一种超分子传感器及其合成和荧光识别氟离子和精氨酸的应用转让专利

申请号 : CN201711403241.0

文献号 : CN108061728B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 林奇巩冠斐樊彦青陈燕燕魏太保张有明姚虹

申请人 : 西北师范大学

摘要 :

本发明设计合成了一种能够荧光识别氟离子和精氨酸的超分子传感器TCN,该超分子传感器能与F‑配位形成超分子传感器配合物TCN‑F‑,同时发生荧光增强,因此可用于F‑的单一选择性荧光识别,最低检测线为3.50×10‑8 M;同时,该超分子传感器能与Arg配位形成超分子传感器配合物TCN‑Arg,同时发生荧光增强,因此可用于Arg的单一选择性荧光识别,最低检测线为2.43×10‑8 M,这种识别性能在离子识别和分子识别领域具有重要的应用价值。

权利要求 :

1.一种超分子传感器,其分子式为C45H24N6O9,结构式为:。

2.如权利要求1所述超分子传感器的合成方法,是以DMF为溶剂,以均苯三甲酰氯和1,

8-萘二甲酰亚胺肼为底物,于室温下反应10 12h;反应结束后加入盐酸析出白色絮状物,抽~滤,用DMF和乙醇重结晶,所得产物即为超分子传感器。

3.如权利要求2所述超分子传感器的合成方法,其特征在于:底物均苯三甲酰氯和1,8-萘二甲酰亚胺肼的摩尔比为1:3 1:3.5。

~

4.如权利要求1所述超分子传感器用于荧光识别F-。

-

5.如权利要求4所述超分子传感器用于荧光识别F ,其特征在于:在超分子传感器的DMSO-H2O溶液中,分别加入CN-,I-,F-,Cl-,N3-,ClO4-,H2PO4-,AcO-,HSO4-,SCN-,Br-,OH-的水溶液,只有F-的加入可使超分子传感器的DMSO-H2O溶液荧光增强。

6.如权利要求5所述超分子传感器用于荧光识别F-,其特征在于:所述DMSO-H2O溶液中,V DMSO: V 水= 3:1 3.5:1。

~

7.如权利要求1所述超分子传感器用于荧光识别Arg。

8.如权利要求7所述超分子传感器用于荧光识别Arg,其特征在于:在超分子传感器的DMSO-H2O溶液中,分别加入Thr,Ser,Gly,Arg,Ile,Val,Ala,Gln,Cys,Asp,Pro,Tyr,Met,Leu,Gln,Phe,Asp的水溶液,只有Arg的加入可使超分子传感器的DMSO-H2O溶液荧光增强。

说明书 :

一种超分子传感器及其合成和荧光识别氟离子和精氨酸的

应用

技术领域

[0001] 本发明涉及一种能够单一选择性识别氟离子和精氨酸(Arg)的超分子传感器及其合成方法;本发明同时还涉及该超分子传感器在DMSO-H2O溶液中荧光识别F-和Arg的应用,属于化学合成领域、阴离子检测及氨基酸检测领域。

背景技术

[0002] 氟是人体不可缺少的一种微量元素,人体的任何组织和器官中都含有氟。尤其是在我们的骨骼和牙齿中,集中了人体氟总量的90%以上。而氟作为人体必需的微量元素,摄入过多或过少都会给人体健康带来不利影响,摄入过量的氟可导致慢性氟中毒,会产生以氟斑牙、氟骨症为主要特征的慢性全身性疾病。长期摄入过量的氟还可引发骨质疏松和肾脏的损害,特别是生活在高氟地区的人更应该禁用或慎用。氟中毒几乎可以引起机体各系统的损伤,严重危害人类健康,甚至还产生遗传。氟缺易患龋齿病。饮水中含氟离子的适宜浓度为0.5 1.0 mg/L。氟化物还会对植物体产生毒害作用,主要是植物吸收氟化物后,氟与~叶绿素中镁离子结合形成络合物,使叶绿素失掉镁离子形成去镁叶绿素,进而导致光合作用受到抑制,引起植物缺绿。氟化物广泛存在于天然水体中,同时有色冶金、钢铁加工、焦炭、玻璃、陶瓷、电子、电镀、化肥、农药厂的废水中常常都存在氟化物。因此,氟离子的检测在生命科学和环境检测等领域也有着同样重要的意义。
[0003] 精氨酸(Arg),分子式为:C6H14N4O2。精氨酸(Arg)在体内起生理作用的主要是L-Arg。正常情况下,体内Arg一部分来源于膳食,一部分通过几个器官间的协同作用由鸟氨酸通过瓜氨酸合成。其前体物质是谷氨酸(Glu)或谷氨酰胺(Gln)。机体中所有组织均利用Arg合成细胞浆蛋白和核蛋白,同时Arg也是脒的唯一提供者,进而合成肌酸。Arg在机体内除了构成蛋白质的组分外,主要就是参与鸟氨酸循环形成尿素。由于精氨酸在鸟氨酸循环中位置的特殊性,它在消除氨中毒的过程中起重要作用。另外,精氨酸也是一氧化氮(NO)形成的前体物质。NO是最近发现的一种分子效应器和神经递质。有研究显示,Arg是一种潜在的内分泌促分泌物质,它可以促进生长激素的释放。目前精氨酸的作用可以概括为:1)增加机体内氮储留;2)发挥调节作用,控制蛋白质更新;3)促进肌肉内蛋白质合成;4)改善机体氮平衡,提升机体的免疫状态;5)是合成NO的前体物质。大量研究证实,Arg及其代谢产物NO等,在免疫预防及免疫调节、维持和保护肠道粘膜功能等方面具有重要作用,现已在临床营养中得到广泛应用。因此,Arg的检测在生命科学等领域有着非常重要的意义。

发明内容

[0004] 本发明的目的是提供一种能荧光识别F-和Arg的超分子传感器;
[0005] 本发明的另一目的是提供上述超分子传感器的合成方法;
[0006] 本发明还有一个目的,就是提供该超分子传感器单一选择性荧光识别F-和Arg的具体应用。
[0007] 一、超分子传感器
[0008] 本发明传感器分子的分子式为:C45H24N6O9,命名为:均苯三甲酰(1,8-萘二甲酰亚胺肼),标记为:TCN,其结构式为:
[0009]
[0010] 传感器分子TCN的制备:以DMF为溶剂,以均苯三甲酰氯和1,8-萘二甲酰亚胺肼为1:3 1:3.5的摩尔比投料,于室温下反应10 12h;反应结束加盐酸,以形成盐,除去多余的三~ ~
乙胺,冷却,析出白色絮状物,抽滤,产物即为传感器分子TCN。TCN合成路线为:
[0011]
[0012] 传感器分子TCN的质谱和氢谱谱图见图1和图2。
[0013] 二、超分子传感器在检测氟离子中的应用
[0014] 1、超分子传感器TCN的荧光性能
[0015] 通过对超分子传感器TCN荧光性能的研究表明,超分子传感器TCN在DMSO-H2O溶液(V DMSO: V 水= 3:1~3.5:1)具有良好的溶解性与荧光发射性能,当激发波长为380nm时,传感器分子TCN发出淡蓝色荧光(发射波长431nm)。
[0016] 2、超分子传感器TCN单一选择性荧光检测F-
[0017] 在超分子传感器TCN的DMSO-H2O溶液(V DMSO: V 水= 3:1~3.3:1)中,加入10倍当量(相对于超分子传感器TCN)的CN-,I-,F-,Cl-,N3-,ClO4-,H2PO4-,AcO-,HSO4-,SCN-,Br-和OH-的水溶液。结果发现,只有F-的加入可使TCN的DMSO-H2O溶液荧光明显增强(如图3所示),而其他阴离子的加入,不能使TCN的DMSO-H2O溶液的荧光发生变化,说明超分子传感器TCN对F-具有单一选择性识别性能。
[0018] 同时,为了研究其它阴离子对实验的干扰,我们做了抗干扰实验。结果表明,其它阴离子的存在对超分子传感器TCN识别F-没有任何的干扰(如图4所示)。荧光滴定实验表明,超分子传感器TCN对F-的最低检测限为3.50×10-(8 如图5、6所示)。
[0019] 3、超分子传感器TCN单一性选择性荧光检测精氨酸(Arg)
[0020] 在超分子传感器TCN的DMSO-H2O溶液(V DMSO: V 水= 3:1 3.5:1)中,分别加入10倍~当量(相对于超分子传感器TCN)的Thr,Ser,Gly,Arg,Ile,Val,Ala,Gln,Cys,Asp,Pro,Tyr,Met,Leu,Gln,Phe和Asp的水溶液。结果发现,只有精氨酸(Arg)的加入可以使TCN的DMSO-H2O溶液荧光明显增强(如图7所示),而其他氨基酸的加入,不能使TCN的DMSO-H2O溶液荧光发生变化,说明超分子传感器TCN对精氨酸Arg具有单一选择性识别性能。
[0021] 抗干扰实验结果表明,其他的氨基酸的存在对超分子传感器TCN识别Arg没有任何的干扰(如图8所示)。荧光滴定实验表明,超分子传感器TCN对Arg的最低检测线为2.426×10-(8 如图9、10所示)。
[0022] 4、超分子传感器TCN对F-和Arg的响应时间
[0023] 图11为本发明传感器分子TCN的对Arg、F-的时间响应图。由图中可知,TCN对F-的响应时间25s,对Arg的响应时间70s。因此,说明,超分子传感器TCN对F-和Arg的响应时间快,能够快速、灵敏的检测水样中的Arg、F-。
[0024] 5、识别机理分析
[0025] 在DMSO-H2O溶液中,超分子传感器TCN能与F-、Arg配位形成配合物TCN-F-、TCN-Arg,同时荧光增强。图12为本发明传感器分子TCN和TCN+Arg的红外光谱图。从图12可以看出,当Arg加入到主体TCN后,主体N-H伸缩振动峰从3312cm-1移动到3424 cm-1,C=O伸缩振动峰从1698 cm-1移动到1654 cm-1,说明主体TCN与Arg通过氢键作用发生了配位,致使荧光增强。图13为本发明传感器分子TCN和TCN+ F-的红外光谱图,从图13可以看出,当F-加入到主体TCN后,主体N-H伸缩振动峰从3312cm-1移动到3421 cm-1,C=O伸缩振动峰从1698 cm-1移动到1661cm-1,说明主体TCN与F-形成了氢键,致使荧光增强。

附图说明

[0026] 图1为本发明传感器分子TCN的质谱图;
[0027] 图2为本发明传感器分子TCN的氢谱图;
[0028] 图3为本发明传感器分子TCN的DMSO-H2O溶液中分别加入不同阴离子的全扫描(λex=380 nm);
[0029] 图4为本发明传感器分子TCN的DMSO-H2O溶液中加入F-,在此基础上分别加入不同阴离子的抗干扰图(从4到26依次为:CN-, I-  , Cl-, N3-, ClO4-, H2PO4-, AcO-, HSO4-, SCN-, Br-和OH-。);
[0030] 图5为本发明传感器分子TCN的DMSO-H2O溶液中加入F-的荧光滴定图;
[0031] 图6为本发明传感器分子TCN的DMSO-H2O溶液中加入F-的最低检测限;
[0032] 图7为本发明传感器分子TCN的DMSO-H2O溶液中分别加入不同氨基酸的全扫描(λex=380 nm);
[0033] 图8为本发明传感器分子TCN的DMSO-H2O溶液中加入Arg,在此基础上分别加入不同氨基酸的抗干扰图(从4到19依次为:Thr、Ser、Gly、Ile、Val、Ala、Gln、Cys、Asp、Pro、Tyr、Met、Leu、Gln、Phe、Asp);
[0034] 图9为本发明传感器分子TCN的DMSO-H2O溶液中加入Arg的荧光滴定图;
[0035] 图10为本发明传感器分子TCN的对Arg的最低检测限;
[0036] 图11为本发明传感器分子TCN的对Arg、F-的时间响应图;
[0037] 图12为本发明传感器分子TCN和TCN+Arg的红外光谱图;
[0038] 图13为本发明传感器分子TCN和TCN+ F-的红外光谱图。

具体实施方式

[0039] 下面通过具体实施例对本发明传感器分子TCN的制备和荧光识别F-、Arg的应用做进一步说明。
[0040] 实施例1
[0041] 以DMF为溶剂,以均苯三甲酰氯和1,8-萘二甲酰亚胺肼1:3的摩尔比,于室温下反应10 12h;反应结束后加盐酸,冷却,有白色絮状物析出,抽滤,用DMF和乙醇重结晶得产物~TCN。产率为68.3%。传感器分子TCN的质谱和氢谱谱图见图1和图2。
[0042] 实施例2、TCN识别F-
[0043] 移取2 ml超分子传感器分子TCN的DMSO-H2O溶液(CTCN=1×10-4M,V DMSO: V 水= 3:1)于一系列比色管中,分别加入CN-,I-,F-,Cl-,N3-,ClO4-,H2PO4-,AcO-,HSO4-,SCN-,Br-和OH--
的水溶液(C=0.1M),若传感器分子的DMSO-H2O溶液荧光增强,说明加入的是F ,若传感器分子的荧光没有发生变化,则说明加入的不是F-。
[0044] 移取2 ml超分子传感器分子TCN溶液于一系列比色皿中,分别加入10倍当量的CN-,I-,F-,Cl-,N3-,ClO4-,H2PO4-,AcO-,HSO4-,SCN-,Br-和OH-的水溶液,若传感器分子的荧光增强,
[0045] 实施例3、TCN识别Arg
[0046] 移取2 ml超分子传感器分子TCN的DMSO-H2O溶液(CTCN=1×10-4M,V DMSO: V 水= 3:1)于一系列比色管中,分别加入Thr,Ser,Gly,Arg,Ile,Val,Ala,Gln,Cys,Asp,Pro,Tyr,Met,Leu,Gln,Phe,Asp的水溶液(C=0.1M),若传感器分子的DMSO-H2O溶液荧光增强,说明加入的是Arg,若传感器分子的DMSO-H2O溶液荧光没有发生变化,则说明加入的不是Arg。