光学成像镜片组转让专利

申请号 : CN201810219437.2

文献号 : CN108227151B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 周鑫杨健闻人建科

申请人 : 浙江舜宇光学有限公司

摘要 :

本申请公开了一种光学成像镜片组,从物侧至像侧依次包括:具有正光焦度的第一透镜;具有光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第五透镜;具有负光焦度的第六透镜,其物侧面为凹面;具有光焦度的第七透镜;其中,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足‑40

权利要求 :

1.一种光学成像镜片组,从物侧至像侧依次包括:

具有正光焦度的第一透镜;

具有光焦度的第二透镜;

具有光焦度的第三透镜;

具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;

具有负光焦度的第五透镜;

具有负光焦度的第六透镜,其物侧面为凹面;

具有光焦度的第七透镜,且第七透镜为非球面透镜;

其特征在于,

第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-40

2.根据权利要求1所述的光学成像镜片组,其特征在于,第五透镜与第六透镜在光轴上的空气间隔T56与第一透镜的中心厚度CT1之间满足1.0

3.根据权利要求1所述的光学成像镜片组,其特征在于,第五透镜与第六透镜在光轴上的空气间隔T56与第六透镜与第七透镜在光轴上的空气间隔T67之间满足2

4.根据权利要求1至3中任一项所述的光学成像镜片组,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与光学成像镜片组的有效焦距f之间满足TTL/f<1.0。

5.根据权利要求4所述的光学成像镜片组,其特征在于,光学成像镜片组的最大半视场角HFOV<30°。

6.根据权利要求5所述的光学成像镜片组,其特征在于,第一透镜的有效焦距f1与第一透镜物侧面的曲率半径R1之间满足1

7.根据权利要求1至3以及5至6中任一项所述的光学成像镜片组,其特征在于,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足1.0≤R7/R8≤2.6。

8.根据权利要求1至3以及5至6中任一项所述的光学成像镜片组,其特征在于,光学成像镜片组的有效焦距f与第七透镜像侧面的曲率半径R14之间满足-1

9.根据权利要求1至3以及5至6中任一项所述的光学成像镜片组,其特征在于,光学成像镜片组的有效焦距f与第六透镜的有效焦距f6之间满足-1.5

10.根据权利要求9所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与第一透镜的有效焦距f1之间满足-4

11.根据权利要求1至3以及10中任一项所述的光学成像镜片组,其特征在于,第二透镜与第三透镜的组合焦距f23与光学成像镜片组的有效焦距f之间满足-2

12.根据权利要求1至3以及10中任一项所述的光学成像镜片组,其特征在于,第七透镜的中心厚度CT7与第六透镜的中心厚度CT6之间满足2

13.根据权利要求1至3以及10中任一项所述的光学成像镜片组,其特征在于,第一透镜至第七透镜在光轴上的中心厚度之和∑CT与第一透镜至第七透镜任意相邻两透镜之间轴上间隔距离的总和∑AT之间满足∑CT/∑AT≤2.0。

14.根据权利要求1所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-3

15.一种光学成像镜片组,从物侧至像侧依次包括:

具有正光焦度的第一透镜;

具有光焦度的第二透镜;

具有光焦度的第三透镜;

具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;

具有负光焦度的第五透镜;

具有负光焦度的第六透镜,其物侧面为凹面;

具有光焦度的第七透镜,且第七透镜为非球面透镜;

其特征在于,

第五透镜与第六透镜在光轴上的空气间隔T56与第一透镜的中心厚度CT1之间满足1.0

16.根据权利要求15所述的光学成像镜片组,其特征在于,第五透镜与第六透镜在光轴上的空气间隔T56与第六透镜与第七透镜在光轴上的空气间隔T67之间满足2

17.根据权利要求15至16中任一项所述的光学成像镜片组,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与光学成像镜片组的有效焦距f之间满足TTL/f<1.0。

18.根据权利要求17所述的光学成像镜片组,其特征在于,光学成像镜片组的最大半视场角HFOV<30°。

19.根据权利要求18所述的光学成像镜片组,其特征在于,第一透镜的有效焦距f1与第一透镜物侧面的曲率半径R1之间满足1

20.根据权利要求15至16以及18至19中任一项所述的光学成像镜片组,其特征在于,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足1.0≤R7/R8≤2.6。

21.根据权利要求15至16以及18至19中任一项所述的光学成像镜片组,其特征在于,光学成像镜片组的有效焦距f与第七透镜像侧面的曲率半径R14之间满足-1

22.根据权利要求15至16以及18至19中任一项所述的光学成像镜片组,其特征在于,光学成像镜片组的有效焦距f与第六透镜的有效焦距f6之间满足-1.5

23.根据权利要求22所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与第一透镜的有效焦距f1之间满足-4

24.根据权利要求15至16以及23中任一项所述的光学成像镜片组,其特征在于,第二透镜与第三透镜的组合焦距f23与光学成像镜片组的有效焦距f之间满足-2

25.根据权利要求15至16以及23中任一项所述的光学成像镜片组,其特征在于,第七透镜的中心厚度CT7与第六透镜的中心厚度CT6之间满足2

26.根据权利要求15至16以及23中任一项所述的光学成像镜片组,其特征在于,第一透镜至第七透镜在光轴上的中心厚度之和∑CT与第一透镜至第七透镜任意相邻两透镜之间轴上间隔距离的总和∑AT之间满足∑CT/∑AT≤2.0。

27.根据权利要求16所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-40

28.根据权利要求27所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-3

29.一种光学成像镜片组,从物侧至像侧依次包括:

具有正光焦度的第一透镜;

具有光焦度的第二透镜;

具有光焦度的第三透镜;

具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;

具有负光焦度的第五透镜;

具有负光焦度的第六透镜,其物侧面为凹面;

具有光焦度的第七透镜,且第七透镜为非球面透镜;

其特征在于,

第五透镜与第六透镜在光轴上的空气间隔T56与第六透镜与第七透镜在光轴上的空气间隔T67之间满足2

30.根据权利要求29所述的光学成像镜片组,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与光学成像镜片组的有效焦距f之间满足TTL/f<1.0。

31.根据权利要求30所述的光学成像镜片组,其特征在于,光学成像镜片组的最大半视场角HFOV<30°。

32.根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,第一透镜的有效焦距f1与第一透镜物侧面的曲率半径R1之间满足1

33.根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足1.0≤R7/R8≤2.6。

34.根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,光学成像镜片组的有效焦距f与第七透镜像侧面的曲率半径R14之间满足-1

35.根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,光学成像镜片组的有效焦距f与第六透镜的有效焦距f6之间满足-1.5

36.根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与第一透镜的有效焦距f1之间满足-4

37.根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,第二透镜与第三透镜的组合焦距f23与光学成像镜片组的有效焦距f之间满足-2

38.根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,第七透镜的中心厚度CT7与第六透镜的中心厚度CT6之间满足2

39.根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,第一透镜至第七透镜在光轴上的中心厚度之和∑CT与第一透镜至第七透镜任意相邻两透镜之间轴上间隔距离的总和∑AT之间满足∑CT/∑AT≤2.0。

40.根据权利要求30所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-40

41.根据权利要求30所述的光学成像镜片组,其特征在于,第五透镜与第六透镜在光轴上的空气间隔T56与第一透镜的中心厚度CT1之间满足1.0

42.根据权利要求40所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-3

说明书 :

光学成像镜片组

技术领域

[0001] 本申请涉及一种光学成像镜片组,特别是由七片镜片组成的光学成像镜片组。

背景技术

[0002] 近年来,随着智能手机等便携式电子产品的快速更新换代,后置双摄像头逐渐成为市场主流。常见的搭配方式为一个广角镜头和一个长焦镜头。这要求摄像镜头具备高像素、高分辨率,小型化等特性。其中,长焦镜头还需满足长焦距及小景深等特点,以便在同一拍摄距离上能获取更多的细节,并且适合于拍摄远处的对象。
[0003] 本发明提出了一种具备小景深和大放大倍率的光学成像镜片组,与广角镜头搭配形成双摄像头,在自动对焦情况下可得到大放大倍率以及良好的成像效果,并能同时保证加工特性以及小型化。

发明内容

[0004] 为了解决现有技术中的至少一个问题,本申请提供了一种光学成像镜片组。
[0005] 本申请的一个方面提供了一种光学成像镜片组,从物侧至像侧依次包括:具有正光焦度的第一透镜;具有光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第五透镜;具有负光焦度的第六透镜,其物侧面为凹面;具有光焦度的第七透镜;其中,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-40
[0006] 根据本申请的一个实施方式,第一透镜物侧面至成像面的轴上距离TTL与光学成像镜片组的有效焦距f之间满足TTL/f<1.0。
[0007] 根据本申请的一个实施方式,光学成像镜片组的最大半视场角HFOV<30°。
[0008] 根据本申请的一个实施方式,第一透镜的有效焦距f1与第一透镜物侧面的曲率半径R1之间满足1
[0009] 根据本申请的一个实施方式,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足1.0≤R7/R8≤2.6。
[0010] 根据本申请的一个实施方式,第五透镜与第六透镜在光轴上的空气间隔T56与第一透镜的中心厚度CT1之间满足1.0
[0011] 根据本申请的一个实施方式,光学成像镜片组的有效焦距f与第七透镜像侧面的曲率半径R14之间满足-1
[0012] 根据本申请的一个实施方式,光学成像镜片组的有效焦距f与第六透镜的有效焦距f6之间满足-1.5
[0013] 根据本申请的一个实施方式,第五透镜的有效焦距f5与第一透镜的有效焦距f1之间满足-4
[0014] 根据本申请的一个实施方式,第二透镜与第三透镜的组合焦距f23与光学成像镜片组的有效焦距f之间满足-2
[0015] 根据本申请的一个实施方式,第七透镜的中心厚度CT7与第六透镜的中心厚度CT6之间满足2
[0016] 根据本申请的一个实施方式,第五透镜与第六透镜在光轴上的空气间隔T56与第六透镜与第七透镜在光轴上的空气间隔T67之间满足2
[0017] 根据本申请的一个实施方式,第一透镜至第七透镜在光轴上的中心厚度之和∑CT与第一透镜至第七透镜任意相邻两透镜之间轴上间隔距离的总和∑AT之间满足∑CT/∑AT≤2.0。
[0018] 第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-3
[0019] 本申请的一个方面提供了一种光学成像镜片组,从物侧至像侧依次包括:具有正光焦度的第一透镜;具有光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第五透镜;具有负光焦度的第六透镜,其物侧面为凹面;具有光焦度的第七透镜;其中,第五透镜与第六透镜在光轴上的空气间隔T56与第一透镜的中心厚度CT1之间满足1.0
[0020] 本申请的一个方面提供了一种光学成像镜片组,从物侧至像侧依次包括:具有正光焦度的第一透镜;具有光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第五透镜;具有负光焦度的第六透镜,其物侧面为凹面;具有光焦度的第七透镜;其中,第五透镜与第六透镜在光轴上的空气间隔T56与第六透镜与第七透镜在光轴上的空气间隔T67之间满足2
[0021] 根据本申请的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。

附图说明

[0022] 结合附图,通过以下非限制性实施方式的详细描述,本申请的其它特征、目的和优点将变得更加明显。在附图中:
[0023] 图1示出了实施例1的光学成像镜片组的结构示意图;
[0024] 图2至图5分别示出了实施例1的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
[0025] 图6示出了实施例2的光学成像镜片组的结构示意图;
[0026] 图7至图10分别示出了实施例2的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
[0027] 图11示出了实施例3的光学成像镜片组的结构示意图;
[0028] 图12至图15分别示出了实施例3的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
[0029] 图16示出了实施例4的光学成像镜片组的结构示意图;
[0030] 图17至图20分别示出了实施例4的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
[0031] 图21示出了实施例5的光学成像镜片组的结构示意图;
[0032] 图22至图25分别示出了实施例5的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
[0033] 图26示出了实施例6的光学成像镜片组的结构示意图;
[0034] 图27至图30分别示出了实施例6的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
[0035] 图31示出了实施例7的光学成像镜片组的结构示意图;
[0036] 图32至图35分别示出了实施例7的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
[0037] 图36示出了实施例8的光学成像镜片组的结构示意图;
[0038] 图37至图40分别示出了实施例8的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
[0039] 图41示出了实施例9的光学成像镜片组的结构示意图;
[0040] 图42至图45分别示出了实施例9的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
[0041] 图46示出了实施例10的光学成像镜片组的结构示意图;以及
[0042] 图47至图50分别示出了实施例10的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线。

具体实施方式

[0043] 为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。
[0044] 应理解的是,在本申请中,当元件或层被描述为在另一元件或层“上”、“连接至”或“联接至”另一元件或层时,其可直接在另一元件或层上、直接连接至或联接至另一元件或层,或者可存在介于中间的元件或层。当元件称为“直接位于”另一元件或层“上”、“直接连接至”或“直接联接至”另一元件或层时,不存在介于中间的元件或层。在说明书全文中,相同的标号指代相同的元件。如本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
[0045] 应理解的是,虽然用语第1、第2或第一、第二等在本文中可以用来描述各种元件、部件、区域、层和/或段,但是这些元件、部件、区域、层和/或段不应被这些用语限制。这些用语仅用于将一个元件、部件、区域、层或段与另一个元件、部件、区域、层或段区分开。因此,在不背离本申请的教导的情况下,下文中讨论的第一元件、部件、区域、层或段可被称作第二元件、部件、区域、层或段。
[0046] 本文中使用的用辞仅用于描述具体实施方式的目的,并不旨在限制本申请。如在本文中使用的,除非上下文中明确地另有指示,否则没有限定单复数形式的特征也意在包括复数形式的特征。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组。如在本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。诸如“...中的至少一个”的表述当出现在元件的列表之后时,修饰整个元件列表,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
[0047] 除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
[0048] 需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
[0049] 本申请提供了一种光学成像镜片组,从物侧至像侧依次包括:具有正光焦度的第一透镜;具有光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第五透镜;具有负光焦度的第六透镜,其物侧面为凹面;具有光焦度的第七透镜。
[0050] 在本申请的实施例中,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-40
[0051] 在本申请的实施例中,第一透镜物侧面至成像面的轴上距离TTL与光学成像镜片组的有效焦距f之间满足TTL/f<1.0,具体地,满足TTL/f≤0.93。通过满足上述关系,能够合理设置第一透镜物侧面至成像面的轴上距离和光学成像镜片组的有效焦距之间的比值,确保光学成像镜片组具有轻薄以及长焦的特性,使镜片组能配合广角镜头应用于高性能的便携式电子产品。
[0052] 在本申请的实施例中,光学成像镜片组的最大半视场角HFOV<30°,具体地,满足HFOV≤23.8。通过满足上述关系,能够合理控制光学成像镜片组的最大半视场角,使光学系统满足长焦特性并具有较好的平衡像差的能力。并且能合理控制主光线偏转角度,提高与芯片的匹配程度。
[0053] 在本申请的实施例中,第一透镜的有效焦距f1与第一透镜物侧面的曲率半径R1之间满足1
[0054] 在本申请的实施例中,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足1.0≤R7/R8≤2.6,更具体地,满足1.00≤R7/R8≤2.56。通过满足上述关系,能够合理控制第四透镜物侧面和像侧面的曲率半径,有助于降低光学成像镜片组第四透镜的光焦度,使光学成像镜片组具备较好的平衡色差和畸变的能力。
[0055] 在本申请的实施例中,第五透镜与第六透镜在光轴上的空气间隔T56与第一透镜的中心厚度CT1之间满足1.0
[0056] 在本申请的实施例中,光学成像镜片组的有效焦距f与第七透镜像侧面的曲率半径R14之间满足-1
[0057] 在本申请的实施例中,光学成像镜片组的有效焦距f与第六透镜的有效焦距f6之间满足-1.5
[0058] 在本申请的实施例中,第五透镜的有效焦距f5与第一透镜的有效焦距f1之间满足-4
[0059] 在本申请的实施例中,第二透镜与第三透镜的组合焦距f23与光学成像镜片组的有效焦距f之间满足-2
[0060] 在本申请的实施例中,第七透镜的中心厚度CT7与第六透镜的中心厚度CT6之间满足2
[0061] 在本申请的实施例中,第五透镜与第六透镜在光轴上的空气间隔T56与第六透镜与第七透镜在光轴上的空气间隔T67之间满足2
[0062] 在本申请的实施例中,第一透镜至第七透镜在光轴上的中心厚度之和∑CT与第一透镜至第七透镜任意相邻两透镜之间轴上间隔距离的总和∑AT之间满足∑CT/∑AT≤2.0,具体地,满足∑CT/∑AT≤1.76。通过满足上述关系,能够合理控制第一透镜至第七透镜在光轴上的中心厚度之和与第一透镜至第七透镜在光轴上的空气间隔之和的比值,使各镜片厚度和镜片间距之间平衡稳定,提升空间利用率,保证镜头小型化的同时,增强了系统的像差校正能力。
[0063] 以下结合具体实施例进一步描述本申请。
[0064] 实施例1
[0065] 首先参照图1至图5描述根据本申请实施例1的光学成像镜片组。
[0066] 图1为示出了实施例1的光学成像镜片组的结构示意图。如图1所示,光学成像镜片组包括7片透镜。这7片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5、具有物侧面S11和像侧面S12的第六透镜E6和具有物侧面S13和像侧面S14的第七透镜E7。第一透镜E1至第七透镜E7从光学成像镜片组的物侧到像侧依次设置。
[0067] 第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
[0068] 第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
[0069] 第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
[0070] 第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
[0071] 第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
[0072] 第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
[0073] 第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
[0074] 该光学成像镜片组还包括用于滤除红外光的具有物侧面S15和像侧面S16的滤光片E8。在该实施例中,来自物体的光依次穿过各表面S1至S16并最终成像在成像表面S17上。
[0075] 在该实施例中,第一透镜E1至第七透镜E7分别具有各自的有效焦距f1至f7。第一透镜E1至第七透镜E7沿着光轴依次排列并共同决定了光学成像镜片组的总有效焦距f。下表1示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL(mm)以及成像镜头的最大半视场角HFOV(°)。
[0076]f1(mm) 2.93 f(mm) 6.00
f2(mm) 500.55 TTL(mm) 5.59
f3(mm) -6.70 HFOV(°) 23.8
f4(mm) -424.91    
f5(mm) -10.05    
f6(mm) -5.40    
f7(mm) 8.99    
[0077] 表1
[0078] 表2示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
[0079]
[0080]
[0081] 表2
[0082] 在本实施例中,各透镜均可采用非球面透镜,各非球面面型x由以下公式限定:
[0083]
[0084] 其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表2中已给出);Ai是非球面第i-th阶的修正系数。
[0085] 下表3示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数。
[0086]
[0087] 表3
[0088] 图2示出了实施例1的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图3示出了实施例1的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4示出了实施例1的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图5示出了实施例1的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图2至图5可以看出,根据实施例1的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配形成双摄像头,在自动对焦情况下可得到大放大倍率以及良好的成像效果,并能同时保证加工特性以及小型化。
[0089] 实施例2
[0090] 以下参照图6至图10描述根据本申请实施例2的光学成像镜片组。
[0091] 图6为示出了实施例2的光学成像镜片组的结构示意图。如图6所示,光学成像镜片组包括7片透镜。这7片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5、具有物侧面S11和像侧面S12的第六透镜E6和具有物侧面S13和像侧面S14的第七透镜E7。第一透镜E1至第七透镜E7从光学成像镜片组的物侧到像侧依次设置。
[0092] 第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凸面。
[0093] 第二透镜E2可具有负光焦度,且其物侧面S3可为凹面,像侧面S4可为凹面。
[0094] 第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
[0095] 第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
[0096] 第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
[0097] 第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
[0098] 第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
[0099] 下表4示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
[0100]f1(mm) 2.61 f(mm) 6.00
f2(mm) -11.36 TTL(mm) 5.59
f3(mm) 1001.28 HFOV(°) 23.8
f4(mm) -9.15    
f5(mm) -9.71    
f6(mm) -5.92    
f7(mm) 13.90    
[0101] 表4
[0102] 表5示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
[0103]
[0104] 表5
[0105] 下表6示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0106]
[0107] 表6
[0108] 图7示出了实施例2的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8示出了实施例2的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图9示出了实施例2的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图10示出了实施例2的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图7至图10可以看出,根据实施例2的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
[0109] 实施例3
[0110] 以下参照图11至图15描述根据本申请实施例3的光学成像镜片组。
[0111] 图11为示出了实施例3的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
[0112] 第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
[0113] 第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
[0114] 第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
[0115] 第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
[0116] 第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
[0117] 第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
[0118] 第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
[0119] 下表7示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
[0120]f1(mm) 2.90 f(mm) 6.00
f2(mm) -91.71 TTL(mm) 5.59
f3(mm) -7.05 HFOV(°) 23.8
f4(mm) 1846.65    
f5(mm) -10.04    
f6(mm) -5.45    
f7(mm) 9.76    
[0121] 表7
[0122] 表8示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
[0123]
[0124]
[0125] 表8
[0126] 下表9示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0127]
[0128] 表9
[0129] 图12示出了实施例3的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图13示出了实施例3的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14示出了实施例3的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图15示出了实施例3的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图12至图15可以看出,根据实施例3的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
[0130] 实施例4
[0131] 以下参照图16至图20描述根据本申请实施例4的光学成像镜片组。
[0132] 图16为示出了实施例4的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
[0133] 第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
[0134] 第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
[0135] 第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
[0136] 第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
[0137] 第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
[0138] 第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
[0139] 第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凸面。
[0140] 下表10示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
[0141]
[0142]
[0143] 表10
[0144] 下表11示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
[0145]
[0146] 表11
[0147] 下表12示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0148]
[0149]
[0150] 表12
[0151] 图17示出了实施例4的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图18示出了实施例4的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图19示出了实施例4的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图20示出了实施例4的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图17至图20可以看出,根据实施例4的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
[0152] 实施例5
[0153] 以下参照图21至图25描述根据本申请实施例5的光学成像镜片组。
[0154] 图21为示出了实施例5的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
[0155] 第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
[0156] 第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
[0157] 第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
[0158] 第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
[0159] 第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
[0160] 第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
[0161] 第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
[0162] 下表13示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
[0163]f1(mm) 2.87 f(mm) 6.11
f2(mm) -66.04 TTL(mm) 5.59
f3(mm) -7.33 HFOV(°) 23.2
f4(mm) -141.10    
f5(mm) -9.43    
f6(mm) -5.38    
f7(mm) 10.08    
[0164] 表13
[0165] 下表14示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
[0166]
[0167]
[0168] 表14
[0169] 下表15示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0170]
[0171] 表15
[0172] 图22示出了实施例5的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图23示出了实施例5的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24示出了实施例5的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图25示出了实施例5的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图22至图25可以看出,根据实施例5的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
[0173] 实施例6
[0174] 以下参照图26至图30描述根据本申请实施例6的光学成像镜片组。
[0175] 图26为示出了实施例6的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
[0176] 第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凸面。
[0177] 第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
[0178] 第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
[0179] 第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
[0180] 第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
[0181] 第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
[0182] 第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
[0183] 下表16示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
[0184]f1(mm) 2.81 f(mm) 6.00
f2(mm) -54.29 TTL(mm) 5.59
f3(mm) -8.17 HFOV(°) 23.8
f4(mm) -34.58    
f5(mm) -10.29    
f6(mm) -5.46    
f7(mm) 9.65    
[0185] 表16
[0186] 下表17示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
[0187]
[0188] 表17
[0189] 下表18示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0190]
[0191]
[0192] 表18
[0193] 图27示出了实施例6的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图28示出了实施例6的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图29示出了实施例6的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图30示出了实施例6的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图27至图30可以看出,根据实施例6的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
[0194] 实施例7
[0195] 以下参照图31至图35描述根据本申请实施例7的光学成像镜片组。
[0196] 图31为示出了实施例7的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
[0197] 第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凸面。
[0198] 第二透镜E2可具有正光焦度,且其物侧面S3可为凹面,像侧面S4可为凸面。
[0199] 第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凹面。
[0200] 第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
[0201] 第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
[0202] 第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
[0203] 第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
[0204] 下表19示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
[0205]f1(mm) 2.79 f(mm) 6.00
f2(mm) 170.09 TTL(mm) 5.59
f3(mm) -6.99 HFOV(°) 23.8
f4(mm) -28.41    
f5(mm) -10.32    
f6(mm) -5.46    
f7(mm) 9.54    
[0206] 表19
[0207] 下表20示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
[0208]
[0209] 表20
[0210] 下表21示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0211]
[0212] 表21
[0213] 图32示出了实施例7的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图33示出了实施例7的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图34示出了实施例7的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图35示出了实施例7的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图31至图35可以看出,根据实施例7的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
[0214] 实施例8
[0215] 以下参照图36至图40描述根据本申请实施例8的光学成像镜片组。
[0216] 图36为示出了实施例8的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
[0217] 第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
[0218] 第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
[0219] 第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凹面。
[0220] 第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
[0221] 第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
[0222] 第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
[0223] 第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
[0224] 下表22示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
[0225]f1(mm) 2.97 f(mm) 6.00
f2(mm) 26.28 TTL(mm) 5.59
f3(mm) -5.24 HFOV(°) 23.8
f4(mm) 150.59    
f5(mm) -10.18    
f6(mm) -5.37    
f7(mm) 8.94    
[0226] 表22
[0227] 下表23示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
[0228]
[0229]
[0230] 表23
[0231] 下表24示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0232]
[0233] 表24
[0234] 图37示出了实施例8的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图38示出了实施例8的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图39示出了实施例8的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图40示出了实施例8的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图36至图40可以看出,根据实施例8的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
[0235] 实施例9
[0236] 以下参照图41至图45描述根据本申请实施例9的光学成像镜片组。
[0237] 图41为示出了实施例9的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
[0238] 第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
[0239] 第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
[0240] 第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
[0241] 第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
[0242] 第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凹面。
[0243] 第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
[0244] 第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
[0245] 下表25示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
[0246]
[0247]
[0248] 表25
[0249] 下表26示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
[0250]
[0251] 表26
[0252] 下表27示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0253]
[0254]
[0255] 表27
[0256] 图42示出了实施例9的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图43示出了实施例9的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图44示出了实施例9的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图45示出了实施例9的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图41至图45可以看出,根据实施例9的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
[0257] 实施例10
[0258] 以下参照图46至图50描述根据本申请实施例10的光学成像镜片组。
[0259] 图46为示出了实施例10的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
[0260] 第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
[0261] 第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
[0262] 第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
[0263] 第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
[0264] 第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
[0265] 第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
[0266] 第七透镜E7可具有正光焦度,且其物侧面S13可为凹面,像侧面S14可为凸面。
[0267] 下表28示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
[0268]f1(mm) 2.90 f(mm) 6.00
f2(mm) -90.22 TTL(mm) 5.59
f3(mm) -7.52 HFOV(°) 23.8
f4(mm) -144.33    
f5(mm) -10.35    
f6(mm) -5.89    
f7(mm) 11.86    
[0269] 表28
[0270] 下表29示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
[0271]
[0272]
[0273] 表29
[0274] 下表30示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0275]
[0276] 表30
[0277] 图47示出了实施例10的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图48示出了实施例10的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图49示出了实施例10的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图50示出了实施例10的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图46至图50可以看出,根据实施例10的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
[0278] 概括地说,在上述实施例1至10中,各条件式满足下面表31的条件。
[0279]条件式/实施例 1 2 3 4 5 6 7 8 9 10
f5/f -1.68 -1.62 -1.67 -1.83 -1.54 -1.72 -1.72 -1.70 -0.98 -1.73
TTL/f 0.93 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.89 0.93
HFOV 23.8 23.8 23.8 23.7 23.2 23.8 23.8 23.8 22.7 23.8
f1/R1 1.91 1.69 1.91 1.88 1.88 1.83 1.82 1.93 1.89 1.90
R7/R8 1.04 2.56 1.03 1.11 1.07 1.19 1.23 1.00 1.03 1.07
T56/CT1 1.33 1.13 1.26 1.21 1.24 1.29 1.30 1.38 1.18 1.25
f/R14 -0.60 -0.60 -0.60 -0.22 -0.64 -0.57 -0.55 -0.58 -0.71 -0.77
f/f6 -1.11 -1.01 -1.10 -0.83 -1.14 -1.10 -1.10 -1.12 -1.15 -1.02
f5/f1 -3.43 -3.72 -3.46 -3.83 -3.28 -3.66 -3.70 -3.42 -2.13 -3.57
f23/f -1.14 -1.90 -1.10 -1.21 -1.08 -1.18 -1.22 -1.11 -1.11 -1.16
CT7/CT6 2.99 3.41 3.24 3.88 3.39 3.07 2.98 2.92 2.27 3.43
T56/T67 3.53 2.90 3.33 2.67 3.15 3.31 3.39 3.82 4.13 3.10
∑CT/∑AT 1.57 1.74 1.65 1.76 1.61 1.59 1.56 1.55 1.73 1.68
[0280] 表31
[0281] 以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。