一种高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法转让专利

申请号 : CN201611149219.3

文献号 : CN108218467B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王京阳万鹏吴贞

申请人 : 中国科学院金属研究所

摘要 :

本发明涉及多孔陶瓷材料领域,具体为一种通过造孔剂法制备高孔隙率和低热导率的多孔纳米碳化硅陶瓷材料的方法。该方法以β‑SiC纳米颗粒和微米片状石墨为原料,以乙醇为介质,进行球磨混合,形成浆料;浆料烘干后筛成粉末,用模具压成坯体,然后冷等静压力下进一步致密化;将坯体于氩气气氛中进行高温无压烧结,然后在空气中热处理去除造孔剂石墨,获得兼具微米孔和纳米孔的多孔纳米碳化硅陶瓷材料。本发明可制备出具有多级孔结构并且孔隙率可控的高孔隙率(54~76%)和低热导率(0.74~0.14W m‑1K‑1)的多孔纳米SiC陶瓷材料。

权利要求 :

1.一种高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法,其特征在于,碳化硅材料为多孔纳米SiC陶瓷,具体步骤如下:

1)浆料的配制:以β-SiC纳米颗粒和石墨粉质量比为9:1~5:5配制原料,以乙醇为介质,进行球磨混合8~16小时,形成浆料;

2)浆料烘干后筛成粉末,用模具压成坯体,然后于200~240 MPa的冷等静压力下10~

30分钟进一步致密化;

3)将坯体于1400~1600 ℃氩气气氛中进行高温无压烧结1~3小时,然后在空气中600~800 ℃热处理3~5小时去除造孔剂石墨,获得兼具微米孔和纳米孔的多孔纳米碳化硅陶瓷材料;

多孔纳米SiC陶瓷材料的孔隙率范围为54~76 %,微米孔呈薄片且状均匀分布,孔尺寸为长宽:2 μm~6.5 μm,厚:0.5~1.5 μm;纳米孔分布于所述陶瓷材料的骨架上,孔径范围<50 nm;

β-SiC纳米颗粒的平均粒度尺寸为20~50 nm,石墨粉的粒径分布为D90=6.5 μm。

2.按照权利要求1所述的高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法,其特征在于,高温烧结的升温速率:1000 ℃以下为8~12 ℃ /分钟,1000 ℃以上为4~6 ℃ /分钟。

说明书 :

一种高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法

技术领域

[0001] 本发明涉及多孔陶瓷材料领域,具体为一种通过造孔剂法制备高孔隙率和低热导率的多孔纳米碳化硅陶瓷材料的方法。

背景技术

[0002] 高温下隔热和能源转化等方面的前沿技术应用都需要具有低热导率和高可靠性的新型材料。纳米结构材料由于其良好的隔热性能成为学术和技术领域的研究热点。它们阻热的基本机制源自纳米结构中巨大的界面热阻。然而,随着颗粒尺寸的减小,材料的比表面积增大,导致纳米结构的高温热稳定性急剧下降。目前主要应用的氧化物纳米材料,如:二氧化硅(SiO2)和氧化铝(Al2O3)气凝胶及其复合材料,其热稳定均低于1200℃。因此,目前急需解决的瓶颈难题是如何在新型纳米材料中同时实现极低热导率和较高热稳定性。
[0003] 碳化硅陶瓷能在严苛的高温环境中表现出优异的力学性能和耐腐蚀性,因而在工业领域有着广泛的应用。更重要的是,由于强的Si-C共价键和低的自扩散系数,据报道冷压制备的SiC粉末块体可以在1800℃的高温维持其室温的初始样品尺寸,不发生剧烈收缩(M.Fukushima et al.Mater.Sci.Eng.B 2008(148):211–214.)。并且β-SiC有着超高的相稳定性,在2000℃之内没有相转变(B.K.Jang et al.Adv.Mater.2007(8):655–659.)。虽然SiC是一种高热导率陶瓷,但当颗粒尺寸降低到纳米级别时,纳米SiC表现出令人惊异的隔热性能(P.Wan et al.Scripta Mater.2017(128):1-5)。因此,多孔纳米碳化硅陶瓷是一种极具潜力的,应用于航空、航天领域中的耐高温热绝缘和热防护材料。

发明内容

[0004] 本发明的目的在于提供一种高孔隙率和低热导率的多孔纳米碳化硅陶瓷的制备方法,使SiC多孔陶瓷具备全新的低热导率性能特点。
[0005] 本发明的技术方案如下:
[0006] 一种高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法,碳化硅材料为多孔纳米SiC陶瓷,具体步骤如下:
[0007] 1)浆料的配制:以β-SiC纳米颗粒和石墨粉质量比为9:1~5:5配制原料,以乙醇为介质,进行球磨混合8~16小时,形成浆料;
[0008] 2)浆料烘干后筛成粉末,用模具压成坯体,然后于200~240MPa的冷等静压力下10~30分钟进一步致密化;
[0009] 3)将坯体于1400~1600℃氩气气氛中进行高温无压烧结1~3小时,然后在空气中600~800℃热处理3~5小时去除造孔剂石墨,获得兼具微米孔和纳米孔的多孔纳米碳化硅陶瓷材料。
[0010] 所述的高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法,多孔纳米SiC陶瓷材料的孔隙率范围为54~76%,微米孔呈薄片且状均匀分布,孔尺寸为长宽:2μm~6.5μm,厚:0.5~1.5μm;纳米孔分布于所述陶瓷材料的骨架上,孔径范围<50nm。
[0011] 所述的高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法,β-SiC纳米颗粒的平均粒度尺寸为20~50nm,石墨粉的粒径分布为D90=6.5μm。
[0012] 所述的高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法,高温烧结的升温速率:1000℃以下为8~12℃/分钟,1000℃以上为4~6℃/分钟。
[0013] 本发明的优点及有益效果是:
[0014] 1.本发明提出通过造孔剂法制备高孔隙率和低热导率的多孔纳米碳化硅陶瓷材料的方法,该方法可制备出兼具微米孔和纳米孔且孔隙率可控的高孔隙率和低热导率的SiC多孔陶瓷。
[0015] 2.本发明的操作方便,只需经过浆料的配制、压制成型、高温烧结和除碳处理等流程。
[0016] 3.本发明无需特殊设备,易于大规模生产。
[0017] 4.本发明可制备出具有较高孔隙率多孔纳米SiC陶瓷材料,该多孔陶瓷具有多层次的纳米结构阻热机制以及多级孔结构,可极大降低热导率,是性能优良的轻质耐高温绝热材料。
[0018] 总之,该方法以β-SiC纳米颗粒和微米片状石墨为原料,通过12小时球磨后,得到混合均匀的粉体。粉体经220MPa冷等静压成型后,在1500℃氩气气氛中进行2小时的无压烧结,随后样品在空气中700℃热处理4小时除去石墨造孔剂,最终制备出多孔纳米SiC陶瓷。本发明方法的工艺简单、可操作性强,可制备出具有多层次孔结构并且孔隙率可控的高孔隙率(54~76%)和低热导率(0.74~0.14W m-1K-1)的多孔纳米SiC陶瓷材料。

附图说明

[0019] 图1为实施例1中SiC纳米粉末的透射电镜照片。图中,上部的插图为高放大倍数下单个SiC纳米颗粒形貌图;下部的插图为低放大倍数下SiC纳米粉末整体形貌图。
[0020] 图2(a)为实施例2中多孔纳米SiC陶瓷材料X射线衍射三维成像(XRT)图。
[0021] 图2(b)为实施例2中多孔纳米SiC陶瓷材料的扫描电镜(SEM)照片。

具体实施方式

[0022] 在具体实施过程中,本发明高孔隙率和低热导率的多孔纳米碳化硅(SiC)陶瓷的制备方法,具体步骤如下:
[0023] 1)浆料的配制:以β-SiC纳米颗粒和石墨粉质量比分别为:9:1、8:2、7:3、6:4和5:5配制原料,以乙醇为介质,进行球磨混合12小时,形成浆料;其中,β-SiC原始粉末的平均粒度尺寸为35nm,石墨粉的粒径分布为D90=6.5μm。
[0024] 2)浆料烘干后筛成粉末,用所需形状的模具压成坯体,然后于220MPa的冷等静压力下进一步致密化;
[0025] 3)将坯体于1500℃氩气气氛中进行高温无压烧结,然后在空气中700℃热处理去除造孔剂石墨,便可获得兼具微米孔和纳米孔的SiC多孔陶瓷材料。多孔纳米SiC陶瓷材料的孔隙率范围为54~76%,微米孔呈薄片且状均匀分布,孔尺寸为长宽:2μm~6.5μm,厚:~0.7μm,骨架上为纳米孔,孔径范围<50nm。
[0026] 下面通过实施例详述本发明。
[0027] 实施例1
[0028] 将少量SiC纳米粉末放入乙醇中超声分散30分钟后,用玻璃毛细管吸取粉末和乙醇的混合液,然后滴2~3滴到200目的微栅支持膜上,充分干燥后于透射电镜下观察,如图1。本实施例中结果表明,β-SiC纳米颗粒平均粒径约35nm且颗粒中含有大量层错。细小的颗粒尺寸产生大的界面和晶界热阻,而晶格缺陷(如层错)对传热声子的传输产生进一步阻碍,因此能有效降低热导率。
[0029] 实施例2
[0030] 将β-SiC纳米颗粒和石墨粉质量比为7:3配制原料,以乙醇为介质,在氮化硅球磨罐中进行球磨混合12小时,形成浆料;然后将浆料烘干后筛成粉末,用所需形状的模具压成坯体,再于220MPa的冷等静压力下10分钟进一步致密化;
[0031] 将坯体于1500℃氩气气氛中进行高温无压烧结2小时,然后在空气中700℃热处理4小时去除造孔剂石墨,得到多孔纳米SiC陶瓷材料。本实施例中,样品的孔隙率为66.8%,热导率为0.42W m-1K-1。多孔陶瓷的微观形貌由图2(a)的XRT照片显示,微米孔呈薄片且状均匀分布,孔尺寸为长宽:2μm~6.5μm,厚:~0.7μm。多孔陶瓷骨架上的纳米孔由图2(b)的SEM照片显示,颗粒间的存在纳米孔,孔径范围<50nm。
[0032] 实施例结果表明,本发明采用纳米粉末和工艺简单的造孔剂法相结合,可通过调节造孔剂的添加量来控制孔隙率,采用该方法制备的多孔纳米SiC陶瓷具有较高的孔隙率和低热导率,且可制备出兼具微米孔和纳米孔的多孔陶瓷。