一锅共还原溶剂热法合成空心立方体PtCu纳米框材料的方法转让专利

申请号 : CN201711185608.6

文献号 : CN108003355B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王爱军蒋榴瑛冯九菊黄先燕

申请人 : 浙江师范大学

摘要 :

本发明公开了一锅共还原溶剂热法合成空心立方体PtCu纳米框材料的方法,将调控分子十六烷基三甲基氯化铵、金属前驱物乙酰丙酮铂与氯化铜CuCl2·2H2O、还原剂乙醇胺及溶剂油胺置于反应容器中并混合均匀,其中十六烷基三甲基氯化铵的摩尔浓度为20mM,乙酰丙酮铂的摩尔浓度为5mM,氯化铜的摩尔浓度为5mM,乙醇胺的摩尔浓度为60mM,再将得到的混合材料置于油浴锅中加热至160℃反应8h,反应结束后冷却至室温离心、洗涤、烘干得到空心立方体PtCu纳米框材料。本发明制备过程简单方便,相比于其它PtCu纳米材料,本发明制得的空心立方体PtCu纳米框材料能显著提高其对丙三醇和氧气还原反应(ORR)的催化活性。

权利要求 :

1.一锅共还原溶剂热法合成空心立方体PtCu 纳米框材料的方法,其特征在于具体步骤为:将调控分子十六烷基三甲基氯化铵、金属前驱物乙酰丙酮铂与氯化铜CuCl2·2H2O、还原剂乙醇胺及溶剂油胺置于反应容器中并混合均匀,其中十六烷基三甲基氯化铵的摩尔浓度为20mM,乙酰丙酮铂的摩尔浓度为5mM,氯化铜的摩尔浓度为5mM,乙醇胺的摩尔浓度为

60mM,再将得到的混合材料置于油浴锅中加热至160℃反应8h,反应结束后冷却至室温离心、洗涤、烘干得到空心立方体PtCu 纳米框材料。

2.根据权利要求1所述的一锅共还原溶剂热法合成空心立方体PtCu 纳米框材料的方法,其特征在于:制得的空心立方体PtCu 纳米框材料中立方体的平均边长为6.52nm,空心结构形成的具体过程为:金属前驱体乙酰丙酮铂还原成Pt原子,金属前驱体氯化铜经历过电位还原沉积最终形成PtCu核,在调控分子十六烷基三甲基氯化铵存在下,Cl-吸附在金属表面{110}特殊晶面,使其PtCu核沿着{110}特殊晶面沉淀溶解,经历4h的反应时间后,PtCu-核形成不规则实心形貌,随着时间延长到6h,在氧化腐蚀剂Cl/O2的作用下不规则实心形貌逐渐形成空心结构,随着时间延长至8h,空心中间体被氧化腐蚀成空心立方体,八个角也逐渐向外延张,最终生成空心立方体结构。

说明书 :

一锅共还原溶剂热法合成空心立方体PtCu纳米框材料的方法

技术领域

[0001] 本发明属于空心立方体纳米材料的合成技术领域,具体涉及一种一锅共还原溶剂热法合成空心立方体PtCu纳米框(PtCu HCNFs)材料的方法。

背景技术

[0002] 铂(Pt)催化剂是许多重要应用中最高效的单金属催化剂,尤其是在燃料电池阴极催化应用中。然而Pt的高价、低储备以及极易CO中毒等因素限制了其大规模商业应用。针对这一现状,大量研究主要集中在降低Pt的使用量,降低催化剂的成本,调控催化剂形貌从而提高催化剂的催化性能上。
[0003] 到目前为止,大部分研究主要集中在以下几个方面:1)合成Pt-M(M=Ni、Co、Cu等)双金属催化剂,在减少贵金属含量的同时调控Pt的电子结构达到提升催化剂催化效果;2)调控催化剂表面边界形成高指数晶面;3)构建三维空间结构的纳米催化剂有效提高贵金属的利用率。然而,这类催化剂在催化过程中通常会经历烧结和过渡金属的溶解,导致原子利用率的降低和形貌的演变。因此,纳米催化剂的活性和稳定性之间的平衡仍然是一个巨大的挑战。针对这一问题,研究者发展各式各样的合成策略去制备高活性高稳定性的单晶贵金属纳米框架(立方体、四面体、八面体),这些合成方法包括电化学置换法、牺牲模板法和氧化刻蚀法等。
[0004] 不过多晶结构的金属纳米框架能调节电子结构和表面反应从而提高催化剂的催化活性,因此多晶纳米框架催化剂更受研究者的欢迎。Pt基纳米框架由于相互连接的纳米级边缘、高的表面体积比、三维可接触表面以及高原子利用率等特点受到研究者的青睐。然而传统合成方法多为多步构建,因此通过一锅法构建纳米框架一直是研究者研究的热点。

发明内容

[0005] 本发明为克服现有技术中多步合成金属纳米框架存在的问题而提供了一种制备过程简单可控的一锅共还原溶剂热法合成空心立方体PtCu纳米框(PtCu HCNFs)材料的方法。
[0006] 本发明为解决上述技术问题采用如下技术方案,一锅共还原溶剂热法合成空心立方体PtCu HCNFs纳米材料的方法,其特征在于具体步骤为:将调控分子十六烷基三甲基氯化铵(CTAC)、金属前驱物乙酰丙酮铂(Pt(acac)2)与氯化铜(CuCl2·2H2O)、还原剂乙醇胺及溶剂油胺置于反应容器中并混合均匀,其中十六烷基三甲基氯化铵的摩尔浓度为20mM,乙酰丙酮铂的摩尔浓度为5mM,氯化铜的摩尔浓度为5mM,乙醇胺的摩尔浓度为60mM,再将得到的混合材料置于油浴锅中加热至160℃反应8h,反应结束后冷却至室温离心、洗涤、烘干得到空心立方体PtCu HCNFs纳米材料。
[0007] 进一步优选,制得的空心立方体PtCu HCNFs纳米材料中立方体的平均边长为6.52nm,空心结构形成的具体过程为:金属前驱体乙酰丙酮铂还原成Pt原子,金属前驱体氯化铜经历过电位还原沉积最终形成PtCu核,在调控分子十六烷基三甲基氯化铵存在下,Cl-吸附在金属表面{110}特殊晶面,使其PtCu核沿着{110}特殊晶面沉淀溶解,经历4h的反应时间后,PtCu核形成不规则实心形貌,随着时间延长到6h,在氧化腐蚀剂Cl-/O2的作用下不规则实心形貌逐渐形成空心结构,随着时间延长至8h,空心中间体被氧化腐蚀成空心立方体,八个角也逐渐向外延长,最终生成空心立方体结构。
[0008] 本发明与现有技术相比具有以下优点:本发明的空心立方体PtCu HCNFs纳米材料采用一锅共还原溶剂热法制备而成,制备过程简单方便,相比于其它PtCu纳米材料,本发明制得的空心立方体PtCu HCNFs纳米材料的空心立方体结构能显著提高其对丙三醇和氧气还原反应(ORR)的催化活性。

附图说明

[0009] 图1为PtCu HCNFs纳米材料的透射电镜图和高角环形暗场扫描透射电镜图,其中A,B,C中的插图分别是相应的高分辨TEM图、结构模型和SAED。
[0010] 图2为在不同反应时间条件下的PtCu HCNFs纳米材料的透射电镜图,其中(a)2h,(b)4h,(c)8h,(d)PtCu HCNFs纳米材料形成过程示意图;
[0011] 图3中(A)PtCu HCNFs,Pt NCs,Pt/C和Pt black在0.5M KOH溶液中的CV图,(B)上述材料在氧饱和的0.5M KOH溶液中的ORR极化曲线图,(C)塔菲尔斜率和(D)在0.85V下的SA和MA图;
[0012] 图4为PtCu HCNFs(A),Pt NCs(B),Pt/C(C)和Pt black(D)在氧饱和的0.5M KOH溶液中1000圈循环测试前后ORR极化曲线图,转速为1600rpm,扫速为10mV/s,插图为PtCu HCNFs在0.85V电位下的SA和MA 1000圈循环测试前后对比图;
[0013] 图5为 PtCu HCNFs,Pt NCs,Pt/C和Pt black在含0.5M丙三醇的0.5M KOH溶液中的CV图(A)、SA和MA(B)、0.8V电位下的计时电流曲线图(C),(D)PtCu HCNFs纳米材料1000圈循环测试前后CV图。
[0014] 具体实时方式
[0015] 以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
[0016] 实施例1
[0017] 试剂及仪器
[0018] 十六烷基三甲基氯化铵、乙酰丙酮铂、氯化铜(CuCl2·2H2O)、乙醇胺、油胺、二甲基硅油、乙醇、环己烷均购买上海化工厂,所有试剂均为分析纯。扫描电子显微镜(SEM,JSM-6390LV,JEOL,Japan),透射电子显微镜 (TEM,JEM-2100,JEOL,Japan),加速电压为200kV。
PtCu HCNFs纳米材料的化学组成由能谱仪(EDX,Oxford),X-射线衍射(XRD)来确定。
[0019] 将调控分子十六烷基三甲基氯化铵、金属前驱物乙酰丙酮铂与氯化铜(CuCl2·2H2O)、还原剂乙醇胺及溶剂油胺置于25mL圆底烧瓶中并超声混合均匀,其中十六烷基三甲基氯化铵的摩尔浓度为20mM,乙酰丙酮铂的摩尔浓度为5mM,氯化铜的摩尔浓度为5mM,乙醇胺的摩尔浓度为60mM,总体积为5mL,再将得到的混合材料置于油浴锅中加热至160℃反应
8h,反应结束后冷却至室温离心、洗涤、烘干得到空心立方体PtCu HCNFs纳米材料,所使用的洗涤剂为体积比9:1的乙醇与环己烷的混合溶液。
[0020] 图1为PtCu HCNFs纳米材料的透射电镜图和高角环形暗场扫描透射电镜图。由图可见PtCu HCNFs纳米材料的结构由许多空心立方体结构组成,空心立方体的平均边长为6.52nm,并且每个角上都有凸起,结构表面存在晶格缺陷,有利于吸附反应物进而提高催化效率。由图1中的D可知,铂元素和铜元素均匀分布在整个空心结构上,证明了该PtCu HCNFs纳米材料是合金结构,并且由图1中C的插图选区电子衍射图说明了其多晶的本质。
[0021] 如图2所示,通过不同反应时间得到的中间产物解释PtCu HCNFs纳米材料的生长机理,该生长机理可解释为三步增长机制:成核、各向异性生长和氧化刻蚀。根据相关文献,在该反应过程中,Pt比Cu先还原,金属前驱体乙酰丙酮铂还原成Pt原子,金属前驱体氯化铜经历过电位还原沉积最终形成PtCu核。在调控分子十六烷基三甲基氯化铵存在下,Cl-吸附在金属表面{110}特殊晶面,使其PtCu核沿着{110}特殊晶面沉淀溶解,经历4h的反应时间后,PtCu核形成不规则实心形貌,随着时间延长到6h,在氧化腐蚀剂Cl-/O2的作用下不规则实心形貌逐渐形成空心结构,随着时间延长至8h,空心中间体被氧化腐蚀成空心立方体,八个角也逐渐向外延长,最终生成空心立方体结构。
[0022] 图3-5是在碱性条件下PtCu HCNFs纳米材料对氧气还原反应(ORR)和丙三醇氧化反应(GOR)的催化应用。图3中的A是PtCu HCNFs在0.5 M KOH溶液中的循环伏安图,根据析2 –1
氢脱氢部分(0.1-0.4V)计算,PtCu HCNFs的电化学活性面积是23.4m g Pt,虽略小于商业的Pt/C(20%),但其对ORR和GOR有着极高的催化性能。
[0023] 根据图3中B的极化曲线和图3中C的塔菲尔斜率所示,虽然PtCu HCNFs的起峰电位(0.95V)略负于对照材料Pt NCs(0.96V),但比商业Pt/C(0.94V)和Pt black(0.91V)更正,而且其塔菲尔斜率(82.5mV dec–1)都小于对照材料Pt NCs(149.1mV dec–1),Pt/C(86.4mV dec–1)和Pt black (147.2mV dec–1),这证明PtCu HCNFs在反应过程中有更多的电子转移,表明了PtCu HCNFs催化剂高效的催化性能。除此之外,图3中D展示了PtCu HCNFs在0.85V时的面积活性和质量活性,其高面积活性(SA,3.12mA cm-2ECSA)和质量活性(MA,0.732A mg–1Pt)大于Pt NCs(0.47mA cm-2ECSA,0.132A mg–1Pt),Pt/C(0.52mA cm-2ECSA,0.202A mg–1Pt)和Pt black(0.45mA cm-2ECSA,0.054A mg–1Pt),这数据进一步证明PtCu HCNFs的高效电催化性能。图4所示的是PtCu HCNFs纳米材料及其他对照的稳定性测试图。从图中可知,在加速稳定性测试(ADT)中,PtCu HCNFs在0.85V时的SA和MA降低(19%),小于Pt NCs(21%),Pt/C(38%)和Pt black(25%),该结果进一步证明了PtCu HCNFs纳米材料具有优异的催化能力及稳定性。
[0024] 图5是PtCu HCNFs纳米材料在碱性条件下(0.5M KOH溶液)对丙三醇催化反应的循环伏安图。在相同量催化剂的条件下,与对照材料相比,PtCu HCNFs具有最高的电流密度(96mA cm-2)和最小的中毒峰。除此之外,PtCu HCNFs的SA(9.71mA cm-2ECSA)和MA(2.272A –1mg Pt)远大于对照材料Pt NCs,Pt/C和Pt black,这明显证明了PtCu HCNFs对丙三醇的高效催化。图5中C和D是PtCu HCNFs纳米材料在0.5M KOH溶液中稳定性测试,在0.8V的电位下,通过计时电流法测试10000s后,PtCu HCNFs纳米材料余留下来的电流密度(5.62mA cm-2)大于Pt NCs(1.69mA cm-2),Pt/C (1.16mA cm-2)和Pt black(0.47mA cm-2)。同时利用循环伏安法技术,在加速测试1000圈后,PtCu HCNFs的峰电流密度基本无损失,这可观的数据再次证明PtCu HCNFs纳米材料具有优良的催化性能及极高的稳定性。
[0025] 实施例2
[0026] 在本实施例中,金属前驱体浓度发生改变(Pt(acac)2 :CuCl2·2H2O=8:2和2:8),其它实验条件参照实施例1,保持不变,制备得到的PtCu纳米粒子(PtCu NPs)在支撑材料中展示,空心PtCu HCNFs变成实心的不规则形貌,并且粒子粒径变大。
[0027] 实施例3
[0028] 在本实施例中,调控分子CTAC浓度发生改变(10mM,40mM,60mM),其它实验条件参照实施例1,保持不变。制备得到的PtCu NPs在支撑材料中展示,当调控分子浓度减小时,空心结构几乎不存在,粒径略大,当调控分子浓度增大到40mM时,空心结构逐渐延伸为固体结构。随着调控分子溶度的进一步扩大(60mM),枝状纳米花结构生成,空心结构消失。
[0029] 实施例4
[0030] 在本实施例中,还原剂乙醇胺浓度发生改变(30mM,90mM),其它实验条件参照实施例1,保持不变。制备得到的PtCu NPs在支撑材料中展示,空心立方体结构发生改变,粒径变大,足增多。
[0031] 实施例5
[0032] 在本实施例中,另一种还原剂三羟甲基氨基甲烷用来替代乙醇胺,其它实验条件参照实施例1,保持不变。制备得到的PtCu NPs在支撑材料中展示,形貌不再是空心立方体结构。
[0033] 根据实施例1-5可知,生成空心立方体结构过程中调控分子(CTAC)浓度、金属前驱体浓度、还原剂浓度以及反应时间的控制都是至关重要的。
[0034] 以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。