌回流2h~6h,最后得到铜前驱液。

4.根据权利要求1所述的一种光催化还原氧化石墨烯用复合膜的制备方法,其特征在于,步骤二中所述涂覆的方式为旋涂或浸涂。

5.根据权利要求4所述的一种光催化还原氧化石墨烯用复合膜的制备方法,其特征在于,旋涂所述铜前驱液的过程中NiO/WO3复合膜的旋转速率为2000r/min~4000r/min,旋涂的时间为10s~60s。

6.根据权利要求4所述的一种光催化还原氧化石墨烯用复合膜的制备方法,其特征在于,浸涂所述铜前驱液的过程中NiO/WO3复合膜浸于铜前驱液中30s后开始提拉,提拉的速度为1m/h~10m/h。

7.根据权利要求1所述的一种光催化还原氧化石墨烯用复合膜的制备方法,其特征在于,步骤二中所述还原性气体由氩气和氢气按96:4的体积比混合而成,或者由氮气和氢气按95:5的体积比混合而成。

说明书 :

一种光催化还原氧化石墨烯用复合膜的制备方法

技术领域

[0001] 本发明属于光催化复合膜制备技术领域,具体涉及热分解法沉积金属材料以外之无机材料的通过液态化合物分解抑或覆层形成化合物溶液分解、且覆层中不留存表面材料反应物的化学镀覆。

背景技术

[0002] 石墨烯由于具有超大比表面积、高导电性、良好的导热性以及高机械性能等特点而在诸多领域,包括航空、储能、散热器、显示器等具有重要的应用前景,因此备受关注。而快速制备高质量石墨烯是其实现其大规模应用的关键所在。在目前已经发展出的众多制备技术中,最适合大规模制备的技术主要包括化学氧化还原法和化学气相沉积(CVD)法两大类,前者主要用于制备石墨烯的粉体材料,后者则主要用于制备石墨烯薄膜。事实上,由于化学氧化还原石墨烯法制备工艺简单,成本较低,故被认为是最适合大规模生产石墨烯的方法,因此得到人们的广泛重视。然而,在氧化石墨烯还原过程中,人们最初采用水合肼做为还原剂,尽管其还原效果较好,但是由于其具有一定的毒性,容易对环境造成污染,因此人们又相继探索了多种可能的环保型还原剂以及还原方法来实现对氧化石墨烯的还原。其中光催化还原法由于具有安全、环境友好、易于操作以及高效等优点而受到人们的关注。尽管人们已经探索了多种可能的光催化还原剂,但是相比化学还原来讲,光催化还原氧化石墨烯仍然没有实现大规模制备,因此,从实用化角度出发,迫切需要以高效快速易操作的低成本技术路线为途径解决氧化石墨烯还原的技术问题。
[0003] 与通常的光催化剂相比,Cu2O由于具有较小的带隙,可以吸收一定波长范围内的可见光,从而激发出光生电子-空穴对,最终引发光催化反应。因此被认为是一种很有前景的制备石墨烯的光催化剂,因此近年来受到人们的广泛关注。目前Cu2O膜的制备方法主要包括电化学沉积、溶胶凝胶法以及物理气相沉积等技术,然而,这些技术的应用并不能够同时实现Cu2O膜制备成本的降低以及大规模连续化的制备。另一方面,Cu2O不同晶面的光催化性能差异较大,其中(111)晶面的催化活性较高,因此,获得(111)取向的Cu2O膜是实现氧化石墨烯高效光催化还原的前提条件。但是由于存在光生电子与空穴复合而导致催化效率降低的问题,通过Cu2O与其它禁带宽度较大的半导体材料复合可以抑制光生电子与空穴复合,从而有效提高其光催化效率。目前人们常采用分步沉积的方法制备两相及以上的复合膜,过程较为复杂,导致制备效率较低。

发明内容

[0004] 本发明所要解决的技术问题在于针对上述现有技术的不足,提供了一种光催化还原氧化石墨烯用复合膜的制备方法。该方法工艺简单、成本低,制备的NiO/WO3/Cu2O复合膜中Cu2O以(111)取向为主,且表面平整,对氧化石墨烯具有高效的光催化还原作用,并且该方法适宜于大规模生产NiO/WO3/Cu2O复合膜,同时也易于实现氧化石墨烯的快速连续光催化还原。
[0005] 为解决上述技术问题,本发明采用的技术方案是:一种光催化还原氧化石墨烯用复合膜的制备方法,其特征在于,该方法包括以下步骤:
[0006] 步骤一、首先采用丙酮对NiW合金基带进行超声清洗,然后将表面清洗洁净的NiW合金基带置于管式炉中,在低氧分压气体气氛下以5℃/min~20℃/min的升温速率升温至900℃~1100℃后保温0.5h~1h,然后以2℃/min~10℃/min的降温速率降温至25℃室温,得到表面粗糙的NiO/WO3复合膜;
[0007] 步骤二、将醋酸铜溶解于丙酸中,得到浓度为0.1mol/L~0.8mol/L的铜前驱液,然后将所述铜前驱液涂覆于步骤一中得到的NiO/WO3复合膜上,再置于管式炉中,在还原性气体保护下,以1℃/min~5℃/min的升温速率升温至900℃~1000℃后保温0.5h~1h,再以5℃/min~20℃/min的降温速率降温至25℃室温,最后得到表面平整的NiO/WO3/Cu2O复合膜。
[0008] 上述的光催化还原氧化石墨烯用NiO/WO3/Cu2O复合膜的制备方法,其特征在于,步骤一中所述低氧分压气体由氧气和氩气混合而成,或者由氧气和氮气混合而成,所述低氧分压气体中氧气的体积含量为100ppm~600ppm。
[0009] 上述的一种光催化还原氧化石墨烯用复合膜的制备方法,其特征在于,步骤二中所述铜前驱液的具体配制过程为:将醋酸铜加到丙酸中,然后在温度为60℃~100℃的条件下搅拌回流2h~6h。
[0010] 上述的一种光催化还原氧化石墨烯用复合膜的制备方法,其特征在于,步骤二中涂覆的方式为旋涂或浸涂。
[0011] 上述的一种光催化还原氧化石墨烯用复合膜的制备方法,其特征在于,旋涂所述铜前驱液的过程中NiO/WO3复合膜的旋转速率为2000r/min~4000r/min,旋涂的时间为10s~60s。
[0012] 上述的一种光催化还原氧化石墨烯用复合膜的制备方法,其特征在于,浸涂所述铜前驱液的过程中NiO/WO3复合膜浸于铜前驱液中30s后开始提拉,提拉的速度为1m/h~10m/h。
[0013] 上述的一种光催化还原氧化石墨烯用复合膜的制备方法,其特征在于,步骤二中所述还原性气体由氩气和氢气按96:4的体积比混合而成,或者由氮气和氢气按95:5的体积比混合而成。
[0014] 本发明与现有技术相比具有以下优点:
[0015] 1、本发明采用NiW合金基带直接进行自氧化即可以获得NiO/WO3复合膜,采用该技术获得的NiO/WO3复合膜通常表面都较为粗糙,在其表面采用金属有机沉积(MOD)技术制备Cu2O膜,这利用了Cu2O膜在生长过程中能对NiO/WO3复合膜粗糙的表面进行整平,实现最终制备的NiO/WO3/Cu2O复合膜的表面平整化,从而获得厚度在200nm以上表面较为光滑的NiO/WO3/Cu2O复合膜,在紫外可光、甚至在可见光作用下即可实现对沉积在NiO/WO3/Cu2O复合膜表面的氧化石墨烯进行光催化还原。因此本发明采用新型的NiW金属基带自氧化与MOD相结合的技术制备NiO/WO3/Cu2O复合膜,对于实现氧化石墨烯光催化还原低成本技术路线非常重要,同时对于促进氧化石墨烯连续还原,甚至获得连续的石墨烯薄膜来讲都具有重要意义。
[0016] 2、本发明制备方法简单,采用常规原料,不需要特殊设备,制备成本低,NiW合金基带自氧化过程,采用低氧分压气体,有效地降低了反应成本,简化了制备工艺。
[0017] 3、本发明在空气气氛中采用常规简单金属有机盐醋酸铜和丙酸配制铜前驱液,有效地提高了铜前驱液的稳定性,简化了铜前驱液的制备工艺。
[0018] 4、本发明直接采用旋涂或者浸涂法涂覆铜前驱液,再经过一步法热处理制得Cu2O膜,简化了制备工艺,并可以实现低成本、大规模制备。
[0019] 5、采用本发明的方法制备的Cu2O膜具有以(111)取向为主且无明显缺陷的平整表面,同时自氧化生长的NiO/WO3复合膜的晶粒尺寸均匀性明显改善,从而有效降低了表面粗糙度,同时大幅提高了其光催化性能。
[0020] 下面结合附图和实施例对本发明作进一步详细说明。

附图说明

[0021] 图1为本发明实施例1制备的NiO/WO3/Cu2O复合膜的XRD图谱。
[0022] 图2为本发明实施例1步骤一制备的NiO/WO3复合膜的AFM照片。
[0023] 图3为本发明实施例1制备的NiO/WO3/Cu2O复合膜的AFM照片。
[0024] 图4为沉积在本发明实施例1制备的NiO/WO3/Cu2O复合膜上的氧化石墨烯层的XPS图谱。
[0025] 图5为沉积在本发明实施例1制备的NiO/WO3/Cu2O复合膜上的氧化石墨烯层在紫外可见光环境中持续照射12h后的XPS图谱。

具体实施方式

[0026] 实施例1
[0027] 本实施例的制备方法包括以下步骤:
[0028] 步骤一、首先采用丙酮对NiW合金基带在超声功率为300W的条件下进行20min的超声清洗,然后将表面清洗洁净的NiW合金基带置于管式炉中,在低氧分压气体气氛(低氧压气氛)下以5℃/min升温速率升温至1100℃后保温0.5h,然后以2℃/min的降温速率降温至25℃室温,得到表面粗糙的NiO/WO3复合膜;所述低氧分压气体由氧气和氩气混合而成,所述低氧分压气体中氧气的体积含量为100ppm;
[0029] 步骤二、将醋酸铜加到丙酸中,然后在温度为60℃的条件下搅拌回流6h,醋酸铜完全溶解后,得到浓度为0.2mol/L的铜前驱液,然后将所述铜前驱液旋涂在步骤一中得到的NiO/WO3复合膜上,所述NiO/WO3复合膜的旋转速率为2000r/min,旋涂的时间为10s,旋涂结束后置于管式炉中,在还原性气体保护下,以5℃/min的升温速率升温至900℃后保温1h,再以5℃/min的降温速率降温至25℃室温,最后得到表面平整的NiO/WO3/Cu2O复合膜,所述NiO/WO3/Cu2O复合膜的厚度为219nm;所述还原性气体由氩气和氢气按96:4的体积比混合而成。
[0030] 图1为本实施例制备的NiO/WO3/Cu2O复合膜的XRD图谱,由图1可知,NiO/WO3/Cu2O复合膜中位于最顶层的Cu2O膜以(111)取向为主。
[0031] 图2为本发明实施例1步骤一制备的NiO/WO3复合膜的AFM照片,从图中可以看出,NiO/WO3复合膜表面平整度较差,同时晶粒尺寸较大,在5μm×5μm的扫描范围内,表面均方根粗糙度为9.12nm。图3为本实施例制备的NiO/WO3/Cu2O复合膜的AFM照片,从图中可以看出NiO/WO3/Cu2O复合膜表面平整且无微裂纹出现,这是由于在NiO/WO3复合膜的表面沉积的Cu2O膜,Cu2O膜在生长过程中能对NiO/WO3复合膜粗糙的表面进行整平,实现最终制备的NiO/WO3/Cu2O复合膜的表面平整化,同时晶粒尺寸较小,在5μm×5μm的扫描范围内,表面均方根粗糙度仅为3.73nm。
[0032] 实施例2
[0033] 本实施例的制备方法包括以下步骤:
[0034] 步骤一、首先采用丙酮对NiW合金基带在超声功率为300W的条件下进行20min的超声清洗,然后将表面清洗洁净的NiW合金基带置于管式炉中,在低氧分压气体气氛(低氧压气氛)下以20℃/min升温速率升温至900℃后保温1h,然后以10℃/min的降温速率降温至25℃室温,得到表面粗糙的NiO/WO3复合膜;所述低氧分压气体由氧气和氩气混合而成,所述低氧分压气体中氧气的体积含量为600ppm;
[0035] 步骤二、将醋酸铜加到丙酸中,然后在温度为100℃的条件下搅拌回流2h,醋酸铜完全溶解后,得到浓度为0.8mol/L的铜前驱液,然后将所述铜前驱液旋涂在步骤一中得到的NiO/WO3复合膜上,所述NiO/WO3复合膜的旋转速率为4000r/min,旋涂的时间为60s,旋涂结束后置于管式炉中,在还原性气体保护下,以3℃/min的升温速率升温至1000℃后保温0.5h,再以20℃/min的降温速率降温至25℃室温,最后得到表面平整的NiO/WO3/Cu2O复合膜,所述NiO/WO3/Cu2O复合膜的厚度为208nm;所述还原性气体由氩气和氢气按96:4的体积比混合而成。
[0036] 实施例3
[0037] 本实施例的制备方法包括以下步骤:
[0038] 步骤一、首先采用丙酮对NiW合金基带在超声功率为300W的条件下进行20min的超声清洗,然后将表面清洗洁净的NiW合金基带置于管式炉中,在低氧分压气体气氛(低氧压气氛)下以5℃/min升温速率升温至1050℃后保温0.8h,然后以5℃/min的降温速率降温至25℃室温,得到表面粗糙的NiO/WO3复合膜;所述低氧分压气体由氧气和氩气混合而成,所述低氧分压气体中氧气的体积含量为350ppm;
[0039] 步骤二、将醋酸铜加到丙酸中,然后在温度为80℃的条件下搅拌回流5h,醋酸铜完全溶解后,得到浓度为0.6mol/L的铜前驱液,然后将所述铜前驱液旋涂在步骤一中得到的NiO/WO3复合膜上,所述NiO/WO3复合膜的旋转速率为3000r/min,旋涂的时间为30s,旋涂结束后置于管式炉中,在还原性气体保护下,以1℃/min的升温速率升温至900℃后保温0.8h,再以5℃/min的降温速率降温至25℃室温,最后得到表面平整的NiO/WO3/Cu2O复合膜,所述NiO/WO3/Cu2O复合膜的厚度为213nm;所述还原性气体由氩气和氢气按96:4的体积比混合而成。
[0040] 实施例4
[0041] 本实施例的制备方法包括以下步骤:
[0042] 步骤一、首先采用丙酮对NiW合金基带在超声功率为300W的条件下进行20min的超声清洗,然后将表面清洗洁净的NiW合金基带置于管式炉中,在低氧分压气体气氛(低氧压气氛)下以10℃/min升温速率升温至1000℃后保温0.5h,然后以5℃/min的降温速率降温至25℃室温,得到表面粗糙的NiO/WO3复合膜;所述低氧分压气体由氧气和氩气混合而成,所述低氧分压气体中氧气的体积含量为300ppm;
[0043] 步骤二、将醋酸铜加到丙酸中,在温度为80℃的条件下搅拌回流4h,醋酸铜完全溶解后,得到浓度为0.4mol/L的铜前驱液,然后将步骤一中得到的NiO/WO3复合膜浸涂在铜前驱液中30s后开始提拉,提拉的速度为5m/h,然后再置于管式炉中,在还原性气体保护下,以2℃/min的升温速率升温至950℃后保温0.5h,再以10℃/min的降温速率降温至25℃室温,最后得到表面平整的NiO/WO3/Cu2O复合膜,所述NiO/WO3/Cu2O复合膜的厚度为229nm;所述还原性气体由氮气和氢气按95:5的体积比混合而成。
[0044] 实施例5
[0045] 本实施例的制备方法包括以下步骤:
[0046] 步骤一、首先采用丙酮对NiW合金基带在超声功率为300W的条件下进行20min的超声清洗,然后将表面清洗洁净的NiW合金基带置于管式炉中,在低氧分压气体气氛(低氧压气氛)下以20℃/min升温速率升温至950℃后保温1h,然后以8℃/min的降温速率降温至25℃室温,得到表面粗糙的NiO/WO3复合膜;所述低氧分压气体由氧气和氩气混合而成,所述低氧分压气体中氧气的体积含量为400ppm;
[0047] 步骤二、将醋酸铜加到丙酸中,在温度为80℃的条件下搅拌回流4h,醋酸铜完全溶解后,得到浓度为0.4mol/L的铜前驱液,然后将步骤一中得到的NiO/WO3复合膜浸涂在铜前驱液中30s后开始提拉,提拉的速度为1m/h,然后再置于管式炉中,在还原性气体保护下,以3℃/min的升温速率升温至900℃后保温1h,再以15℃/min的降温速率降温至25℃室温,最后得到表面平整的NiO/WO3/Cu2O复合膜,所述NiO/WO3/Cu2O复合膜的厚度为220nm;所述还原性气体由氮气和氢气按95:5的体积比混合而成。
[0048] 实施例6
[0049] 本实施例的制备方法包括以下步骤:
[0050] 步骤一首先采用丙酮对NiW合金基带在超声功率为300W的条件下进行20min的超声清洗,然后将表面清洗洁净的NiW合金基带置于管式炉中,在低氧分压气体气氛(低氧压气氛)下以20℃/min升温速率升温至900℃后保温1h,然后以10℃/min的降温速率降温至25℃室温,得到表面粗糙的NiO/WO3复合膜;所述低氧分压气体由氧气和氩气混合而成,所述低氧分压气体中氧气的体积含量为600ppm;
[0051] 步骤二、将醋酸铜加到丙酸中,在温度为80℃的条件下搅拌回流4h,醋酸铜完全溶解后,得到浓度为0.3mol/L的铜前驱液,然后将步骤一中得到的NiO/WO3复合膜浸涂在铜前驱液中30s后开始提拉,提拉的速度为10m/h,然后再置于管式炉中,在还原性气体保护下,以2℃/min的升温速率升温至1000℃后保温0.5h,再以10℃/min的降温速率降温至25℃室温,最后得到表面平整的NiO/WO3/Cu2O复合膜,所述NiO/WO3/Cu2O复合膜的厚度为237nm;所述还原性气体由氮气和氢气按95:5的体积比混合而成。
[0052] 在实施例1~实施例6制备的NiO/WO3/Cu2O复合膜上均均匀地涂覆0.2mg/mL的氧化石墨烯溶液,置于干燥器中避光保存12h进行干燥处理,得到干燥的氧化石墨烯膜,其厚度约为1nm~5nm,在紫外可见光环境中持续照射12h,沉积在实施例1~实施例6制备的NiO/WO3/Cu2O复合膜上氧化石墨烯的还原率均达到98%以上。其中所述的还原率是通过XPS结果计算出来的,计算方法为:测试还原前氧化石墨烯中含氧官能团的百分含量为a,再测试还原后样品中含氧官能团的百分含量为b,那么还原率即为[(a-b)/a]×100%。
[0053] 图4为沉积在本发明实施例1制备的NiO/WO3/Cu2O复合膜上的氧化石墨烯层的XPS图谱。图5为沉积在本发明实施例1制备的NiO/WO3/Cu2O复合膜上的氧化石墨烯层在紫外可见光环境中持续照射12h后的XPS图谱。通过对比图4和图5,可以看出在紫外可见光照射12h后,氧化石墨烯已经基本被完全还原成了石墨烯,与C-OH键相比,氧化物复合膜对C-O-C、C=O和O=C-OH键显示出更高的还原率,说明本发明制备的NiO/WO3/Cu2O复合膜适合用于光催化还原氧化石墨烯。
[0054] 以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。