气相生长装置、环状支架以及气相生长方法转让专利

申请号 : CN201711006295.3

文献号 : CN107978552B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 家近泰津久井雅之石川幸孝

申请人 : 纽富来科技股份有限公司

摘要 :

本发明涉及气相生长装置、环状支架以及气相生长方法。实施方式的气相生长装置具备:反应室;环状支架,其为设置于反应室内并载置基板的环状支架,具备环状的外周部、和具有与外周部的上表面相比位于下方的基板载置面的环状的内周部,基板载置面是在圆周方向上重复凸区域和凹区域的六次旋转对称的曲面;和加热器,其设置于环状支架的下方。

权利要求 :

1.一种气相生长装置,其具备:

反应室;

环状支架,该环状支架是设置于所述反应室内并载置基板的环状支架,具备环状的外周部和具有与所述外周部的上表面相比位于下方的基板载置面的环状的内周部,所述基板载置面是在圆周方向上重复凸区域和凹区域的六次旋转对称的曲面;和加热器,该加热器设置于所述环状支架的下方。

2.根据权利要求1所述的气相生长装置,其中,所述内周部在所述基板载置面与所述外周部之间具有环状的槽。

3.根据权利要求1所述的气相生长装置,其中,在所述外周部的内周面上设置有向所述环状支架的中心方向突出的凸部。

4.一种环状支架,其包含:环状的外周部、和具有与所述外周部的上表面相比位于下方的基板载置面的环状的内周部,所述基板载置面是在圆周方向上重复凸区域和凹区域的六次旋转对称的曲面。

5.一种气相生长方法,其包括以下步骤:

将硅基板载置于环状支架上,其中,所述环状支架包含:环状的外周部、和具有与所述外周部的上表面相比设置于下方的基板载置面的环状的内周部,所述基板载置面是在圆周方向上重复凸区域和凹区域的六次旋转对称的曲面,以使表面为{111}面的所述硅基板的<

1‑10>方向与将对置的所述凸区域连接的方向或者将对置的所述凹区域连接的方向一致的方式将所述硅基板载置于所述环状支架上,使用设置于所述环状支架的下方的加热器对所述硅基板进行加热,在所述硅基板上形成膜。

说明书 :

气相生长装置、环状支架以及气相生长方法

技术领域

[0001] 本发明涉及通过供给气体来进行成膜的气相生长装置、环状支架以及气相生长方法。

背景技术

[0002] 作为形成高品质的半导体膜的方法,有在晶片等基板上通过气相生长来使单晶膜生长的外延生长技术。在使用外延生长技术的气相生长装置中,将晶片载置于被保持在常压或减压的反应室内的支承部上。
[0003] 然后,将该晶片进行加热,同时从反应室上部将作为成膜原料的源气体等工艺气体供给至反应室内的晶片表面。在晶片表面产生源气体的热反应,在晶片表面形成外延单晶膜。
[0004] 在晶片表面形成的外延单晶膜的特性依赖于晶片的温度。因此,希望实现高的晶片面内的温度均匀性。
[0005] 日本专利公开公报2015‑195259号中记载了在载置晶片的接受器中设置有被配置于正六边形顶点的基板支承部的气相生长装置。

发明内容

[0006] 本发明提供一种可提高基板温度的均匀性的气相生长装置、环状支架以及气相生长方法。
[0007] 本发明的一个方案的气相生长装置具备:反应室;环状支架,该环状支架是设置于所述反应室内并载置基板的环状支架,具备环状的外周部、和具有与所述外周部的上表面相比位于下方的基板载置面的环状的内周部,所述基板载置面是在圆周方向上重复凸区域和凹区域的六次旋转对称的曲面;和加热器,该加热器设置于所述环状支架的下方。
[0008] 本发明的一个方案的环状支架包含:环状的外周部、和具有与所述外周部的上表面相比位于下方的基板载置面的环状的内周部,所述基板载置面是在圆周方向上重复凸区域和凹区域的六次旋转对称的曲面。
[0009] 本发明的一个方案的气相生长方法包括以下步骤:
[0010] 将硅基板载置于环状支架上,其中,所述环状支架包含:环状的外周部、和具有与所述外周部的上表面相比设置于下方的基板载置面的环状的内周部,所述基板载置面是在圆周方向上重复凸区域和凹区域的六次旋转对称的曲面,以使表面为{111}面的所述硅基板的<1‑10>方向与将对置的所述凸区域连接的方向或者将对置的所述凹区域连接的方向一致的方式将所述硅基板载置于所述环状支架上,
[0011] 使用设置于所述环状支架的下方的加热器对所述硅基板进行加热,
[0012] 在所述硅基板上形成膜。

附图说明

[0013] 图1是第1实施方式的气相生长装置的示意剖视图。
[0014] 图2是第1实施方式的环状支架的示意图。
[0015] 图3A、图3B是第1实施方式的环状支架的示意图。
[0016] 图4是第1实施方式的气相生长方法的说明图。
[0017] 图5是第1实施方式的气相生长装置的作用及效果的说明图。
[0018] 图6A、图6B是第1实施方式的气相生长装置的作用及效果的说明图。
[0019] 图7是第1实施方式的气相生长装置的作用及效果的说明图。
[0020] 图8A、图8B是第2实施方式的环状支架的示意图。
[0021] 图9是第2实施方式的气相生长装置的作用及效果的说明图。

具体实施方式

[0022] 以下,参照附图对本发明的实施方式进行说明。
[0023] 在本说明书中,对相同或者类似的部件会有附加相同符号的情况。
[0024] 在本说明书中,将气相生长装置被设置为可成膜的状态下的重力方向定义为“下”,将其相反方向定义为“上”。因此,“下部”是指相对于基准而言的重力方向的位置,“下方”是指相对于基准而言的重力方向。并且,“上部”是指相对于基准而言与重力方向相反的方向的位置,“上方”是指相对于基准而言与重力方向相反的方向。另外,“纵方向”是指重力方向。
[0025] 另外,在本说明书中,“工艺气体”是指为了在基板上成膜而使用的气体的总称,例如,作为包括源气体、载气、稀释气体等的概念。
[0026] (第1实施方式)
[0027] 本实施方式的气相生长装置具备:反应室;环状支架,该环状支架是设置于反应室内并载置基板的环状支架,具备环状的外周部、和具有与外周部的上表面相比位于下方的基板载置面的环状的内周部,基板载置面是在圆周方向上重复凸区域和凹区域的六次旋转对称的曲面;和加热器,该加热器设置于环状支架的下方。
[0028] 另外,本实施方式的环状支架具备环状的外周部、和具有与外周部的上表面相比位于下方的基板载置面的环状的内周部,基板载置面是在圆周方向上重复凸区域和凹区域的六次旋转对称的曲面。
[0029] 另外,本实施方式的气相生长方法包括以下步骤:将硅基板载置于环状支架上,其中,所述环状支架具备:环状的外周部、和具有与外周部的上表面相比设置于下方的基板载置面的环状的内周部,基板载置面是在圆周方向上重复凸区域和凹区域的六次旋转对称的曲面,以使表面为{111}面的硅基板的<1‑10>方向与将对置的凸区域连接的方向或者将对置的凹区域连接的方向一致的方式将硅基板载置于环状支架上;使用设置于环状支架的下方的加热器对硅基板进行加热;在硅基板上形成膜。
[0030] 图1是本实施方式的气相生长装置的示意剖视图。本实施方式的气相生长装置是例如使用MOCVD法(有机金属气相生长法)的单片型的外延生长装置。
[0031] 本实施方式的气相生长装置具备:反应室10;第一气体供给通道11、第二气体供给通道12、和第三气体供给通道13。反应室10具备:环状支架14、旋转体单元16、旋转轴18、旋转驱动机构20、喷淋板22、内加热器(加热器)24、外加热器26、反射器28、支承柱34、固定台36、固定轴38、气体排出口40。
[0032] 第一气体供给通道11、第二气体供给通道12、第三气体供给通道13向反应室10供给工艺气体。
[0033] 第一气体供给通道11例如向反应室10供给含有III族元素的有机金属和载气的第一工艺气体。第一工艺气体是在晶片上形成III‑V族半导体的膜时的含有III族元素的气体。
[0034] III族元素例如为镓(Ga)、Al(铝)、In(铟)等。另外,有机金属为三甲基镓(TMG)、三甲基铝(TMA)、三甲基铟(TMI)等。
[0035] 第二气体供给通道12例如向反应室10供给含有氨(NH3)的第二工艺气体。第二工艺气体是在晶片上形成III‑V族半导体的膜时的V族元素、氮(N)的源气体。
[0036] 第三气体供给通道13例如向反应室10供给稀释第一工艺气体以及第二工艺气体的稀释气体。通过采用稀释气体来稀释第一工艺气体以及第二工艺气体,从而对供给至反应室10的III族元素以及V族元素的浓度进行调整。稀释气体例如为氢气、氮气或氩气等不活泼性气体或者它们的混合气体。
[0037] 反应室10例如具备不锈钢制且为圆筒状的壁面17。喷淋板22设置于反应室10的上部。喷淋板22上设置有多个喷气孔。工艺气体从多个喷气孔被供给至反应室10内。
[0038] 环状支架14设置于反应室10的内部。环状支架14上可载置作为基板的一个例子的晶片W。在环状支架14的中心部设置有开口部。
[0039] 环状支架14例如是以如下材料作为基材来形成的:碳化硅(SiC)、碳化钽(TaC)、氮化硼(BN)、热解石墨(PG)等陶瓷或者碳。环状支架14例如可以使用被覆有SiC、BN、TaC或者PG等的碳。
[0040] 环状支架14固定于旋转体单元16的上部。旋转体单元16固定于旋转轴18上。环状支架14间接固定于旋转轴18上。
[0041] 旋转轴18通过旋转驱动机构20而能旋转。通过利用旋转驱动机构20使旋转轴旋转,从而可以使环状支架14旋转。通过使环状支架14旋转,能使载置于环状支架14上的晶片W旋转。
[0042] 例如,使晶片W以50rpm以上且3000rpm以下的转速进行旋转。旋转驱动机构20例如由马达和轴承制成。
[0043] 内加热器24和外加热器26设置于环状支架14的下方。内加热器24和外加热器26设置于旋转体单元16内。外加热器26设置于内加热器24与环状支架14之间。
[0044] 内加热器24和外加热器26对保持在环状支架14上的晶片W进行加热。内加热器24对晶片W的至少中心部进行加热。外加热器26对晶片W的外周区域进行加热。内加热器24例如为圆板状。外加热器26例如为环状。
[0045] 反射器28设置于内加热器24和外加热器26的下方。在反射器28与环状支架14之间设置内加热器24和外加热器26。
[0046] 反射器28对从内加热器24和外加热器26向下方放射的热进行反射,使晶片W的加热效率提高。另外,反射器28防止位于反射器28的下方的部件被加热。反射器28例如为圆板状。
[0047] 反射器28由耐热性高的材料形成。反射器28例如具有对1100℃以上温度的耐热性。
[0048] 反射器28例如以SiC、TaC、碳、BN、PG等陶瓷或者钨等金属作为基材来形成。在反射器28使用陶瓷的情况下,可以使用通过烧结体或气相生长而制作的基材。反射器28还可以使用在碳的基材等上被覆SiC、TaC、BN、PG、玻璃碳等陶瓷而成的材料。
[0049] 反射器28例如被多根支承柱34固定于固定台36上。固定台36例如被固定轴38支承。
[0050] 在旋转体单元16内,为了使晶片W从环状支架14上装卸,设置有顶针(未图示出)。顶针例如将反射器28和内加热器24贯穿。
[0051] 气体排出口40设置于反应室10的底部。气体排出口40将源气体在晶片W表面进行反应后的剩余的反应产物以及剩余的工艺气体排出至反应室10的外部。
[0052] 另外,反应室10的壁面17上设置有未图示的晶片出入口以及闸阀。通过晶片出入口以及闸阀,使得晶片W可以被搬入反应室10内、或搬出到反应室10外。
[0053] 图2、图3A、图3B是本实施方式的环状支架的示意图。图2是立体图、图3A是俯视图、图3B是图3A的AA’剖视图。
[0054] 环状支架14具有环状的外周部50和环状的内周部52。内周部52设置于外周部50的内侧。外周部50和内周部52例如是一体成型的。
[0055] 内周部52是环状支架14的锪孔。使作为基板的一个例子的晶片W保持在内周部52之上且外周部50的内侧。
[0056] 内周部52具有基板载置面52a和槽52b。基板载置面52a为环状。基板载置面52a位于外周部50的上表面50a的下方。在基板载置面52a上载置晶片W。
[0057] 基板载置面52a是在圆周方向上重复凸区域H和凹区域L的六次旋转对称的曲面。在圆周方向上,凸区域H和凹区域L以60度的周期进行重复。即,如果使基板载置面52a在圆周方向上旋转60度,则会与旋转前的基板载置面52a的形状为相同的形状。圆周方向是指在图2及图3A中双箭头所示的方向。
[0058] 在图3A中,基板载置面52a上的白色圆圈是凸区域H的最高部,黑色圆圈是凹区域L的最低部。基板载置面52a的最高部与最低部的高度差例如为10μm以上且100μm以下。
[0059] 基板载置面52a例如为正弦波状。
[0060] 在本说明书中,所谓“曲面”不排除细微的台阶状的面的连续。例如,在台阶状的面的台阶高低差为基板载置面52a的最高部与最低部之差的十分之一以下的情况下,该台阶状的面的连续也视为曲面。
[0061] 槽52b设置于基板载置面52a与外周部50之间。槽52b为环状。
[0062] 在外周部50的上表面50a上,例如在与基板载置面52a的一个最低部相对应的位置上设置有对准标记55。对准标记55例如为设置于上表面50a上的线状槽。另外,对准标记也可以是从环状支架14的外周部50的侧面向内周部52突出的形状。为了示出晶体取向,通常会在晶片W上设置切槽、定向平面(orientation flat)等的切口,也可以将上述对准标记的向内周部突出的形状与该切口的形状进行对齐。
[0063] 对准标记55例如可用作将环状支架14安装于旋转体单元16时的位置校准的标记。另外,例如可用作将晶片W载置于环状支架14时的位置校准的标记。由于基板载置面52a的凹凸通过目视难以进行确认,因此设置对准标记55是有用的。
[0064] 此外,对准标记55可设置多个位置。另外,也可设置于与基板载置面52a的最高部相对应的位置上。另外,也可设置于与基板载置面52a的最底部以及最高部这两者相对应的位置上。另外,也可设置于外周部50的上表面50a以外的位置上。
[0065] 接下来,对本实施方式的气相生长方法进行说明。本实施方式的气相生长方法使用图1所示的外延生长装置。图4是本实施方式的气相生长方法的说明图。
[0066] 以将多个氮化铟镓膜(InGaN膜)和氮化镓膜(GaN膜)交替地层叠而成的层压膜形成于底层GaN膜上的情况为例进行说明。GaN膜、InGaN膜是氮化物半导体膜的一个例子。上述层压膜是例如用于LED(Light Emitting Diode,发光二极管)发光层的MQW(Multi Quantum Well,多量子阱)层。
[0067] 首先,将晶片W搬入至反应室10内。晶片W是表面为{111}面的硅基板。优选晶片W的面取向的误差为3度以下,更优选为2度以下。在图4的例子中,含有切槽N的硅基板的直径方向为[1‑10]方向。硅基板的厚度为例如700μm以上且1.2mm以下。此外,{111}面是表示与(111)面在晶体学上为等效的面。另外,为了表示基板的晶轴方向,图4示出了赋予了切槽的例子,但为了同样的目的,有时也会赋予定向平面等。
[0068] 接着,将晶片W载置于环状支架14的基板载置面52a上。如图4所示,以硅基板的<1‑10>方向与将对置的凹区域L连接的方向一致的方式来载置晶片W。更准确地说,以硅基板的<1‑10>方向与在环状支架14内将夹持环状支架14的中心地在直径方向上对置的凹区域L的最低部彼此连接的方向一致的方式进行载置晶片W。
[0069] 例如,通过将晶片W的切槽N与对准标记55对齐,从而以硅基板的[1‑10]方向与将对置的凹区域L连接的方向一致的方式来进行载置。此外,<1‑10>方向的表述表示与[1‑10]方向在晶体学上为等效的方向。
[0070] 通过将晶片W的切槽N与对准标记55对齐,使得将对置的凹区域L连接的方向的全部3个方向与硅基板的[1‑10]方向一致。此外,即使硅基板的[1‑10]方向与将对置的凹区域L连接的方向没有完全一致,通常只要在将晶片W载置于环状支架14上时所能产生的误差范围内实质上一致即可。例如,换算成角度,只要在±3度的范围内一致即可。
[0071] 接着,通过旋转驱动机构20旋转晶片W,同时通过设置在环状支架14的下方的内加热器24以及外加热器26进行加热。
[0072] 接着在晶片上使用TMA、TMG以及氨,使AlN(氮化铝)以及AlGaN(氮化铝镓)的缓冲层成膜之后,使底层GaN膜生长。接着,在该底层GaN膜上交替地形成InGaN膜和GaN膜从而形成MQW层。
[0073] 在形成InGaN膜的情况下,将例如以氮气为载气的TMG和TMI的混合气体从第一气体供给通道11供给至反应室10。另外,将例如氨从第二气体供给通道12供给至反应室10。另外,将作为稀释气体的例如氮气从第三气体供给通道13供给至反应室10。
[0074] 在形成GaN膜的情况下,例如将以氮气为载气的TMG从第一气体供给通道11供给至反应室10。另外,例如将氨从第二气体供给通道12供给至反应室10。另外,将作为稀释气体的例如氮气从第三气体供给通道13供给至反应室10。
[0075] 在形成了MQW层之后,停止内加热器24以及外加热器26的加热,降低晶片W的温度。然后,将晶片从反应室10搬出。
[0076] 接下来,对本实施方式的气相生长装置、环状支架以及气相生长方法的作用及效果进行说明。
[0077] 在晶片W表面形成的外延单晶膜的特性、例如膜厚、化学组成、结晶性等依赖于晶片W的温度。因此,如果晶片W面内的温度不均匀性变大,则膜的特性在晶片W的面内会产生不均。因此,期望提高晶片面内的温度的均匀性。
[0078] 图5、图6A、图6B以及图7是本实施方式的气相生长装置的作用及效果的说明图。
[0079] 图5是比较方式的环状支架15的立体图。比较方式的环状支架15在基板载置面52a不是曲面而是平面这一点上,与本实施方式的环状支架14不同。比较方式的环状支架15在基板载置面52a上、在圆周方向上不存在凸区域H和凹区域L这一点上,与本实施方式的环状支架14不同。
[0080] 图6A、图6B是表示使用比较方式的环状支架15以与上述气相生长方法同样的方法形成了MQW层的情况的结果的图。图6A是表示晶片W面内的特性分布的图,图6B是表示晶片W的外周区域的圆周方向的特性分布的图表。
[0081] 图6B的横轴是圆周方向的位置,纵轴是MQW层的发光峰波长以及晶片高度。实线为发光峰波长,虚线为晶片高度。此外,圆周方向是指图6A的箭头所示的方向。晶片高度是在晶片W上形成了含有MQW的层之后所测量的晶片表面的高度,是以晶片表面的最低的位置为基准来表示的。
[0082] 发光峰波长是通过以下方法求得的:向晶片W照射激发光,对从MQW层放射出来的荧光的波长进行测定。图6B示出了晶片W的外周区域的发光峰波长的圆周方向依赖性。
[0083] MQW层的发光峰波长依赖于晶片W的温度。例如,MQW的成膜时的晶片W的温度越高,则发光峰波长越短。另外,例如,MQW的成膜时的晶片W的温度越低,则发光峰波长越长。
[0084] 实际上对于使含有MQW的层生长后的晶片W而言,示出了外周部上的发光峰波长的分布与晶片高度的分布的测定结果的例子为图6B。如图6B所示,可知晶片W的外周部上的发光峰波长是周期性变化的,并且其变化的情况与晶片W的晶片高度一致。进而如图6B所示,各区域是以60度的周期出现的。换言之,晶片W的外周区域的发光峰波长的分布为六次旋转对称。
[0085] 如果综合考虑该结果以及MQW生长时的晶片温度与发光峰波长的关系,则可知:如图6A所示,在MQW成膜时,在晶片W的外周区域上,发光峰波长短、即MQW成膜时温度高的区域(图中为短波长/高温)和发光峰波长长、即成膜时的温度低的区域(图中为长波长/低温)在圆周方向上是交替存在的。
[0086] 另外,如图6B所示,成膜时的温度高的区域的晶片W的高度低,成膜时的温度低的区域的晶片W的高度高。成膜时的温度高的区域是在晶片W的外周部上从晶片的中心看相当于硅基板的<1‑10>方向的区域。
[0087] 此外,即使预先使晶片W旋转30度而载置于环状支架15上,成膜时温度高的区域也会与晶片W的硅基板的<1‑10>方向一致。因此,环状支架15上所产生的温度分布并非是周期性温度分布的原因。
[0088] 由上述结果可认为产生晶片W的外周区域的温度分布的理由如下。即,在MQW层的成膜中,晶片W依赖于晶体取向而发生变形,在晶片W的外周区域上产生圆周方向的周期性翘曲。晶片W产生翘曲的结果是,晶片W的高度低的区域的晶片W背面与环状支架15的基板载置面52a接触。另一方面,晶片W的高度高的区域的晶片W背面从环状支架15的基板载置面52a脱离变成非接触。
[0089] 在成膜中,通过内加热器24和外加热器26从背面侧对晶片W进行加热。在晶片W的背面与环状支架15之间,介由基板载置面52a来导热。
[0090] 因此,例如晶片W背面与基板载置面52a接触的区域变成高温,非接触的区域变成低温。在本实施方式的例子中,硅基板的<1‑10>方向的晶片W的高度变低,与基板载置面52a接触而变成高温。另一方面,从<1‑10>方向偏离30度的区域的晶片W的高度变高,未与基板载置面52a接触而变成低温。
[0091] 如图2和图3A所示,本实施方式的环状支架14具备在圆周方向上使凸区域H和凹区域L以60度的周期进行重复的基板载置面52a。通过使硅基板的<1‑10>方向与凹区域L对齐,从而能够使通过晶片W的翘曲而产生的晶片W背面的凹凸形状与基板载置面52a的凹凸对齐。因此,晶片W的背面与基板载置面52a均匀地接触,抑制在晶片W的外周区域上产生依赖于晶体取向的周期性的温度分布。
[0092] 另外,即使无法使基板载置面52a的曲面形状与晶片W的背面的形状完全对齐而使晶片W背面的一部分成为非接触,基板载置面52a与晶片W背面的距离与比较方式的情况相比也显著更近。晶片W的温度通过来自基板载置面52a的辐射热也会上升。因此,即使晶片W背面的一部分为非接触,通过与基板载置面52a的距离较近,从而可抑制在晶片W的外周区域上产生依赖于晶体取向的周期性的温度分布。
[0093] 在本实施方式的环状支架14中,基板载置面52a的最高部与最低部之差优选为10μm以上且100μm以下,更优选为20μm以上且50μm以下。如果低于上述范围,则有可能无法充分地对应晶片W的翘曲。如果产生高于上述范围的晶片W的翘曲,则晶片W有可能会产生滑动。
[0094] 图7是表示晶片W的中心偏离环状支架14的中心而被载置的状态的俯视图。例如,在晶片W的成膜中,使环状支架14在载置了晶片W的状态下进行旋转。此时,由于作用在晶片W上的离心力,使得晶片W有可能偏离环状支架14的中心。
[0095] 例如,在环状支架上未设置有槽52b的情况下,如果晶片W的中心偏离环状支架14的中心,则晶片W背面的外周的与环状支架的接触面积会因位置的不同而不同。因此,会变得容易产生晶片W的外周区域的温度不均。
[0096] 本实施方式的环状支架14在基板载置面52a与外周部50之间设置有槽52b。因此,晶片W背面只在内周部52的基板载置面52a上与环状支架14接触。
[0097] 因此,如图7所示,即使在晶片W的中心偏离环状支架14的中心而载置的情况下,晶片W背面的外周与环状支架14的接触面积也不会因位置的不同而变化。因而,例如,与未设置有槽52b的环状支架相比,难以产生晶片W的外周区域的温度不均。
[0098] 如上所述,根据本实施方式的气相生长装置、环状支架以及气相生长方法,通过降低晶片W的外周区域的圆周方向的温度不均,能够使晶片的温度均匀性提高。因此,能够形成特性不均小的膜。
[0099] (第2实施方式)
[0100] 本实施方式的气相生长装置以及环状支架除了在内周部上具有多个向外周部的内侧突出的岛状的凸部以外,与第1实施方式相同。因此,对于与第1实施方式重复的内容,省略描述。
[0101] 图8A、图8B是本实施方式的环状支架的示意图。图8A为俯视图,图8B为图8A的BB’剖视图。
[0102] 本实施方式的环状支架64在内周部52上具有多个向外周部50的内侧突出的岛状的凸部52c。例如,在外周部50的内周面的8个位置上设置有向中心方向突出的岛状的凸部52c。多个岛状的凸部52c与基板载置面52a分离。
[0103] 图9是本实施方式的气相生长装置的作用及效果的说明图。图9是表示晶片W的中心偏离环状支架64的中心而载置的状态的俯视图。
[0104] 基板载置面52a的凹凸是以晶片W的中心与环状支架64的中心一致为前提而形成的。因此,如果晶片W的中心偏离环状支架64的中心而载置,则通过晶片W的翘曲而产生的晶片W背面的凹凸形状无法与基板载置面52a的凹凸对齐,有可能使晶片W的外周区域的圆周方向的温度不均变大。
[0105] 例如,如图7所示,在第1实施方式的环状支架14的情况下,晶片W的中心与环状支架14的中心之间产生大的偏离。进而,晶片W的端部与外周部50在宽的范围内相接触或者接近,例如,因来自外周部50的热传导而产生晶片端部的温度上升。因此,晶片W的外周区域的圆周方向的温度不均有可能进一步变大。
[0106] 在本实施方式的环状支架64的情况下,在内周部52上具有多个向外周部50的内侧突出的岛状的凸部52c。因此,如图9所示,即使晶片W的中心偏离环状支架64的中心,也是晶片W的端部与岛状的凸部52c接触,能够将晶片W的中心与环状支架64的中心之间的偏离限制成较小。因此,也能够将由晶片W的翘曲而产生的晶片W背面的凹凸形状与基板载置面52a的凹凸的偏离抑制成较小。
[0107] 另外,晶片W的端部与外周部50只在岛状的凸部52c处有接触。因此,与图7所示的第1实施方式的情况相比,晶片W的端部与外周部50的接触面积变小。由此,使得晶片W的外周区域的圆周方向的温度不均降低。
[0108] 此外,岛状的凸部52c的数量不一定限于8个,也可少于8个,也可多于8个。不过,在晶片W偏离环状支架64的中心的情况下,优选使晶片W的端部一定要与凸部52c接触。从该观点出发,优选岛状的凸部52c的数量至少为3个以上。
[0109] 根据本实施方式的气相生长装置,通过第1实施方式,可进一步降低晶片W的外周区域的圆周方向的温度不均。因此,可进一步提高晶片的温度的均匀性。
[0110] 如上所述,参照具体例对本发明的实施方式进行了说明。上述实施方式只是作为例子而被例举,并非限定本发明。另外,可对各实施方式的构成要素进行适当地组合。
[0111] 例如,就实施方式而言,以在内周部52内设置环状的槽52b的情况为例进行了说明,但也可以不设置环状的槽52b。
[0112] 另外,就实施方式而言,以单片型的气相生长装置为例进行了说明,但只要是使用环状支架的装置,则并不限于单片型,也可对多个晶片W同时进行成膜的批量式气相生长装置应用本发明。
[0113] 另外,就实施方式而言,以使在GaN膜上层叠有多个氮化铟镓膜和氮化镓膜而成的层压膜进行外延生长的情况为例进行了说明,但也可对例如氮化铝(AlN)、氮化铝镓(AlGaN)等其他的III‑V族的氮化物系半导体的单晶膜等的成膜应用本发明。另外,也可对GaAs等III‑V族的半导体应用本发明。进而,本发明还可应用于其他膜的成膜。
[0114] 另外,就实施方式而言,以工艺气体在喷淋板内被混合的情况为例进行了说明,但工艺气体也可以是在进入喷淋板之前被混合的构成。另外,工艺气体也可以是在从喷淋板喷出至反应室内之前为分离状态的构成。
[0115] 另外,以环状支架14、64的外周部50和内周部52为一体成型的情况为例进行了说明,但环状支架14、64的内周部52或者其一部分也可以是可分离的结构。通过使内周部52或者其一部分为可分离,能应用例如各种形状的环状支架,使得晶片W的外周区域的温度分布的微调变得容易。此外,环状支架14、64也可与圆盘状的支架组合使用,并且也可以与圆盘状支架为一体。
[0116] 另外,就实施方式而言,作为加热器,以具备内加热器24和外加热器26这两种的情况为例进行了说明,但是,加热器也可只为1种。另外,加热器也可为3种以上。
[0117] 按照以上说明的实施方式在晶片W上进行成膜,对圆周方向的特性进行了评价后,对凹部与凸部的高低差进一步进行微调,由此有可能使圆周方向的特性均匀性进一步提高,在这样的情况下优选进行该微调。
[0118] 就实施方式而言,关于装置构成、制造方法等对于本发明的说明而言不直接需要的部分等,省略了记载,但是,可对必要的装置构成、制造方法等进行适当的选择使用。此外,具备本发明的要素且本领域技术人员能够进行适当设计变更的所有的气相生长装置、环状支架以及气相生长方法包含于本发明的范围内。本发明的范围由权利要求书及其等同物的范围来定义。