一种可见光透明的辐射致冷多层膜转让专利

申请号 : CN201711361964.9

文献号 : CN108099299B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 罗先刚马晓亮蒲明博李雄郭迎辉

申请人 : 中国科学院光电技术研究所

摘要 :

本发明提出了一种可见光透明的辐射致冷多层膜,包括交替排布的厚度不同的N层多层膜;该可见光透明的辐射致冷多层膜采用了一种新的膜层排布方式,使得该多层膜在实现辐射致冷的同时具有极高的可见光透过率。其中,所述多层膜由氧化铟锡(ITO)和光刻胶两种材料组成。利用这两种材料介电常数的差异,在材料层之间形成谐振腔,这种谐振腔增强了所在区域内的电场强度,从而可以使得整个结构的辐射率相比于原体材料得到大幅度的提升。本发明具有结构简单,加工方便,制冷效果好,可见光透过率高,成本低等有益效果。

权利要求 :

1.一种可见光透明的辐射致冷多层膜,其特征在于:所述多层膜由氧化铟锡(ITO)层和光刻胶层组成,氧化铟锡(ITO)层和光刻胶层交替排布,氧化铟锡(ITO)层和光刻胶层厚度不同;利用氧化铟锡(ITO)层和光刻胶层材料介电常数在红外波段的差异,在不同材料层之间形成谐振腔,利用所述谐振腔增强了所述多层膜内的电场强度,从而极大地增强了所述多层膜的辐射率即能实现辐射致冷的目的。

2.根据权利要求1所述的一种可见光透明的辐射致冷多层膜,其特征在于:所述多层膜的层数为三层以上。

3.根据权利要求1所述的一种可见光透明的辐射致冷多层膜,其特征在于:所述氧化铟锡层每层厚度d1的取值范围为0.1μm≦d1≦1μm;所述光刻胶层每层厚度d2的取值范围为1μm≦d2≦3μm。

4.根据权利要求1所述的一种可见光透明的辐射致冷多层膜,其特征在于:所述光刻胶为正性胶或负性胶。

5.根据权利要求1所述的一种可见光透明的辐射致冷多层膜,其特征在于:所述光刻胶在可见光波段的折射率n1的取值范围为1.3≦n1≦1.8;所述氧化铟锡在可见光波段的折射率n2的取值范围为1.7≦n2≦2.1。

说明书 :

一种可见光透明的辐射致冷多层膜

技术领域

[0001] 本发明涉及辐射致冷的技术领域,特别涉及一种可见光透明的辐射致冷多层膜。

背景技术

[0002] 随着经济的发展和社会的进步,空调能耗占社会总能耗的比例越来越大。这不仅消耗了大量的能源并且在空调工作过程中排放的氟氯化合物会对臭氧层产生不可逆转的破坏。因此,寻找一种能替代或减少空调使用的新型低能耗、无污染的致冷技术迫在眉睫。辐射致冷技术利用了地球和宇宙深空之间的巨大温差,使地面的热量以红外电磁波的形式辐射到宇宙中,从而实现降温的目的。该技术是一种被动的、不需要制冷剂的降温方式,因此具有巨大的应用前景。
[0003] 国内外从上世纪60年代开始对辐射致冷的原理、选材以及相关实验装置展开研究,已经在原理及应用上取得了一些进展。比如Biggs和Michell建立了一种用特质聚四氟乙烯板为屋顶的房子,在环境温度为10℃时,室内的温度为5℃,其有效的致冷功率为22W/2
m。Erell和Ezion等研制了基于太阳能热板的房顶水池致冷系统,分析了辐射致冷的应用前景。到目前为止,此类研究主要是研究材料在红外波段的辐射特性,而忽视了材料在其他波段如可见光的性质。事实上,在很多实际应用中,辐射致冷材料都是以涂层的形式覆盖在原有的结构上,特别是当用于建筑物降温以及汽车、飞机等运输工具降温时,涂层在可见光的透明度就尤为重要。

发明内容

[0004] 为了解决上述问题,本发明提出了一种可见光透明的辐射致冷多层膜,采用了一种新的膜层排布方式,使得该多层膜在实现辐射致冷的同时具有极高的可见光透过率。
[0005] 为了达到上述目的,本发明所采用的技术方案为:一种可见光透明的辐射致冷多层膜,包括交替排布厚度不同的N层多层膜;其中,所述多层膜由氧化铟锡(ITO)和光刻胶两种材料组成。利用这两种材料介电常数的差异,在材料层之间形成谐振腔,这种谐振腔增强了区域内的电场,从而可以使得整个结构的辐射率得到大幅度的提升。
[0006] 其中,所述N层多层膜中N的取值范围为N≧3。
[0007] 其中,所述氧化铟锡层每层厚度d1的取值范围为0.1μm≦d1≦1μm;所述光刻胶层每层厚度d2的取值范围为1μm≦d2≦3μm。
[0008] 其中,所述光刻胶为正性胶或负性胶。
[0009] 其中,所述光刻胶在可见光波段的折射率n1的取值范围为1.3≦n1≦1.8;所述氧化铟锡在可见光波段的折射率n2的取值范围为1.7≦n2≦2.1。
[0010] 本发明具有的有益效果在于:
[0011] 本发明采用具有可见光高透过率的材料交替排布形成能够实现辐射致冷的多层膜结构,具有结构简单,加工方便,制冷效果好,可见光透过率高,成本低等优势。

附图说明

[0012] 图1为本发明的结构示意图;图中01材料为光刻胶,02材料为氧化铟锡;
[0013] 图2为实施例1中所述多层膜每层的厚度以及材料组成;
[0014] 图3为实施例1中仿真所使用氧化铟锡和光刻胶在红外波段的材料参数;其中,图3(a)为氧化铟锡的参数,图3(b)为光刻胶的参数;
[0015] 图4为实施例1中所述多层膜在不同角度下的吸收率;
[0016] 图5为所述多层膜在可见光波段的透过率。

具体实施方式

[0017] 下面结合附图及具体实施方式对本发明进行详细说明,但本发明的保护范围并不仅限于下面实施例,应包括权利要求书中的全部内容。而且本领域技术人员从以下的一个实施例即可实现权利要求中的全部内容。
[0018] 具体实现过程如下:
[0019] 如图1所示,该可见光透明的辐射致冷多层膜,由交替排布的厚度不同的N层氧化铟锡和光刻胶膜层组成。
[0020] 为了深入理解可见光透明的辐射致冷多层膜的设计原理,下面将结合辐射致冷的原理以及具体实施例来介绍本发明。
[0021] 首先,介绍辐射致冷的基本原理。辐射致冷是指地面上的物体通过热辐射的形式将自身的能量通过电磁波发射到宇宙深空中,从而实现物体的降温。事实上不是所有频率的电磁波都能从地球辐射出去,这是因为地球被大气层所包围,而大气层中的水蒸气、二氧化碳和臭氧等气体对特定波长存在吸收。大气层透过率高的频率范围被称为“大气窗口”,只有物体辐射在大气窗口内的频率时,才能实现辐射致冷。在几个大气窗口中,我们一般关注8-14μm这个波段,这是因为常温下的黑体辐射波长主要集中在这一段。因此,设计辐射致冷多层膜时需要该多层膜在8-14μm有极高的辐射率。
[0022] 实施例1
[0023] 本实施例设计了N=4的可见光透明的辐射致冷多层膜。图2给出了该多层膜每层的厚度以及材料组成;通过设计不同材料层的厚度,可以使所述多层膜的辐射率相比于原有材料得到极大地增强,从而实现辐射致冷的目的。本实施例中的光刻胶为商用光刻胶NR5-8000,仿真中所使用氧化铟锡和光刻胶在红外波段的材料参数如图3所示,该参数为实验测得参数,其中图3(a)为氧化铟锡的参数,图3(b)为光刻胶的参数。
[0024] 首先,我们对该多层膜在红外波段的辐射率进行了仿真,入射场的传播方向从-z指向+z。通过电磁仿真软件得到了所述多层膜在不同角度下的吸收率,如图4所示。根据基尔霍夫热辐射定律,在热平衡状态下物体的吸收率等于其辐射率,因此我们认为仿真得到的吸收率即为该多层膜在热平衡时的辐射率。从图4中可以看出,所述多层膜在红外波段8-14μm范围内的辐射率大于90%。
[0025] 为了说明该多层膜在可见光波段的透明度,我们利用仿真软件对所述多层膜在可见光波段下的透过率进行了仿真,如图5所示。仿真中光刻胶的折射率取值为n1=1.6,氧化铟锡的折射率取值为n2=1.8。由图5可知,所述多层膜在可见光波段有很高的透明度,经过计算所述多层膜在可见光波段的平均透过率为87%。
[0026] 进一步的,为了说明所述多层膜的致冷效果,基于上面所述的结果对所述多层膜的致冷功率进行了仿真。我们定义所述多层膜的致冷功率为P=P1-P2,其中P1为所述多层膜向外辐射的功率,P2为所述多层膜吸收外界环境的功率。P1和P2分别满足公式:
[0027]
[0028]
[0029] 其中,λ1=8μm,λ2=14μm,T为环境温度;IBB为黑体辐射公式,其具体的表达式为:
[0030]
[0031] 其中,h=6.626×10-34,Js为普朗克常数,c=2.998×108m/s为真空中的光速,kB=1.38×10-23J/K为玻尔兹曼常数,λ为对应波长。∫dΩ为对球面的积分,在实际情况下为对半
1/cosθ
球的积分, εatm(λ,θ)=1-t(λ) 为外部环境对所述多层膜的辐射
率,t(λ)为大气窗口在不同波长下的透过率。表1给出了在不同环境温度下所述多层膜的单位面积致冷功率。
[0032] 表1不同环境温度下所述多层膜的单位面积制冷功率
[0033]环境温度(K) 单位面积制冷功率(W/m2)
263 72.44
273 87.47
283 104.27
300 137.16
[0034] 通过理论计算可以看出,所述多层膜具有优良的辐射致冷特性。
[0035] 以上设计过程、实施例及仿真结果很好地验证了本发明。
[0036] 因此,上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的实施方式仅仅是示意性的,而不是限制性的。本发明未详细阐述部分属于本领域技术人员的公知技术。