一种内燃动车组混合供电动力系统及供电方法转让专利

申请号 : CN201711292990.0

文献号 : CN108032862B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 杨颖周安德李耘茏范丽冰李庭芳齐彪

申请人 : 中车株洲电力机车有限公司

摘要 :

本发明公开了一种内燃动车组混合供电动力系统及供电方法,列车运行时,能量管理模块将列车司控器的级位信号发送至逆变器,逆变器根据收到的司控器级位信号和提前依据动力系统的动力性能,设定列车速度与牵引力、列车速度与再生制动力的包络线,控制牵引电机发挥相应的力矩;同时逆变器根据输入端采集电压、电流值,计算当前实际需求功率,并将需求功率发送能量管理模块,能量管理模块根据超级电容当前可发挥功率,计算并发送需输出功率命令至整流器,整流器根据能量管理模块命令要求控制动力包输出相应功率。本发明结构简单、控制可靠,可以增加列车的动力性能,提高列车运输能力。

权利要求 :

1.一种内燃动车组混合供电动力系统,包括:

能量管理模块,用于接收内电动力包、整流器、超级电容、逆变器发送的各自的当前电压、电流、实际可用功率、当前输出功率,进行能量管理;

内电动力包,用于将自身工作参数发送给能量管理模块,同时将能量和自身能力参数传递至整流器;

整流器,用于将自身工作参数发送给能量管理模块,同时将能量和自身能力参数传递至逆变器;

其特征在于,超级电容,用于将自身工作参数发送给能量管理模块,同时将能量和自身能力参数发送给逆变器;

逆变器,用于将自身工作参数发送给能量管理模块,同时将内电动力包和超级电容的输出电量供给牵引电机,监控牵引电机的工作状态;

列车运行时,能量管理模块将列车司控器的级位信号发送至逆变器,逆变器根据收到的司控器级位信号,依据动力系统的动力性能,设定列车速度与牵引力、列车速度与再生制动力的包络线,控制牵引电机发挥相应的力矩;同时逆变器根据输入端采集的电压、电流值,计算当前实际需求功率,并将需求功率发送给能量管理模块,能量管理模块根据超级电容当前可发挥功率,计算并发送需输出功率命令至整流器,整流器根据能量管理模块命令要求控制内电动力包输出相应功率;

列车牵引工况时,能量管理模块判断超级电容电压设定值,若超级电容端电压大于设定值,则能量管理模块控制整流器开通,内电动力包和超级电容共同向逆变器供电;若超级电容端电压小于设定值,则能量管理模块控制整流器开通,内电动力包给超级电容充电,直至超级电容端电压达到设定值;

列车制动工况时,能量管理模块控制内电动力包怠速运行,整流器处于待机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,则能量管理模块控制隔离超级电容,再生制动电量由车载设备及制动电阻消耗;当超级电容端电压小于设定值,则能量管理模块控制超级电容投入工作,再生制动电量由超级电容和车载设备吸收;

列车处于惰性或静态工况时,能量管理模块控制内电动力包怠速运行,整流器处于工作状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,则能量管理模块控制隔离超级电容;当超级电容端电压小于设定值,则由内电动力包给超级电容充电;

当内电动力包故障时,能量管理模块控制内电动力包和整流器处于停机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,由超级电容给列车负载供电,维持一定时间的供电能;当超级电容端电压小于设定值,则先由外部电源给超级电容充电,然后再由超级电容给列车负载供电;

当超级电容故障时,能量管理模块控制超级电容处于隔离状态,并控制内电动力包给列车牵引和辅助负载供电。

2.根据权利要求1所述的内燃动车组混合供电动力系统,其特征在于,所述内电动力包包括第一控制模块;所述第一控制模块与第一电流传感器、第一电压传感器连接;所述第一电流传感器、第一电压传感器均与发电机连接;所述发电机与柴油机连接;所述第一控制模块监控发电机状态和根据整流器命令控制输出相应功率;第一电压传感器用于监控发电机实时输出电压;第一电流传感器用于监控发电机实时输出电流。

3.根据权利要求2所述的内燃动车组混合供电动力系统,其特征在于,所述整流器包括第二控制模块;所述第二控制模块与第二电压传感器、第二电流传感器连接;所述第二电压传感器、第二电流传感器均与DC/DC变换器连接;所述DC/DC变换器与AC/DC变换器连接;所述AC/DC变换器通过第一接触器接所述发电机;所述第二控制模块监控DC/DC变换器状态和根据能量管理模块命令控制输出相应功率;第一接触器用于投入或隔离整流器;第二电压传感器用于监控整流器实时输出电压;第二电流传感器用于监控整流器实时输出电流。

4.根据权利要求3所述的内燃动车组混合供电动力系统,其特征在于,所述超级电容包括第三控制模块,所述第三控制模块与第三电压传感器、第三电流传感器连接;所述第三电流传感器、第三电压传感器输入端均与熔断器连接;所述熔断器接超级电容;所述熔断器通过第二接触器接所述DC/DC变换器;所述第三控制模块监控超级电容状态;第三电压传感器用于监控超级电容实时输出电压;第三电流传感器用于监控超级电容实时输出电流;熔断器用于过流保护;第二接触器用于投入或隔离超级电容。

5.根据权利要求1所述的内燃动车组混合供电动力系统,其特征在于,列车处于牵引工况时,内电动力包与超级电容并联给牵引电机和车载负载提供电能。

6.根据权利要求1所述的内燃动车组混合供电动力系统,其特征在于,列车处于制动工况时,内电动力包怠速运行,整流器处于待机状态,超级电容快速回收牵引电机再生制动能量。

7.根据权利要求1所述的内燃动车组混合供电动力系统,其特征在于,列车处于惰性或静态工况时,内电动力包怠速运行,维持列车当前运行速度同时给超级电容充电。

8.根据权利要求1所述的内燃动车组混合供电动力系统,其特征在于,当内电动力包故障被隔离时,由超级电容给列车负载供电,维持一定时间的供电能;当超级电容故障被隔离时,由内电动力包给列车负载供电,维持列车低速运行。

9.根据权利要求1~8之一所述的内燃动车组混合供电动力系统,其特征在于,所述内电动力包功率为360~390kW,所述超级电容功率为300~450kW。

10.一种内燃动车组混合供电方法,其特征在于,包括:

列车牵引工况时,能量管理模块判断超级电容电压设定值,若超级电容端电压大于设定值,则能量管理模块控制整流器开通,内电动力包和超级电容共同向逆变器供电;若超级电容端电压小于设定值,则能量管理模块控制整流器开通,内电动力包给超级电容充电,直至超级电容端电压达到设定值;

列车制动工况时,能量管理模块控制内电动力包怠速运行,整流器处于待机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,则能量管理模块控制隔离超级电容,再生制动电量由车载设备及制动电阻消耗;当超级电容端电压小于设定值,则能量管理模块控制超级电容投入工作,再生制动电量由超级电容和车载设备吸收;

列车处于惰性或静态工况时,能量管理模块控制内电动力包怠速运行,整流器处于工作状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,则能量管理模块控制隔离超级电容;当超级电容端电压小于设定值,则由内电动力包给超级电容充电;

当内电动力包故障时,能量管理模块控制内电动力包和整流器处于停机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,由超级电容给列车负载供电,维持一定时间的供电能;当超级电容端电压小于设定值,则先由外部电源给超级电容充电,然后再由超级电容给列车负载供电;

当超级电容故障时,能量管理模块控制超级电容处于隔离状态,并控制内电动力包给列车牵引和辅助负载供电。

说明书 :

一种内燃动车组混合供电动力系统及供电方法

技术领域

[0001] 本发明涉及内燃动车组内电供电系统,特别是一种内燃动车组混合供电动力系统及供电方法。

背景技术

[0002] 传统的内燃动车组经过多年的发展,为人类文明的发展做出了巨大贡献,创造了难以计算的直接或间接经济利益。但是随着近年来轨道交通技术的飞速发展,人们越来越认识到传统的内燃车对人类环境带来的危害。传统内燃动车动力系统运行排放所造成的空气质量日益恶化和石油资源的渐趋匮乏,环境保护的迫切性和石油储量日见短缺的压力,迫使人们去考虑内燃动车组动力系统问题,需求最优的解决方案。在20世纪初,美国GE公司、加拿大铁路动力混合技术公司及日本东芝公司先后研制了柴油机与蓄电池混合供电的内燃动车组,然而由于该种混合动力动车组成本高、维修费用高,在国内外轨道交通领域并未得到广泛应用。

发明内容

[0003] 本发明所要解决的技术问题是,针对现有技术不足,提供一种内燃动车组混合供电动力系统及供电方法,增加列车的动力性能,提高列车运输能力。
[0004] 为解决上述技术问题,本发明所采用的技术方案是:一种内燃动车组混合供电动力系统,包括:
[0005] 能量管理模块,用于接收内电动力包、整流器、超级电容、逆变器发送的各自的当前电压、电流、实际可用功率、当前输出功率,进行能量管理;
[0006] 内电动力包,用于将自身工作参数发送给能量管理模块,同时将能量和自身能力参数传递至整流器;
[0007] 整流器,用于将自身工作参数发送给能量管理模块,同时将能量和自身能力参数传递至逆变器;
[0008] 超级电容,用于将自身工作参数发送给能量管理模块,同时将能量和自身能力参数发送给逆变器;
[0009] 逆变器,用于将自身工作参数发送给能量管理模块,同时将内电动力包和超级电容的输出电量供给牵引电机,监控牵引电机的工作状态;
[0010] 列车运行时,能量管理模块将列车司控器的级位信号发送至逆变器,逆变器根据收到的司控器级位信号,依据动力系统的动力性能,设定列车速度与牵引力、列车速度与再生制动力的包络线,控制牵引电机发挥相应的力矩;同时逆变器根据输入端采集电压、电流值,计算当前实际需求功率,并将需求功率发送给能量管理模块,能量管理模块根据超级电容当前可发挥功率,计算并发送需输出功率命令至整流器,整流器根据能量管理模块命令要求控制内电动力包输出相应功率。
[0011] 所述内电动力包包括控制机箱;所述控制机箱内设置有电压传感器、电流传感器;控制机箱监控内电动力包状态和根据整流器命令控制输出相应功率;电压传感器用于监控内电动力包实时输出电压;电流传感器用于监控内电动力包实时输出电流。
[0012] 所述整流器内配置控制模块;所述控制模块与设置于所述整流器输入端的电压传感器、电流传感器、接触器连接;所述控制模块监控整流器状态和根据能量管理模块命令控制输出相应功率;接触器用于投入或隔离整流器;电压传感器用于监控整流器实时输出电压;电流传感器用于监控整流器实时输出电流。
[0013] 所述超级电容内配置控制模块,所述超级电容输出端配置电压传感器、电流传感器、熔断器和接触器;控制模块监控超级电容状态;电压传感器用于监控超级电容实时输出电压;电流传感器用于监控超级电容实时输出电流;熔断器用于过流保护;接触器用于投入或隔离超级电容。
[0014] 列车处于牵引工况时,内电动力包与超级电容并联给牵引电机和车载负载提供电能。
[0015] 列车处于制动工况时,内电动力包怠速运行,整流器处于待机状态,超级电容快速回收牵引电机再生制动能量。
[0016] 列车处于惰性或静态工况时,内电动力包怠速运行,维持列车当前运行速度同时给超级电容充电。
[0017] 当内电动力包故障被隔离时,由超级电容给列车负载供电,维持一定时间的供电能;当超级电容故障被隔离时,由内电动力包给列车负载供电,维持列车低速运行。
[0018] 本发明中内电动力包功率为360~390kW,超级电容功率为300~450kW,一套内电动力包的价格、重量是同等功率的超级电容的1.5倍左右,因此本发明的动力系统具有重量轻、成本低的特点。
[0019] 相应地,本发明还提供了一种内燃动车组混合供电方法,包括:
[0020] 列车牵引工况时,能量管理模块判断超级电容电压设定值,若超级电容端电压大于设定值(本发明中设定为DC750V),则能量管理模块控制整流器开通,内电动力包和超级电容共同向逆变器供电;若超级电容端电压小于设定值,则能量管理模块控制整流器开通,内电动力包给超级电容充电,直至超级电容端电压达到设定值;
[0021] 列车制动工况时,能量管理模块控制内电动力包怠速运行,整流器处于待机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,则能量管理模块控制隔离超级电容,再生制动电量由车载设备及制动电阻消耗;当超级电容端电压小于设定值,则能量管理模块控制超级电容投入工作,再生制动电量由超级电容和车载设备吸收;
[0022] 列车处于惰性或静态工况时,能量管理模块控制内电动力包怠速运行,整流器处于工作状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,则能量管理模块控制隔离超级电容;当超级电容端电压小于设定值,则由内电动力包给超级电容充电;
[0023] 当内电动力包故障时,能量管理模块控制内电动力包和整流器处于停机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,由超级电容给列车负载供电,维持一定时间的供电能;当超级电容端电压小于设定值,则先由外部电源给超级电容充电,然后再由超级电容给列车负载供电;
[0024] 当超级电容故障时,能量管理模块控制超级电容处于隔离状态,并控制内电动力包给列车牵引和辅助负载供电。
[0025] 与现有技术相比,本发明所具有的有益效果为:本发明动力系统内包含两个供电电源,供电电源充足,列车起动加速度高;由于超级电容参与供电,列车运行时内电动力包输出功率大大降低,进而降低了列车污染空气排放;本发明结构简单、控制可靠,可以增加列车的动力性能,提高列车运输能力。

附图说明

[0026] 图1为本发明动力系统电路结构图;
[0027] 图2为本发明动力系统网络连接图;
[0028] 图3为内电动力包结构图;
[0029] 图4为整流器内部配置图;
[0030] 图5为超级电容内部配置图。

具体实施方式

[0031] 如图1和图2所示,本发明动力系统包括:
[0032] 能量管理模块用于接收内电动力包、整流器、超级电容、逆变器子模块发送自身工作状态,当前电压、电流、实际可用功率、当前输出功率,然后计算并进行能量管理,实现动力系统响应速度快、动力性能强、回收制动能量高的优点。
[0033] 内电动力包一面通过MVB线与能量管理模块相连,用MVB网络将自身状态和工作参数发能量管理模块,一面通过动力电缆和控制电缆与整流器相连,实现能量从内电动力包传递至整流器和将自身能力参数发送整流器。
[0034] 整流器一面通过MVB线与能量管理模块相连,用MVB网络将自身状态和工作参数发能量管理模块,一面通过动力电缆和控制电缆与逆变器相连,实现动力包能量从整流器传递至逆变器和将自身能力参数发送逆变器。
[0035] 超级电容一面通过MVB线与能量管理模块相连,用MVB网络将自身状态和工作参数发能量管理模块,一面通过动力电缆与逆变器相连,实现能量从超级电容传递至逆变器和将自身能力参数发送逆变器。
[0036] 逆变器一面通过MVB线与能量管理模块相连,用MVB网络将自身状态和工作参数发能量管理模块,一面通过动力电缆和控制电缆与牵引电机相连,实现将内电动力包和超级电容的输出电量供给牵引电机,同时监控牵引电机工作状态。
[0037] 内电动力包与超级电容在主电路中的连接方式为并联连接,实现混合供电,提高列车轮周功率。
[0038] 内电动力包配置控制机箱,输出端配置电压、电流传感器,控制机箱监控内电动力包状态和根据整流器命令控制输出相应功率;电压传感器用于监控内电动力包实时输出电压;电流传感器用于监控内电动力包实时输出电流;电路简图见图3。
[0039] 整流器内部配置控制模块,输入端设置接触器,输出端配置电压、电流传感器。控制模块监控整流器状态和根据能量管理模块命令控制输出相应功率;接触器用于投入或隔离整流器;电压传感器用于监控整流器实时输出电压;电流传感器用于监控整流器实时输出电流;电路简图见图4。
[0040] 超级电容内部配置控制模块,输出端配置电压、电流传感器、熔断器和接触器。控制模块监控超级电容状态;电压传感器用于监控整流器实时输出电压;电流传感器用于监控整流器实时输出电流;熔断器用于过流保护;接触器用于投入或隔离超级电容;电路简图见图5。
[0041] 进一步,超级电容还具有快速充放电功能,实现列车制动能量快速回收。
[0042] 逆变器含牵引逆变器和辅助逆变器,内部配置控制模块,输入端配置电压、电流传感器和接触器,输出端配置电压、电流传感器。接触器用于投入或隔离逆变器;制模块监控逆变器状态和根据能量管理模块命令控制牵引电机输出相应力矩;电压传感器用于监控逆变器实时输入输出电压;电流传感器用于监控逆变器实时输入输出电流。
[0043] 牵引电机配置速度传感器和温度传感器。速度传感器用于监控牵引电机转速,温度传感器用于监控牵引电机工作温度。
[0044] 超级电容为动力系统主要供电电源之一,在同等输出功率要求的前提下,动力系统可选配功率较小的内电动力包,进而实现降低污染气体排放和整个动力系统生产成本。
[0045] 本发明实施例的动力系统包括一个能量管理模块、一个内电动力包、一个整流器、一个超级电容、一个逆变器、四个牵引电机、一套MVB网络。
[0046] 本发明的动力系统控制策略为:直接转矩加功率限制控制策略。列车运行时,能量管理模块将列车司控器的级位信号发送至逆变器,逆变器根据收到的司控器级位信号和提前依据动力系统的动力性能,设定列车速度与牵引力、列车速度与再生制动力的包络线,控制牵引电机发挥相应的力矩;同时逆变器根据输入端采集电压、电流值,计算当前实际需求功率,并将需求功率发送能量管理模块,能量管理模块根据超级电容当前可发挥功率,计算并发送需输出功率命令至整流器,整流器根据能量管理模块命令要求控制动力包输出相应功率。
[0047] 列车处于牵引工况时,内电动力包与超级电容并联给牵引电机和车载负载提供电能。
[0048] 列车处于制动工况时,内电动力包怠速运行,整流器处于待机状态,超级电容快速回收牵引电机再生制动能量。
[0049] 列车处于惰性或静态工况时,内电动力包怠速运行,维持列车当前运行速度同时给超级电容充电。
[0050] 当内电动力包故障被隔离时,由超级电容给列车负载供电,维持一定时间的供电能。
[0051] 当超级电容故障被隔离时,由内电动力包给列车负载供电,维持列车低速(例如时速50公里以下)运行。
[0052] 本发明的供电动力系统电路结构,其动力连接关系如下:内电动力包的三相输出端即U、V、W接整流器对应三相输入端即U、V、W;整流器输出直流电的正负极接超级电容对应的输入正负极;超级电容输出正负极接牵引逆变器和辅助逆变器的对应的输入正负极;牵引逆变器三相输出端即U、V、W接牵引电机对应三相输入端即U、V、W;辅助逆变器三相输出端和直流输出端,接列车对应的三相母线和直流母线。
[0053] 本发明的供电动力系统电路结构,其控制连接关系如下:能量管理模块包含干个控制模块,与各部件间用MVB通信,MVB分A、B两个通道,两个通道互相冗余;内电动力包的X1的一束线连接能量管理模块的X1,另一束线连接整流器的X1,内电动力包的X2的一束线连接能量管理模块的X2,另一束线连接整流器的X2;整流器的X1的另一束线连接超级电容的X1,整流器的X2的另一束线连接超级电容的X2;超级电容的X1的另一束线连接逆变器的X1,超级电容的X2的另一束线连接逆变器的X2。
[0054] 列车牵引工况时,能量管理模块判断超级电容电压设定值,若超级电容端电压大于设定值,则能量管理模块控制整流器开通,内电动力包和超级电容共同向逆变器供电;若超级电容端电压小于设定值,则能量管理模块控制整流器开通,内电动力包给超级电容充电,直至超级电容端电压达到设定值。
[0055] 列车制动工况时,能量管理模块控制内电动力包怠速运行,整流器处于待机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,则能量管理模块控制隔离超级电容,再生制动电量由车载设备及制动电阻消耗;当超级电容端电压小于设定值,则能量管理模块控制超级电容投入工作,再生制动电量由超级电容和车载设备吸收。
[0056] 列车处于惰性或静态工况时,能量管理模块控制内电动力包怠速运行,整流器处于工作状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,则能量管理模块控制隔离超级电容;当超级电容端电压小于设定值,则由内电动力包给超级电容充电。
[0057] 当内电动力包故障时,能量管理模块控制内电动力包和整流器处于停机状态,同时根据超级电容发送的当前端电压进行判断,当超级电容端电压大于设定值,由超级电容给列车负载供电,维持一定时间的供电能;当超级电容端电压小于设定值,则先有外部电源给超级电容充电,然后再由超级电容给列车负载供电。
[0058] 当超级电容故障时,能量管理模块控制超级电容处于隔离状态,并控制内电动力包给列车牵引和辅助负载供电。
[0059] 本发明的动力系统的配置规则:小功率内电动力包加大功率超级电容(目前国际上,内电动力包功率最小是390kW左右,最大的是700kW左右,本发明选用最小功率的390kW动力包,配置450kW的超级电容。),众所周知,一套内电动力包的价格、重量是同等功率的超级电容的1.5倍左右,因此本发明的动力系统具有重量轻、成本低的特点。