多氟取代芳联杂环类衍生物、含其的药物组合物及其应用转让专利

申请号 : CN201710053576.8

文献号 : CN108341801B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 董晓武杨波胡永洲何俏军翁勤洁占文虎

申请人 : 浙江大学

摘要 :

本发明公开了一种多氟取代芳联杂环类衍生物,具有通式I或通式I’所示的结构,其中R1、R2中至少有一个氟原子;Rc、Rd、Re、Rf中至少两个取代基为氟原子;以及其光学异构体;或其药学上可接受的盐或溶剂合物;或其光学异构体药学上可接受的盐或溶剂合物。本发明同时公开了含有上述多氟取代芳联杂环类衍生物的组合物以及其在制备抗肿瘤药物中的应用。本发明发明人通过多次实验证实,本发明化合物对Akt1有显著的抑制作用,对人卵巢癌细胞株、结肠癌细胞株、前列脲癌细胞株等肿瘤细胞株显示出强效的增殖抑制活性。因此,本发明化合物可作为Akt抑制剂应用于治疗人或动物细胞增殖性相关的实体瘤或血癌的药物中。

权利要求 :

1.一种多氟取代芳联杂环类衍生物,其特征在于,所述的多氟取代芳联杂环类衍生物选自:

4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺;

4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-(3,4,5-三氟苯基)哌啶-3-基)-2-氟苯甲酰胺;

4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-(2 ,3,4-三氟苯基)哌啶-3-基)-2-氟苯甲酰胺;

4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2,5-二氟苯甲酰胺;

或上述化合物的其他光学异构体;或上述化合物药学上可接受的盐;

或其光学异构体药学上可接受的盐。

2.根据权利要求1 所述的多氟取代芳联杂环类衍生物,其特征在于,所述药学上可接受的盐,是与下列酸所形成的盐:枸橼酸、富马酸、乙酸、草酸、酒石酸、苹果酸、马来酸、乳酸、樟脑磺酸、对甲苯磺酸、甲磺酸、三氟甲磺酸、苯磺酸、琥珀酸、柠檬酸、氢卤酸、硫酸、磷酸、硝酸、碳酸、谷氨酸、天冬氨酸。

3.根据权利要求1 所述的多氟取代芳联杂环类衍生物,其特征在于,所述的多氟取代芳联杂环类衍生物选自:

4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺 L-苹果酸盐

4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺D-苹果酸盐

4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺 (±)-苹果酸盐

4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺L-酒石酸盐

4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺D-酒石酸盐

4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺甲磺酸盐

4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺对甲苯磺酸盐

4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺枸橼酸盐或上述化合物的其他光学异构体。

4.一种药物组合物,其特征在于,所述药物组合物包含至少一种活性组分以及一种或多种药学上可接受的载体或赋形剂,所述的活性组分为权利要求1-3 任一项所述的多氟取代芳联杂环类衍生物。

5.一种权利要求1-3 任一项所述多氟取代芳联杂环类衍生物在制备抗肿瘤药物中的应用。

说明书 :

多氟取代芳联杂环类衍生物、含其的药物组合物及其应用

技术领域

[0001] 本发明涉及药物领域,具体涉及作为Akt抑制剂的多氟取代芳联杂环类衍生物、含其的药物组合物及其在抗肿瘤中的应用。

背景技术

[0002] 恶性肿瘤是威胁人类生命健康的重大疾病之一。随着环境污染,生活压力及人口老龄化等问题日益严峻,恶性肿瘤已成为我国居民首要死因。癌症的防治研究已成为全球瞩目的焦点。癌症的治疗手段主要有手术治疗、放射治疗和药物化疗等,其中以药物化疗最为重要。传统抗肿瘤药物多为作用于细胞有丝分裂、DNA合成和修复等过程的细胞毒药物,普遍存在对实体瘤疗效不佳、毒副作用大和易产生多药耐药等缺点,使其临床治疗受到较大的限制。近年来,靶向抗肿瘤药物的研发进展迅速,新型抗癌药物不断涌现,如以Bcr-Abl抑制剂伊马替尼,EGFR抑制剂吉非替尼及中国自主创新药埃克替尼等为代表的替尼类酪氨酸激酶抑制剂已广泛用于癌症的临床治疗,并具有效果显著、毒副作用较小等特点。鉴于这些新型抗肿瘤药物的出色表现,小分子靶向抗肿瘤药物研究已成为全球医药界的重要议题,寻找不同作用机制的新颖抗肿瘤药物仍是国内外新药研究开发的热点。
[0003] 近年来,PI3K/Akt/mTOR信号通路为肿瘤治疗提供了很大机遇,围绕该通路的抗肿瘤药物开发已成为全球研究的热门领域,Akt作为该信号通路中的关键节点蛋白而一直备受关注。Akt又称蛋白激酶B,是一种丝氨酸/苏氨酸激酶,为AGC蛋白激酶家族成员。人类Akt主要包括三个亚型:Aktl,Akt2,Akt3,虽然这三种亚型定位的染色体不同,但亚型之间有着很高(80%以上)的序列同源性。Akt三个亚型从结构上都包含氨基末端的PH结构域、中部的激酶结构域和羧基末端的调节结构域。PH域即肌醇磷酯结合区,调节Akt与磷脂酰-3,4,5-三磷酸脂(PIP3)的结合;激酶催化区含有一活化Akt的苏氨酸磷酸化关键位点,即T308位点;羧基末端含有丝氨酸磷酸化位点,即S473位点。在细胞质中,Akt主要以‘PH-in’非活化的形式存在,当PI3K激酶被生长因子激活后,PI3K可磷酸化磷脂酰-4,5-二磷酸脂(PIP2)3位上的羟基生成磷脂酰-3,4,5-三磷酸脂(PIP3),后者可与Akt的PH结构域结合募集其转移至细胞膜上并使之发生为构象转变(‘PH-out’),暴露出两个磷酸化位点。当T308和S473位点分别被磷脂酰肌醇依赖性蛋白激酶PDK1和雷帕霉素靶蛋白mTOR2磷酸化后,被完全激活的Akt从细胞膜上脱离,激活其下游一系列信号分子,进而调节细胞的生理过程。
[0004] Akt在细胞的生长、存活、增殖、凋亡、血管生成、自吞噬等过程中发挥着极其重要的生物学功能。研究发现,Akt在胃癌、前列腺癌、卵巢癌、乳腺癌等多种人类肿瘤中均存在过度表达的现象,Akt的功能失调或异常激活与这些肿瘤的发生、发展、转移以及对化疗产生耐药密切相关8-13。因此,Akt已成为一个具有广泛开发前景的抗肿瘤药物靶点,寻找新颖、高效的Akt抑制剂是当前抗肿瘤药物开发的重要策略。
[0005] 随着对Akt结构和功能的深入了解,已有多种不同结构类型的Akt抑制剂被陆续报道。按照其作用方式主要可分为磷脂酰肌醇(PIP)类似物、变构抑制剂以及ATP竞争性抑制剂3大类,磷脂酰肌醇类似物抑制剂作用于Akt的PH域,阻碍PIP3与Akt的结合,使之不能从细胞质转移至细胞膜,从而抑制Akt的活化。代表性抑制剂有DPIEL,PIA5和哌立福新,其中,Aeterna Zentaris公司的哌立福新曾在用作治疗多发性骨髓瘤和顽固性结直肠癌口服新药进入了三期临床试验,但最终因疗效欠佳而宣告失败。
[0006] Akt变构抑制剂因其高特异性,近年来受到业界越来越多的关注。如前文所述,Akt在活化之前主要以‘PH-in’的构象存在,PH域与激酶催化区处于一种折叠的状态,两区域之间产生一特殊的变构位点,Akt变构抑制剂与此位点结合,锁定其‘PH-in’状态,限制Akt发生构象改变,进而抑制Akt激活。由于Akt的三种亚型在此变构位点存在差距,因此该类抑制剂能较好实现Akt亚型间的选择性。代表性Akt变构抑制剂MK-2206目前已进入Ⅱ期临床试验,用于胃癌、乳腺癌和淋巴癌等多种癌症的治疗。
[0007] ATP竞争性抑制剂是研究最广泛的一类Akt抑制剂,它与ATP竞争性地作用于ATP结合口袋,阻碍其对底物蛋白的磷酸化。由于Akt与PKA,PKC,ROCK等同属AGC蛋白家族,它们的ATP结合口袋存在高度相似性,为设计特异性Akt抑制剂带来了巨大的挑战。目前已有大量不同结构类型的小分子ATP竞争性抑制剂被报道,多个曾进入或正处于临床研究阶段,如GSK690693,AZD5363,GDC-0068,GSK2110183,GSK2141795。

发明内容

[0008] 本发明的目的是提供一种抗癌作用强,具有Akt抑制作用的新型多氟取代芳联杂环类衍生物及其药学上可接受的盐或溶剂合物。
[0009] 本发明同时提供了一种含有上述多氟取代芳联杂环类衍生物及其药学上可接受的盐或溶剂合物的药物组合物。
[0010] 本发明还提供了一种利用上述多氟取代芳联杂环类衍生物及其药学上可接受的盐或溶剂合物制备抗肿瘤药物的应用。
[0011] 本发明采用如下的技术方案:
[0012] 本发明所提供了一种多氟取代芳联杂环类衍生物,具有通式I或通式I’所示的结构:
[0013]
[0014] 或其光学异构体;或其药学上可接受的盐或溶剂合物;或其光学异构体药学上可接受的盐或溶剂合物;
[0015] 其中,X、Y分别独立的选自-C(Ra)-和-N-,且至少有一个为-C(Ra)-;Ra选自H、卤素、羟基、羧基、羟甲基、饱和或不饱和的C1-C4烃基(包括烷基、烯基、炔基)、卤代的C1-C4烷基、C1-C4烷氧基、卤代的C1-C4烷氧基、C4-C12的无取代或取代的芳基、C4-C12无取代或取代的杂环芳基、C3-C8无取代或取代的环烷基;
[0016] R1、R2分别独立的选自H、F、Cl、Br、CH3、CF3,且至少一个为氟原子;R3为H、CH3、CF3、F或Cl;R4为C1-C3的烷基或者环烷基;
[0017] Z选自 其中B1和B2相同或不同;B1和B2分别独立的选自N(Rb)或缺失,其中Rb分别独立的选自H、C1-C3烷基或者环烷基;本发明中Z相当于桥连基,用于两个化合物片段的连接;这里提到的“缺失”是指当B1或/和B2缺失时,缺失的一侧,由中间的羰基碳直接与对应的化合物片段相连,比如当B1缺失时,Z的结构为
[0018] n为1,2,3;
[0019] Rc、Rd、Re、Rf分别独立的选自H、F、Cl、Br、CF3、CF2H,且至少两个取代基为氟原子。
[0020] 进一步地,作为优选,本发明多氟取代芳联杂环类衍生物具有通式II-1、通式II-2、通式II-3所示的结构:
[0021]
[0022] 或其光学异构体;或其药学上可接受的盐或溶剂合物;或其光学异构体药学上可接受的盐或溶剂合物;
[0023] 其中,X、Y、R1、R2、Z、Rc、Rd、Re、Rf定义同上。进一步地,作为优选,所述的多氟取代芳联杂环类衍生物具有通式III-1、通式III-2或通式III-3结构:
[0024]
[0025] 或其光学异构体;或其药学上可接受的盐或溶剂合物;或其光学异构体药学上可接受的盐或溶剂合物;
[0026] 其中,R1、R2、R3、R4、Z定义同上;R5为H,卤素(F、Cl、Br)、C1-C3的烷基或者环烷基。
[0027] 进一步地,Z中所述的 优选为如下结构:
[0028]
[0029] 作为更进一步优选,所述多氟取代芳联杂环类衍生物具有通式IVa、通式IVb、通式IVc、通式IVd的结构:
[0030]
[0031] 或其光学异构体;或其药学上可接受的盐或溶剂合物;或其光学异构体药学上可接受的盐或溶剂合物。
[0032] 其中,R1、R2、R5、Rc、Rd、Re、Rf定义同上。
[0033] 进一步地,本发明优选的化合物具有通式Va、Vb、Vc结构:
[0034]
[0035] 或其光学异构体;或其药学上可接受的盐或溶剂合物;或其光学异构体药学上可接受的盐或溶剂合物;
[0036] 其中,R2选自H、F、Cl、Br、CH3、CF3;R3、R4、R5、Rc、Rd、Re、Rf的定义同上;
[0037] 进一步地,作为优选,所述的其药学上可接受的盐优选为与2-羟基琥珀酸((±)-苹果酸)、(S)-2-羟基琥珀酸(L-苹果酸)、(R)-2-羟基琥珀酸(D-苹果酸)、(2R,3R)-2,3-二羟基琥珀酸、(2S,3S)-2,3-二羟基琥珀酸、L-酒石酸、D-酒石酸、酒石酸、甲磺酸、对甲苯磺酸、2-羟基丙三羧酸中一种或多种构成的盐;作为优选,作为进一步优选,所述的其药学上可接受的盐优选为与2-羟基琥珀酸((±)-苹果酸)、(S)-2-羟基琥珀酸(L-苹果酸)、(R)-2-羟基琥珀酸(D-苹果酸)、(2R,3R)-2,3-二羟基琥珀酸、(2S,3S)-2,3-二羟基琥珀酸、L-酒石酸、D-酒石酸、酒石酸、2-羟基丙三羧酸中一种或多种构成的盐;更进一步优选为L-苹果酸盐的通式VIa、VIb结构:
[0038]
[0039] 或其光学异构体,其中,R2选自H、F、Cl、Br、CH3、CF3;R3、R4、R5、Rc、Rd、Re、Rf定义同上。
[0040] 作为进一步优选:所述R1、R2分别独立的选自H、F、Cl、CH3、CF3,且至少一个为氟原子;R3为H、F;R4为甲基、乙基、环丙基C1-C3的烷基或者环烷基;X为甲基;Y为N或-C(Ra)-,其中,Ra选自H、Cl、甲基、环丙基、羟乙基、Br、F;n=1或2;Rc、Rd、Re、Rf中至少两个为氟,其余为H;Rc、Rd、Re、Rf进一步优选为3,4位二取代氟、3,4,5位三取代氟、1,2,4,5位四取代氟、2,4位二取代氟,其余为H;
[0041] Z选自 具体地,根据通式I和通式I’,本发明优选的化合物为:
[0042]
[0043]
[0044]
[0045]
[0046]
[0047] 及其上述化合物的光学异构体;或其药学上可接受的盐或溶剂合物。
[0048] 作为进一步优选,所述所述的多氟取代芳联杂环类衍生物包括:
[0049]
[0050] 或上述化合物的其他光学异构体;或上述化合物的药学上可接受的的溶剂合物。
[0051] 术语说明:本文所用术语“芳基”是指4到12个碳原子的全碳单环或稠合多环基团,具有完全共轭的π电子系统。芳基的非限制性实例有:苯基、萘基和蒽基。芳基可以是无取代或取代的。芳基的取代基选自卤素、硝基、氨基、氰基、羟基、C1-C6烷基、C1-C6烷氧基、卤代C1-C6烷基、卤代C1-C6烷氧基、C3-C6环烷基、卤代C3-C6环烷基。
[0052] 本文所用术语“杂环芳基”指4到12个环原子的不饱和的碳环,其中一个或多个碳被杂原子例如氧、氮、硫等置换同样具有完全共轭的π电子系统。杂环芳基可以是单环,也可以是双环,即通过两个环稠合而成。具体的杂环芳基可以是:吡啶基,嘧啶基,吡嗪基,异恶唑基,异噻唑基、吡唑基、噻唑基、恶唑基和咪唑基等。杂环芳基可以是无取代或取代的。杂环芳基的取代基选自卤素、硝基、氨基、氰基、羟基、C1-C6烷基、C1-C6烷氧基、卤代C1-C6烷基、卤代C1-C6烷氧基、C3-C6环烷基、卤代C3-C6环烷基。
[0053] 本文所用术语“环烷基”是指具有3-8个碳原子的饱和单环碳环,除非指明不同数目的原子。“环烷基”包括例如环丙基、环丁基、环戊基、环己基、环庚基和环辛基。“环烷基”还包括取代环烷基。环烷基还可任选在任何可利用碳上被一个或多个选自烷氧基、卤素和卤代烷基,如全氟烷基的取代基取代。
[0054] 本文所用术语“烷氧基”是指-O-烷基基团。本文所用“烷氧基”的实例包括但不限于甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基和叔丁氧基。“烷氧基”还包括取代烷氧基。烷氧基可任选被卤素取代一次或多次。
[0055] 本文所用术语“卤素”表示氟、氯、溴或碘,优选为氟或氯。
[0056] 术语“药学可接受衍生物”是指所选化合物的盐和溶剂合物。
[0057] 本文所用术语“溶剂合物”是指由溶质(例如:本发明的通式I、通式I’、通式II-1、通式II-2、通式II-3等所示的化合物)和溶剂形成的可变化学计量的复合物。为了本发明的目的,所述溶剂不能干扰溶质的生物学活性。合适的溶剂的实例包括但不限于水、甲醇、乙醇和乙酸。优选使用的溶剂为药学可接受溶剂。合适的药学可接受溶剂包括但不限于水、乙醇和乙酸。更优选地,所用溶剂为水。
[0058] 本发明采用本领域技术人员所熟知的方法可以制备本发明所述的取代氮杂环类化合物的盐。所述的盐可以是有机酸盐、无机酸盐等,所述的有机酸盐包括枸橼酸盐、富马酸盐、草酸盐、苹果酸盐、乳酸盐、樟脑磺酸盐、对甲苯磺酸盐、甲磺酸盐、三氟甲磺酸盐、苯磺酸盐、对甲苯磺酸盐等;所述的无机酸盐包括氢卤酸盐、硫酸盐、磷酸盐、硝酸盐等。例如,与低级烷基磺酸,如甲磺酸、三氟甲磺酸等可形成甲磺酸盐、三氟甲磺酸盐;与芳基磺酸,如苯磺酸或对甲苯磺酸等可形成苯磺酸盐、对甲苯磺酸盐;与有机羧酸,如乙酸、富马酸、酒石酸、草酸、马来酸、苹果酸、琥珀酸或柠檬酸等可形成相应的盐;与氨基酸,如谷氨酸或天冬氨酸可形成谷氨酸盐或天冬氨酸盐。与无机酸,如氢卤酸(如氢氟酸、氢溴酸、氢碘酸、氢氯酸),硝酸、碳酸、硫酸或磷酸等也可形成相应的盐。
[0059] 本发明的第二个目的是提供一种药物组合物,所述药物组合物包含至少一种活性组分以及一种或多种药学上可接受的载体或赋形剂,所述的活性组分可以是本发明通式I和通式I’所示结构的取代氮杂环类化合物及其优选化合物、所述化合物的光学异构体、所述化合物或其光学异构体在药学上可接受的盐、所述化合物或其光学异构体的溶剂合物中的任意一种或任意多种。
[0060] 所述载体包括药学领域的常规稀释剂、赋形剂、填充剂、粘合剂、湿润剂、崩解剂、吸收促进剂、表面活性剂、吸附载体、润滑剂等中的一种或多种,必要时还可以加入香味剂、甜味剂等。本发明药物可以制成片剂、粉剂、粒剂、胶囊、口服液及注射用药等多种形式,上述各剂型的药物均可以按照药学领域的常规方法制备。
[0061] 本发明还提供I和通式I’所述的化合物、及其光学异构体或其药学上可接受的盐或溶剂合物在制备抗肿瘤药物中的用途。所述的肿瘤为乳腺癌、肉瘤、肺癌、前列腺癌、结肠癌、直肠癌、肾癌、胰腺癌、血癌、成神经细胞瘤、神经胶质瘤、头癌、颈癌、甲状腺癌、肝癌、卵巢癌、外阴癌、子宫颈癌、子宫内膜癌、睾丸癌、膀胱癌、食管癌、胃癌、鼻咽癌、颊癌、口腔癌、胃肠道间质瘤、皮肤癌、多发性骨髓瘤、急性髓细胞白血病、慢性髓细胞性白血病、慢性淋巴细胞白血病。
[0062] 本发明还提供本发明所述的化合物或其可药用盐在制备Akt抑制剂中的应用,特别是在制备治疗细胞增生疾病中的应用。所述的细胞增生疾病包括癌症。换言之,本发明提供取代氮杂环类化合物或其可药用盐单独或和其他药物联合使用在治疗增生类疾病(如癌症)中的应用。能和本发明所提供的化合物或其可药用盐联合使用的抗肿瘤药包括但并非限定至少一种以下种类:有丝分裂抑制剂(如长春碱、长春地辛和长春瑞宾);微管蛋白分解抑制剂(如泰素);烷基化试剂(如顺铂、卡铂和环磷酰胺);抗代谢物(如5-氟尿嘧啶、替加氟、甲氨蝶呤、阿糖胞苷和羟基脲);可插入抗生素(如阿雷素、丝裂霉素和争光霉素);酶(如天门冬氨酶);拓朴异构酶抑制剂(如依托伯苷和喜树碱);生物反应调节剂(如干扰素);蛋白酶体抑制剂(如硼替佐米);肿瘤免疫相关药物(PD-1抗体药物、CTLA-4抗体药物)。
[0063] 本发明发明人通过多次实验证实,本发明化合物对Akt1有显著的抑制作用,对人卵巢癌细胞株(OVCAR-8)、人乳腺癌细胞株(MCF7)、人肾癌细胞株(786-O)、结肠癌细胞株(HCT116)、人骨髓瘤细胞株(CEM-C1)等肿瘤细胞株显示出强效的增殖抑制活性。因此,本发明化合物可作为Akt抑制剂应用于治疗人或动物细胞增殖性相关的实体瘤或血癌的药物中。

具体实施方式

[0064] 下面通过实施例来说明本发明的可实施性,本领域的技术人员应当理解,根据现有技术的教导,对相应的技术特征进行修改或替换,仍然属于本发明要求保护的范围。
[0065] 实施例1.中间体4Aa的合成
[0066]
[0067] 步骤一:在氮气保护下,将2-氟-4-溴苯甲酸甲酯1A(2.3g,10mmol)、四(三苯基磷)钯(1.15g,1mmol)、1-甲基-1H-吡唑-5-硼酸频哪醇酯2a(2.5g,12mmol)和磷酸钾三水合物(4.0g,15mmol)依次加入装有50mL DMF的100ml三颈瓶中,反应体系置于90℃充分搅拌反应过夜。反应完毕冷却至室温,将反应液倒入100mL水中,用乙酸乙酯萃取3次,合并有机层,用饱和氯化钠洗两次后,无水硫酸钠干燥,减压浓缩,所得粗产品用硅胶柱层析纯化得浅黄色固体2.38g中间体3Aa,收率85%,1H NMR 500MHz,CDCl3)δ8.09–7.99(m,1H),7.55(d,J=1.9Hz,1H),7.29(dd,J=8.1,1.6Hz,1H),7.23(dd,J=11.3,1.6Hz,1H),6.40(d,J=1.9Hz,
1H),3.97(s,3H),3.95(s,3H)。ESI(M+H)+=235。
[0068] 步骤二:将中间体3Aa(2.38g,10mmol)溶于20ml四氢呋喃中,加入6N氢氧化钠水溶液10mL,室温继续反应6小时,减压除掉有机溶剂。向剩余反应混合物中加入10mL水,用二氯甲烷洗两次,水层用1N盐酸溶液调至pH值约为3,有大量固体析出,过滤,滤饼再用水洗一次,干燥得1.9g白色固体4Aa,收率86%,1H NMR(500MHz,DMSO)δ13.46(s,1H),8.03–7.87(m,1H),7.55(d,J=11.8Hz,1H),7.51(d,J=1.5Hz,1H),7.49(d,J=8.1Hz,1H),6.58(d,J=1.5Hz,1H),3.92(s,3H)。ESI(M+H)+=221。
[0069] 实施例2:中间体4Aa-1的合成
[0070]
[0071] 步骤一:将中间体3Aa(1.2g,5mmol)溶于20ml四氢呋喃中,缓慢加入NCS(氯代二乙酰亚胺)(348mg,6mmol)室温下反应5小时后,减压除掉有机溶剂,向剩余反应混合物中加入10mL水,用二氯甲烷洗萃取2次,合并有机层,用饱和氯化钠洗两次后,无水硫酸钠干燥,减压浓缩,所得粗产品用硅胶柱层析纯化得浅黄色固体,干燥得1.07g白色固体3Aa-1,收率
80%,ESI(M+H)+=269。
[0072] 步骤二:将中间体3Aa-1(1.2g,5mmol)溶于20ml四氢呋喃中,加入6N氢氧化钠水溶液10mL,室温继续反应6小时,减压除掉有机溶剂。向剩余反应混合物中加入10mL水,用二氯甲烷洗两次,水层用1N盐酸溶液调至pH值约为3,有大量固体析出,过滤,滤饼再用水洗一次,干燥得1.14g白色固体4Aa-1,收率90%,ESI(M+H)+=255。
[0073] 实施例3:中间体4Ab的合成
[0074]
[0075] 参考实施例1的步骤一、二,用1,4-二甲基-1H-吡唑-5-硼酸频哪醇酯(2.66g,12mmol)2b代替1-甲基-1H-吡唑-5-硼酸频哪醇酯2a,以2-氟-4-溴苯甲酸甲酯1A(2.3g,
10mmol)为原料,制得1.58g白色固体4Ab,收率56%(两步),ESI(M+H)+=235。
[0076] 实施例4:中间体4Ac的合成
[0077]
[0078] 参考实施例1的步骤一、二,用1-甲基-4-环丙基-1H-吡唑-5-硼酸频哪醇酯2c(2.98g,12mmol)代替1-甲基-1H-吡唑-5-硼酸频哪醇酯2a,以2-氟-4-溴苯甲酸甲酯1A(2.3g,10mmol)为原料,得1.34g白色固体4Ac,收率43%(两步),ESI(M+H)+=261。
[0079] 实施例5:中间体4Aa-2的合成
[0080]
[0081] 参考实施例2的步骤一、二,以NBS(1.07g,6mmol)代替NCS,以间体体3Aa(1.2g,5mmol)为原料,制得1.16g白色固体4Aa-2,收率78%(两步),ESI(M+H)+=299。
[0082] 实施例6:中间体4Ad的合成
[0083]
[0084] 参考实施例1的步骤一、二,用1-乙基-1H-吡唑-5-硼酸频哪醇酯2d(2.48,12mmol)代替1-甲基-1H-吡唑-5-硼酸频哪醇酯2a,以2-氟-4-溴苯甲酸甲酯1A(2.3g,10mmol)为原料,得1.52g白色固体4Ad,收率64.95%(两步),ESI(M+H)+=235。
[0085] 实施例7:中间体4Ae的合成
[0086]
[0087] 参考实施例1的步骤一、二,用1-环丙基-1H-吡唑-5-硼酸频哪醇酯2e(2.81g,12mmol)代替1-甲基-1H-吡唑-5-硼酸频哪醇酯2a,以2-氟-4-溴苯甲酸甲酯1A(2.3g,
10mmol)为原料,得1.30g白色固体4Ae,收率52%(两步),ESI(M+H)+=247。
[0088] 实施例8:中间体4Ba的合成
[0089]
[0090] 参考实施例1的步骤一、二,用4-溴-2,6-二氟-苯甲酸甲酯1B(2.49g,10mmol)代替2-氟-4-溴苯甲酸甲酯1A,得1.63g白色固体4Ba,收率57%(两步),ESI(M+H)+=239。
[0091] 实施例9:中间体4Ca的合成
[0092]
[0093] 参考实施例1的步骤一、二,用4-溴-2-氯-6-氟-苯甲酸甲酯1C(2.52g,10mmol)代+替2-氟-4-溴苯甲酸甲酯1A,得白色固体4Ca,收率64%(两步),ESI(M+H) =255。
[0094] 实施例10:中间体4Da的合成
[0095]
[0096] 参考实施例1的步骤一、二,用4-溴-2-氟-6-甲基苯甲酸甲酯1D(2.32g,10mmol)代替2-氟-4-溴苯甲酸甲酯1A,得白色固体4Da,收率57%(两步),ESI(M+H)+=235。
[0097] 实施例11:中间体4Ea的合成
[0098]
[0099] 参考实施例1的步骤一、二,用4-溴-2-氟-6-三氟甲基苯甲酸甲酯1E(2.99g,10mmol)代替2-氟-4-溴苯甲酸甲酯1A,得白色固体4Ea,收率61%(两步),ESI(M+H)+=289。
[0100] 实施例12:中间体4Fa的合成
[0101]
[0102] 参考实施例1的步骤一、二,用4-溴-2,3-二氟苯甲酸甲酯1F(2.49g,10mmol)代替2-氟-4-溴苯甲酸甲酯1A,得白色固体4Fa,收率60%(两步),ESI(M+H)+=239。
[0103] 实施例13:中间体4Ga的合成
[0104]
[0105] 参考实施例1的步骤一、二,用4-溴-2,5-二氟-苯甲酸甲酯1G(2.49g,10mmol)代替2-氟-4-溴苯甲酸甲酯1A,得白色固体4Ga,收率58%(两步),ESI(M+H)+=239。
[0106] 实施例14:中间体8的合成
[0107]
[0108] 步骤一:将5-碘-1-甲基-1氢-1,2,4三氮唑5(416mg,2.0mmol),3-氟-4-甲氧羰基苯硼酸6(475mg,2.40mmol),双三苯基膦氯化钯(63.8mg,0.10mmol)溶于四氢呋喃,加入碳酸钠饱和水溶液(2.00mmol),并在氮气保护下,微波反应(138℃,28分钟)。反应完毕冷却至室温,将反应液倒入100mL水中,用乙酸乙酯萃取3次,合并有机层,用饱和氯化钠洗两次后,无水硫酸钠干燥,减压浓缩,所得粗产品用硅胶柱层析得中间7,收率80%,ESI(M+H)+=236;
[0109] 步骤二:将中间体7(2.36g,10mmol)溶于20ml四氢呋喃中,加入6N氢氧化钠水溶液10mL,室温继续反应6小时,减压除掉有机溶剂。向剩余反应混合物中加入10mL水,用二氯甲烷洗两次,水层用1N盐酸溶液调至pH值约为3,有大量固体析出,过滤,滤饼再用水洗一次,干燥得1.9g白色固体8,收率85%,ESI(M+H)+=222。
[0110] 实施例15:中间体11的合成
[0111]
[0112] 步骤一:在氮气保护下,1-溴-3-氟苯9作为溶剂,冰浴条件下往体系中滴加发烟硫酸(20%SO3),随后转移到常温并加热至110摄氏度,TLC点板检测,待反应完全后,加入冰水淬灭,乙酸乙酯萃取3次,合并有机层,饱和氯化钠洗,硅胶柱层析得白色固体10,收率37%;
[0113] 步骤二:在氮气保护下,将化合物10(2.53g,10mmol)、四(三苯基磷)钯(1.15g,1mmol)、1-甲基-1H-吡唑-5-硼酸频哪醇酯2a(2.31g,12mmol)和磷酸钾三水合物(7.5g,
15mmol)依次加入装有50mL DMF的100ml三颈瓶中,反应体系置于90℃充分搅拌反应过夜。
反应完毕冷却至室温,将反应液倒入100mL水中,用乙酸乙酯萃取3次,合并有机层,用饱和氯化钠洗两次后,无水硫酸钠干燥,减压浓缩,所得粗产品用硅胶柱层析纯化得浅黄色固体+
2.38g中间体11,收率92%,ESI(M+H) =257。
[0114] 实施例16:中间体14的合成
[0115]
[0116] 步骤一:在氮气保护下,将4-溴-2-氟苯胺12(1.88g,10mmol)、四(三苯基磷)钯(1.15g,1mmol)、1-甲基-1H-吡唑-5-硼酸频哪醇酯2a(2.31g,12mmol)和磷酸钾三水合物(7.5g,15mmol)依次加入装有50mL DMF的100ml三颈瓶中,反应体系置于90℃充分搅拌反应过夜。反应完毕冷却至室温,将反应液倒入100ml水中,用乙酸乙酯萃取3次,合并有机层,用饱和氯化钠洗两次后,无水硫酸钠干燥,减压浓缩,所得粗产品用硅胶柱层析纯化得1.0g浅黄色固体13,收率52%;ESI(M+H)+=192;
[0117] 步骤二:氮气保护下,将中间体13(191mg,1mmol),三乙胺(202mg,2mmol)溶于50ml甲苯中,冰浴条件下向甲苯溶液中缓慢滴加三光气(BTC),滴加完毕后,加热回流,TLC监测反应,待反应完全后,向反应体系中加入1N NaHCO3溶液30ml,乙酸乙酯萃取3次,合并有机层,饱和氯化钠洗1次后,无水硫酸钠干燥,减压回收溶剂得92mg黄色油状液体14,收率45%;ESI(M+H)+=218。
[0118] 实施例17:中间体19的合成
[0119]
[0120] 步骤一:3-((叔丁基氧羰基)氨基)-3-氧代丙酸甲酯15(0.25mmol,1equiv),3,4-二氟肉桂醛16a(0.3mmol,1.2equiv),((S)-(-)-α,α-二苯基-2-吡咯甲基)三甲基硅基醚(0.05mmol,0.2equiv),醋酸鉀(0.25mmol,1equiv)溶于1ml 2,2,2-三氟乙醇溶液中,室温下搅拌反应过夜,待反应完全,加水淬灭反应,乙酸乙酯萃取3次,合并有机层,饱和氯化钠溶液洗,无水硫酸钠干燥,经过硅胶柱层析纯化得淡黄色油状液体17,收率63%;
[0121] 步骤二:氮气保护下,将中间体17溶于无水THF中,-74摄氏度下,向反应体系中缓慢滴加硼烷的THF溶液,滴加完毕后将体系升温至-20摄氏度,继续反应5h,加入饱和碳酸钠溶液淬灭,随后体系用乙酸乙酯萃取3次,合并有机层,饱和氯化钠溶液洗,无水硫酸钠干燥,经过硅胶柱层析纯化得淡黄色固体18,收率73%;ESI(M+H)+=328;
[0122] 步骤三:氮气保护下,将三氯化钌,高碘酸钠溶于四氯化碳:乙腈=1:1溶剂体系中,搅拌反应1h后,冰浴条件下,将中间体18的乙腈溶液缓慢滴加至反应体系中,滴加完毕后移至常温,反应7h后,加水淬灭反应,乙酸乙酯萃取3次,合并有机层,饱和氯化钠溶液洗,无水硫酸钠干燥,经过硅胶柱层析纯化得白色固体19,收率83%。ESI(M+H)+=342。
[0123] 实施例18:中间体(±)23的合成
[0124]
[0125] 步骤一:将2-硝基乙基氨基甲酸叔丁酯20(285mg,1.5mmol)、(α,α-二苯基-2-吡咯甲基)三甲基硅基醚(33mg,0.1mmol)和苯甲酸(25mg,0.2mmol)溶于2mL重蒸DCM中,冷却至0℃,缓慢加入3,4-二氟肉桂醛16a(168mg,1mmol),室温搅拌过夜。原料反应完全后,冷却至0℃,向反应体系滴加重蒸DCM,稀释至10mL,缓慢滴加TFA(148μL,2mmol),室温搅拌5h。向体系中缓慢滴加1N的NaHCO3溶液(10mL)淬灭反应,继续搅拌10min,用EtOAc(10mL×3)萃取,合并有机层,饱和NaCl溶液(20mL×2)洗涤,无水Na2SO4干燥,减压回收溶剂,残余物经柱层析纯化(石油醚:EtOAc=30:1~10:1)得淡黄色固体(±)21(180mg,0.53mmol)。收率53%;+
ESI[M+Na]=363;
[0126] 步骤二:将化合物(±)21(1.84g,5.4mmol)和三乙基硅烷(1.8mL,11mmol)溶于25mL DCM中,冰浴条件下缓慢滴加TFA(3.7mL,50mmol),滴毕,常温反应过夜。原料反应完全后,缓慢滴加饱和NaHCO3溶液(50mL)淬灭反应,继续搅拌10min,用DCM(20mL×3)萃取,合并有机层,饱和NaCl溶液(20mL×2)洗涤,减压回收溶剂,得油状物。将所得残余油状物和TEA(三乙胺,1.4mL,10mmol)溶于45mLTHF中,冰浴条件下分批加Boc2O酸酐(1.78g,8.2mmol),滴加完毕,常温搅拌5h。减压旋掉THF,残余物用50mL EtOAc溶解,依次用0.5N的HCl水溶液(20mL×2)、饱和NaCl溶液(20mL×2)洗涤,无水Na2SO4干燥,减压回收溶剂,残余物经柱层析纯化(石油醚:EtOAc=20:1~10:1)得白色固体(±)22(1.44g,4.2mmol),收率:78%;ESI[M+H]+=343;
[0127] 步骤三:将化合物(±)22(1.44g,4.2mmol)、还原铁粉(2.82g,50.4mmol)和NH4Cl(1.0g,16.8mmol)混悬于40mL EtOH和H2O的混合溶液(v/v,3:1)中混合溶液中,机械搅拌下,加热回流反应5h。原料反应完全后,抽滤,滤液浓缩,残余物用50mLEtOAc溶解,依次用饱和NaHCO3溶液(20mL×2)、饱和NaCl溶液(20mL×2)洗涤,无水Na2SO4干燥,减压回收溶剂,真空干燥得灰白色固体(±)23(1.15g,3.7mmol),收率:88%;1H NMR(500MHz,CDCl3)δ7.15–7.09(m,1H),7.05–7.01(m,1H),6.97–6.93(m,1H),4.45–4.09(m,2H),2.92–2.67(m,2H),
2.56–2.43(m,1H),2.38–2.29(m,1H),1.76(d,J=12.6Hz,1H),1.71–1.57(m,1H),1.48(s,
9H).ESI(M+H)+=313。
[0128] 实施例19:中间体(3S,4S)-23的合成
[0129]
[0130] 参考实施例18的步骤一、二、三,用((S)-(-)-α,α-二苯基-2-吡咯甲基)三甲基硅基醚代替(α,α-二苯基-2-吡咯甲基)三甲基硅基醚,以3,4-二氟肉桂醛16a(2.52g,15mmol)为原料,得1.64g灰白色固体(3S,4S)-23,收率35%(三步),ESI(M+H)+=313。
[0131] 手性分析条件:流速:0.8ml/min;流动相:0.1%甲酸水溶液/甲醇=1:4;紫外:254nm;柱温:30℃;进样量:5μl;进样浓度:1mg/ml;手性柱型号:Daicel OJ-RH CD-UG026。
该分析条件测得中间体(3S,4S)-22的ee=98%。
[0132] 实施例20:中间体(3R,4R)-23的合成
[0133]
[0134] 参考实施例18的步骤一、二、三,用((R)-(-)-α,α-二苯基-2-吡咯甲基)三甲基硅基醚代替(α,α-二苯基-2-吡咯甲基)三甲基硅基醚,以3,4-二氟肉桂醛16a(2.52g,15mmol)为原料,得1.69g灰白色固体(3R,4R)-23,收率36%(三步),ESI(M+H)+=313,中间体(3R,4R)-22的ee=97%(分析条件通实施例19)。
[0135] 实施例21:中间体23b的合成
[0136]
[0137] 参考实施例19的步骤一、二、三,将步骤一中用3,4,5-三氟肉桂醛代替3,4-二氟肉桂醛,以3,4,5-三氟肉桂醛16b(2.79g,15mmol))为原料,得1.98g灰白色固体23b,收率40%+(三步),ESI(M+H) =331,中间体22b的ee=97%。
[0138] 实施例22:中间体23c的合成
[0139]
[0140] 参考实施例19的步骤一、二、三,将步骤一中用2,3,5,6-四氟肉桂醛代替3,4-二氟肉桂醛,以2,3,5,6-四氟肉桂醛16c(3.06g,15mmol)为原料,得2.09g白色固体23c,收率40%(三步),ESI(M+H)+=349,中间体22c的ee=97%。
[0141] 实施例23:中间体23d的合成
[0142]
[0143] 参考实施例19的步骤一、二、三,将步骤一中用2,4-二氟肉桂醛代替3,4-二氟肉桂醛,以2,4-二氟肉桂醛16d(2.52g,15mmol)为原料,得2.09g白色固体23d,收率40%(三步),ESI(M+H)+=313,中间体22d的ee=98%。
[0144] 实施例24:中间体23e的合成
[0145]
[0146] 参考实施例19的步骤一、二、三,将步骤一中用2,3,4-三氟肉桂醛代替3,4-二氟肉桂醛,以2,3,4-三氟肉桂醛16e(2.79g,15mmol)为原料,得2.09g白色固体23e,收率40%(三步),ESI(M+H)+=331,中间体22e的ee=97%。
[0147] 实施例25:中间体28a的合成
[0148]
[0149] 步骤一:将(Z)-(2-硝基乙烯基)叔丁基氨基甲酸酯24(0.94g,5mmol),((S)-(-)-α,α-二苯基-2-吡咯甲基)三甲基硅基醚(0.081g,0.25mmol)依次加入装有10ml氯仿的50ml反应瓶中,常温搅拌下先后缓慢滴加2-(3,4-二氟苯基)乙醛25a(1.56g,10mmol)和醋酸(30mg,0.5mmol),滴加完毕至于常温反应过夜。向反应液中加入1N碳酸氢钠溶液30ml,室温搅拌10min,然后用二氯甲烷萃取反应液三次,合并有机相饱和氯化钠洗1次后,无水硫酸钠干燥。过硅胶柱得透明油状物26a,收率75%;
[0150] 步骤二:将中间体26a 1g溶于10ml甲醇溶液中,加入100mg 10%的Pd/C,室温下氢化反应过夜,反应完成后抽滤,滤液旋干,得油状液体27a 784mg,收率88%;
[0151] 步骤三:将中间体27a(596mg,2mmol),三乙胺(253mg,2.5mmol)溶于20ml二氯甲烷中,冰浴下缓慢滴加氯甲酸苄酯(340mg,2mmol),滴加完毕后,将反应体系移至室温反应2h,随后加入30ml二氯甲烷稀释反应体系,1N HCl溶液洗1次,饱和氯化钠溶液洗1次后,无水硫酸钠干燥,过硅胶柱得黄色油状液体648mg,收率75%;
[0152] 将上述黄色油状液体溶于1ml乙酸乙酯中,再加入3ml盐酸饱和的乙酸乙酯,反应5小时后,将体系中白色固体抽滤,得中间体28a,收率96%;ESI(M+H)+=333,中间体28a的ee=95%。
[0153] 实施例26:中间体28b的合成
[0154]
[0155] 参考实施例24的步骤一、二、三,用2-(2,4-二氟苯基)乙醛25b代替2-(3,4-二氟苯基)乙醛25a,得中间体28b,收率57%(三步),ESI(M+H)+=333,中间体28b的ee=97%。
[0156] 实施例27:目标化合物VII-1的合成
[0157]
[0158] 将中间体4Aa(87mg,0.345mmol)、1-羟基苯并三唑(HOBt)(78.62mg,0.517mmol)及1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC·HCl)(98.8mg,0.517mmol)溶于无水二氯甲烷(4ml),冰浴条件下搅拌10min后,加入二异丙基乙胺(0.115ml,1.21mmol,继续在冰浴下搅拌15min后,缓慢加入溶有中间体(±)23(109mg,0.35mmol)的二氯甲烷溶液(4ml),室温搅拌过夜,反应完成后,倒入15ml水中,用二氯甲烷萃取反应液3次,合并有机相,用饱和氯化钠洗2次,无水硫酸钠干燥,旋干;将所得残留物溶于少量乙酸乙酯中,冰浴条件下,缓慢加入氯化氢饱和的乙酯乙酯,常温反应2小时后,旋干,加入饱和碳酸氢钠,乙酸乙酯萃取2次,合并有机相,无水硫酸钠干燥,硅胶柱层析纯化得到白色粉末(化合物VII-1)75mg,收率49%;1H NMR(500MHz,MeOD-d4-d6)δ7.68(d,J=2.2Hz,1H),7.55(t,J=7.6Hz,1H),
7.42–7.34(m,2H),7.32–7.26(m,1H),7.24–7.21(m,1H),7.20–7.16(m,1H),6.55(d,J=
2.2Hz,1H),4.61–4.55(m,1H),3.91(s,3H),3.68(dd,J=12.4,4.0Hz,1H),3.57–3.50(m,+
1H),3.21–3.07(m,3H),2.22(d,J=12.0Hz,1H),2.09–2.01(m,1H).;ESI(M+H) =415。
[0159] 实施例28:目标化合物VII-1a的合成
[0160]
[0161] 参考实施例27的步骤,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-1a,收率57%(两步),ESI(M+H)+=415;测得VII-1a的ee=99%。
[0162] 实施例29:目标化合物VII-1b的合成
[0163]
[0164] 参考实施例27的步骤,用中间体(3R,4R)-23代替中间体(±)23,得目标化合物VII-1b,收率43%(两步),ESI(M+H)+=415,测得VII-1b的ee=97%。
[0165] 实施例30:目标化合物VII-2的合成
[0166]
[0167] 参考实施例27的步骤,用中间体4Aa-1代替中间体4Aa,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-2,收率58%(两步),ESI(M+H)+=449。
[0168] 实施例31:目标化合物VII-3的合成
[0169]
[0170] 参考实施例27的步骤,用中间体4Ab代替中间体4Aa,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-3,收率45%(两步),ESI(M+H)+=429。
[0171] 实施例32:目标化合物VII-4的合成
[0172]
[0173] 参考实施例27的步骤,用中间体4Ac代替中间体4Aa,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-4,收率43%(两步),ESI(M+H)+=455。
[0174] 实施例33:目标化合物VII-6的合成
[0175]
[0176] 参考实施例27的步骤,用中间体4Aa-2代替中间体4Aa,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-6,收率47%(两步),ESI(M+H)+=493。
[0177] 实施例34:目标化合物VII-8的合成
[0178]
[0179] 参考实施例27的步骤,用中间体23b代替中间体(±)23,得目标化合物VII-8,收率41%(两步),ESI(M+H)+=433。
[0180] 实施例35:目标化合物VII-9的合成
[0181]
[0182] 参考实施例27的步骤,用中间体23c代替中间体(±)23,得目标化合物VII-9,收率+56%(两步),ESI(M+H) =451。
[0183] 实施例36:目标化合物VII-10的合成
[0184]
[0185] 参考实施例27的步骤,用中间体23d代替中间体(±)23,得目标化合物VII-10,收率43%(两步),ESI(M+H)+=415。
[0186] 实施例37.目标化合物VII-11的合成
[0187]
[0188] 参考实施例27的步骤,用中间体23e代替中间体(±)23,得目标化合物VII-11,收+率43%(两步),ESI(M+H) =433。
[0189] 实施例38:目标化合物VII-12的合成
[0190]
[0191] 参考实施例27的步骤,用中间体4Ba代替中间体4Aa,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-12,收率52%(两步),ESI(M+H)+=433。
[0192] 实施例39:目标化合物VII-14的合成
[0193]
[0194] 参考实施例27的步骤,用中间体4Ca代替中间体4Aa,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-14,收率52%(两步),ESI(M+H)+=449。
[0195] 实施例40:目标化合物VII-15的合成
[0196]
[0197] 参考实施例27的步骤,用中间体4Da代替中间体4Aa,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-15,收率33%(两步),ESI(M+H)+=429。
[0198] 实施例41:目标化合物VII-16的合成
[0199]
[0200] 参考实施例27的步骤,用中间体4Ea代替中间体4Aa,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-16,收率32%(两步),ESI(M+H)+=483。
[0201] 实施例42:目标化合物VII-17的合成
[0202]
[0203] 参考实施例27的步骤,用中间体4Fa代替中间体4Aa,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-17,收率49%(两步),ESI(M+H)+=433。
[0204] 实施例43:目标化合物VII-18的合成
[0205]
[0206] 参考实施例27的步骤,用中间体4Ga代替中间体4Aa,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-18,收率43%(两步),ESI(M+H)+=433。
[0207] 实施例44:目标化合物VII-19的合成
[0208]
[0209] 将中间体4Aa-1(97mg,0.345mmol)、1-羟基苯并三唑(HOBt)(78.62mg,0.517mmol)及1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC·HCl)(98.8mg,0.517mmol)溶于无水二氯甲烷(4ml),冰浴条件下搅拌10min后,加入二异丙基乙胺(0.115ml,1.21mmol),继续在冰浴下搅拌15min后,缓慢加入中间体28a(130mg,0.35mmol),室温搅拌过夜,反应完成后,倒入15ml水中,用二氯甲烷萃取反应液3次,合并有机相,用饱和氯化钠洗2次,无水硫酸钠干燥,旋干得黄色油状物122mg,收率62%;
[0210] 将上述黄色油状物溶于甲醇溶液中,加入10%Pd/C,室温氢化反应过夜,反应完成后,抽滤,滤液旋干,过硅胶柱得白色固体VII-19 46mg,收率49%;ESI(M+H)+=435。
[0211] 实施例45:目标化合物VII-20的合成
[0212]
[0213] 参考实施例44的步骤,用中间体4Aa代替中间体4Aa-1,用中间体28b代替中间体+28a,得目标化合物VII-20,收率53%(两步),ESI(M+H) =401。
[0214] 实施例46:目标化合物VII-21的合成
[0215]
[0216] 参考实施例44的步骤,用中间体4Ba代替中间体4Aa-1,得目标化合物VII-21,收率56%(两步),ESI(M+H)+=419。
[0217] 实施例47:目标化合物VII-22的合成
[0218]
[0219] 将中间体14及DIPEA溶于无水二氯甲烷(4ml),冰浴条件下搅拌10min后,缓慢加入溶有中间体(3S,4S)-23的二氯甲烷溶液(4ml),室温搅拌2h,反应完成后,用1N盐酸水溶液洗有机层1次,再用饱和氯化钠洗2次,无水硫酸钠干燥,旋干;将所得残留物溶于少量乙酸乙酯中,冰浴条件下,缓慢加入氯化氢饱和的乙酯乙酯,常温反应2小时后,旋干,加入饱和碳酸氢钠,乙酸乙酯萃取2次,合并有机相,无水硫酸钠干燥,硅胶柱层析纯化得到白色粉末VII-22,收率49%;ESI(M+H)+=430。
[0220] 实施例48:目标化合物VII-23的合成
[0221]
[0222] 将三苯基膦(3mmol,0.79g),中间体11(1mmol,0.25g),三氯乙腈(3mmol,0.43g)溶于6ml二氯甲烷中,搅拌回流约1h。再向其中加入(3S,4S)-23(1mmol,0.34g),4-甲基吡啶(3mmol,0.28g)室温反应1h,待反应完全后,旋干溶剂,用乙酸乙酯萃取3次,合并有机层,并用饱和的氯化钠水溶液洗,无水硫酸钠干燥,旋干;将所得残留物溶于少量乙酸乙酯中,冰浴条件下,缓慢加入氯化氢饱和的乙酯乙酯,常温反应2小时后,旋干,加入饱和碳酸氢钠,乙酸乙酯萃取2次,合并有机相,无水硫酸钠干燥,经硅胶柱层析纯化得到淡黄色油状物VII-23 0.39g,收率87%;ESI(M+H)+=451。
[0223] 实施例49:目标化合物VII-24的合成
[0224]
[0225] 参考实施例27的步骤,用中间体19代替中间体4Aa,用中间体13代替中间体(±)23,得目标化合物VII-24,收率38%(两步),ESI(M+H)+=415。
[0226] 实施例50:目标化合物VII-26的合成
[0227]
[0228] 参考实施例27的步骤,用中间体8代替中间体4Aa,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-26,收率47%(两步),ESI(M+H)+=416。
[0229] 实施例51:目标化合物VII-27的合成
[0230]
[0231] 参考实施例27的步骤,用中间体4Ad代替中间体4Aa,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-27,收率49%(两步),ESI(M+H)+=429。
[0232] 实施例52:目标化合物VII-28的合成
[0233]
[0234] 参考实施例27的步骤,用中间体4Ae代替中间体4Aa,用中间体(3S,4S)-23代替中间体(±)23,得目标化合物VII-28,收率57%(两步),ESI(M+H)+=441。
[0235] 实施例53.目标化合物VII-30的合成
[0236]
[0237] 将化合物4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺VII-1a(0.25g,0.60mmol)和L-苹果酸29a(0.08g,0.60mmol)溶于5mL无水乙醇中,溶于1ml无水乙醇中,常温反应过夜,有白色固体析出,抽滤得0.31g白色固体VII-30,收率93%。1H NMR(500MHz,DMSO-d6)δ9.40(brs,2H),8.42(d,J=8.8Hz,1H),7.52–7.34(m,
4H),7.33–7.23(m,1H),7.11(s,1H),6.50(d,J=1.9Hz,1H),4.36(d,J=12.3Hz,1H),3.93(dd,J=9.5,4.3Hz,1H),3.87(s,3H),3.38(dd,J=11.5,4.2Hz,1H),3.30(d,J=12.2Hz,
1H),3.00–2.84(m,2H),2.78(t,J=11.7Hz,1H),2.57–2.51(m,1H),2.34(dd,J=15.6,
4.3Hz,1H),2.04–1.81(m,2H)。
[0238] 实施例54:目标化合物VII-31的合成
[0239]
[0240] 参考实施例53的步骤,用D-苹果酸(0.08g,0.60mmol)29b代替(S)-2-羟基琥珀酸29a,以4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺VII-1a(0.25g,0.60mmol)为原料,得0.30g白色固体VII-31,收率90%。
[0241] 实施例55:目标化合物VII-32的合成
[0242]
[0243] 参考实施例53的步骤,用2-羟基琥珀酸29代替(S)-2-羟基琥珀酸(0.08g,0.60mmol)29a,以4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺VII-1a(0.25g,0.60mmol)为原料,得0.31g白色固体VII-32,收率85%。
[0244] 实施例56:目标化合物VII-33的合成
[0245]
[0246] 参考实施例53的步骤,用(2R,3R)-2,3-二羟基琥珀酸(90mg,0.60mmol)30a代替(S)-2-羟基琥珀酸29a,以4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺VII-1a(250mg,0.60mmol)为原料,得0.28g白色固体VII-33,收率
82%,ESI(M+H)+=415。
[0247] 实施例57:目标化合物VII-34的合成
[0248]
[0249] 参考实施例53的步骤,用D-酒石酸(90mg,0.60mmol)30b代替(S)-2-羟基琥珀酸29a,以4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺VII-1a(0.2g,0.60mmol)为原料,得0.29g白色固体VII-34,收率85%,1H NMR(500MHz,DMSO-d6)δ8.35(d,J=8.9Hz,1H),7.48(d,J=1.9Hz,1H),7.46(d,J=11.6Hz,1H),7.42–
7.33(m,3H),7.29(ddd,J=11.8,7.9,1.8Hz,1H),7.12(s,1H),6.49(d,J=1.9Hz,1H),4.27(td,J=10.9,5.6Hz,1H),3.91(s,2H),3.86(s,3H),3.30(dd,J=12.0,4.1Hz,1H),3.20(d,J=12.1Hz,1H),2.90(td,J=11.7,3.8Hz,1H),2.78(t,J=11.2Hz,1H),2.69(t,J=
11.6Hz,1H),1.95–1.76(m,2H);ESI(M+H)+=415。
[0250] 实施例58:目标化合物VII-35的合成
[0251]
[0252] 参考实施例53的步骤,用甲磺酸(57mg,0.60mmol)31代替(S)-2-羟基琥珀酸29a,以4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺VII-1a(250mg,0.60mmol)为原料,得0.24g白色固体VII-35,收率79%。
[0253] 实施例59:目标化合物VII-36的合成
[0254]
[0255] 参考实施例53的步骤,用对甲苯磺酸(140mg,0.72mmol)32代替(S)-2-羟基琥珀酸29a,以4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺VII-1a(300mg,0.60mmol)为原料,得0.27g白色固体VII-36,收率61%。
[0256] 实施例60:目标化合物VII-37的合成
[0257]
[0258] 参考实施例53的步骤,用枸橼酸酸(180mg,0.85mmol)33代替(S)-2-羟基琥珀酸29a,以4-(1-甲基-1H-吡唑-基)-N-((3S,4S)-4-(3,4-二氟苯基)哌啶-3-基)-2-氟苯甲酰胺VII-1a(350mg,0.85mmol)为原料,得0.27g白色固体VII-37,收率51%。1H NMR(500MHz,DMSO-d6)δ9.68(brs,2H),8.36(d,J=8.9Hz,1H),7.50–7.32(m,4H),7.27(ddd,J=11.8,
7.8,1.8Hz,1H),7.09(d,J=4.6Hz,1H),6.48(d,J=1.9Hz,1H),4.28(d,J=11.9Hz,1H),
3.31(dd,J=11.8,3.8Hz,1H),3.22(d,J=12.0Hz,1H),2.90(t,J=10.1Hz,1H),2.80(t,J=11.8Hz,1H),2.70(t,J=11.4Hz,1H),2.55–2.45(m,4H),2.53(d,J=15.1Hz,1H),2.46(d,J=15.1Hz,1H),1.91(d,J=11.8Hz,1H),1.87–1.72(m,1H)..36(d,J=8.8Hz,1H),
7.49–7.41(m,2H),7.40–7.33(m,3H),7.27(ddd,J=12.2,7.8,2.1Hz,1H),7.13–7.06(m,
1H),4.28(d,J=11.5Hz,1H),3.85(s,3H),3.35–3.18(m,4H),2.94–2.66(m,4H),1.95–1.77(m,2H)。
[0259] 实施例61.本发明公开的化合物的Akt1酶抑制活性和肿瘤细胞增殖制活性
[0260] 以进入临床Ⅱ期研究的化合物AZD5363(NCT02208375,NCT02208375,NCT01625286)为阳性对照,采用MTT法测定化合物对常见的肿瘤细胞株(人卵巢癌细胞OVCAR-8和人结肠癌细胞HCT-116)的体外抑制作用(IC50),同时利用商品化的Akt1试剂盒,评价Akt1酶抑制活性(IC50)。
[0261] 1)本发明化合物的肿瘤细胞增殖抑制活性的药理实验方法如下:
[0262] 首先是体外肿瘤增殖抑制活性的测定及初步的构效关系研究,选用不同的实体瘤细胞株对所合成的化合物进行了体外抗肿瘤活性的测定。
[0263] 实验材料:
[0264] 细胞株:人卵巢癌细胞(OVCAR8)、结肠腺癌细胞(HCT-116)
[0265] 培养基:OVCAR8:RPMI 1640+胎牛血清
[0266] HCT-116:RPMI 1640+胎牛血清
[0267] 药物配制方法:将药物溶于DMSO中制成50mM的储备液,并按一定比例稀释得到5个不同浓度。
[0268] 肿瘤细胞体外培养:
[0269] 将所选取的肿瘤细胞于37℃、5%CO2细胞培养箱中孵育,待细胞密度长到70~90%时传代(贴壁细胞用Duck’s EDTA消化后传代),用于以后实验所需。
[0270] 将化合物用二甲基亚砜(DMSO)溶解,稀释,肿瘤细胞在96孔板上种入4000个/200μL/孔,每孔加入化合物1μL,终浓度为50μM,10μM,2μM,0.4μM,0.08μM共同于37℃、5%CO2细胞培养箱中孵育72小时,以DMSO(1%)为空白对照。72小时后,加入终浓度为0.25mg/mL的MTT,置于37℃、5%CO2细胞培养箱中4小时,之后吸干培养液,每孔加入100μL DMSO,用酶联免疫仪于570nm处测定吸光度(OD值),所得数据用于计算IC50。
[0271] 细胞抑制率的计算公式为:细胞抑制率%=(对照组OD值-用药组OD值)/对照细胞OD值×100%,用Bliss法求出半数抑制浓度(IC50)。
[0272] 2)本发明化合物对Akt1酶抑制活性的测试方法:
[0273] 选用AKT1/PKBαKinEASETM FP Fluorescein Green Assay(激酶绿色荧光检测系统)来检测化合物对AKT1/PKBα的抑制活性。
[0274] 荧光偏振检测蛋白激酶B采用的是竞争反应的原理:荧光标记的磷酸化示踪物和由蛋白激酶B反应产生的未标记磷酸化产物会与抗丝氨酸抗体相互竞争结合。在一个无磷酸化产物的反应液混合物中,当一部分荧光示踪物与抗体结合时会导致较高的偏振值。但是,在包含有磷酸化产物的反应液混合中,较少的示踪物会结合到抗体上(荧光示踪物被从抗体上替代下去),发出的信号发生去偏振。因此,偏振的改变直接的与反应中的蛋白激酶B活性相关。
[0275] 将本发明专利化合物和阳性对照AZD5363用二甲基亚砜(DMSO)溶解,稀释至浓度为50μM。室温下,取浓度为50μM的化合物样品和阳性对照各0.25μl,加入384孔板,并且每个样品设置三个平行孔,然后向每个样品孔板中分别加入的10μl STK Substrate 3Working Solution、5μl AKT1/PKBαWorking Solution、10μl ATP Working Solution,轻微振荡并摇匀数分钟。由于孔中加入10μl ATP Working Solution后即开始反应,由此计时,室温反应1小时。一个小时后,向每个样品孔中分别加入5μl STK Stop Mix、5μl STK Antibody Mix来终止反应。加入完毕后,室温放置四个小时,用酶标仪荧光偏振检测样品的偏振值(在二十四小时内检测其信号都是有效的),通过偏振值来计算化合物对酶的抑制率,进而计算出IC50。
[0276] 实验同时设置四组对照,分别是Buffer Control Wells、Tracer Control Wells、No Enzyme Wells以及空白的二甲基亚砜对照。所得数据用于计算抑制率。
[0277] 根据Akt抑制活性的IC50的大小不同,将化合物的活性分为三个等级:“+++”,1nM
[0278] 表1 化合物对Akt1的抑制活性以及对肿瘤细胞抗增殖活性
[0279]
[0280]
[0281] 经研究本发明公开了一类含特定取代类型的多氟取代的吡唑联苯基甲酰胺类Akt抑制剂,具有强效的Akt1抑制活性和肿瘤细胞增殖抑制活性,如表1所示,当吡唑联苯基甲酰胺骨架的苯环上2位引入F原子,同时哌啶对位苯环至少2个氟原子取代时,抗肿瘤活性最强。以化合物VII-1a及其盐型(VII-30~VII-37)为例,与对比文件CN201510101220中的化合物6和11相比,化合物VII-1a及其盐型(VII-30~VII-37)的Akt1抑制活性更强,同样地,与对比文件CN201510101220中的化合物6,9,11和相比,肿瘤细胞增殖抑制活性(人胃癌HGC27、人肾癌786-O、人卵巢癌OVCAR-8、人结肠癌HCT116以及人骨髓瘤细胞CEM-1C)的肿瘤增殖抑制活性上,化合物VII-1a及其盐型(VII-30~VII-37)活性更优。
[0282] 实施例62.激酶选择性实验
[0283] 待测化合物配置:
[0284] 1)DMSO配置50×化合物储备液待用;
[0285] 2)在96孔板中按5倍浓度梯度稀释的方法每个化合物,至6到7个浓度保证每孔中药物体积为10μl,同时加入100μlDMSO作为空白对照组,以及不加酶底物的阴性对照组;
[0286] 3)再另外准备一块96孔板,取10μl上述化合物加入90μl 1×激酶基础缓冲液,混匀10min。
[0287] 待测板准备:
[0288] 1)取上述配置的96孔板中混合液5μl至384孔板,每个化合物两个复孔。
[0289] 激酶反应:
[0290] 1)配置2.5×激酶溶液,加入相应1×激酶基础缓冲液;
[0291] 2)配置2.5×多肽溶液,在1×激酶基础缓冲液中加入FAM标记的多肽和ATP;
[0292] 3)在待测384孔板中加入10μl的2.5×激酶溶液,室温放置10min,继而加入10μl的2.5×多肽溶液,28℃下反应1h后加入25μl反应停止缓冲液。
[0293] Caliper程序读板,并利用数据获得相应化合物抑制激酶的IC50值,测试结果见表2。
[0294] 激酶选择性:(其他激酶的抑制活性IC50)/(Akt1抑制活性IC50),数值越大,代表选择性越高。
[0295] 表2 化合物的激酶选择性
[0296]激酶 VII-12 VII-30 GSK2141795
Akt2 5.5-倍 5.9-倍 2-倍
Akt3 4.1-倍 4.5-倍 2.6-倍
PKA 1.3-倍 1.77-倍 1.2-倍
PKC 123-倍 101-倍 28-倍
[0297] 表2的测试结果表明,本发明化合物具有对Akt2、Akt3的亚型选择性,以VII-30为例,其对Akt2、Akt3的选择性达到了5.9和4.5倍,相较之下,GSK公司处于II期临床的GSK2141795对Akt2、Akt3的选择性分别为2和2.6倍,目前能实现Akt亚型选择性的研究还非常有限,而亚型选择性的改善有利于降低其毒副反应。针对PKA和PKC(副作用较大的两个靶点),本发明化合物也同样具有一定的选择性,以VII-30为例,其对PKA和PKC分别实现了1.77和101倍的选择性,因而,该类化合物在因选择性不佳引起的副作用方面将具有明显的优势。
[0298] 实施例63.hERG钾离子通道抑制活性实验
[0299] 1.细胞培养
[0300] 本试验所用的细胞为转染有hERG cDNA与稳定表达hERG通道的CHO细胞系(由丹麦Sophion Bioscience公司提供)。细胞培养在含有下列成分的培养基中(皆来源于Invitrogen):Ham’s F12培养基,10%(v/v)灭活的胎牛血清,100μg/ml潮霉素B,100μg/ml Geneticin。2.1.2CHO hERG细胞生长于含上述培养液的培养皿中,并在37℃、含5%CO2的培养箱中进行培养。电生理实验之前24到48小时,CHO hERG细胞被转移到放置于培养皿中的圆形玻璃片上,并在以上相同的培养液及培养条件下生长。每个圆形玻片上CHO hERG细胞的密度需要达到绝大多数细胞是独立、单个的要求。
[0301] 2.化合物处理和稀释
[0302] 为了取得化合物的IC50,我们选择了下列浓度(30,10,3,1,0.3和0.1μM)来作测试。在试验之前,首先用DMSO以梯度稀释的方式稀释成10,3,1,0.3和0.1mM的贮备液,再用细胞外液稀释成最终的μM测试浓度。除了30μM的化合物测试溶液中的DMSO浓度为0.3%以外,其它各浓度化合物溶液中DMSO的最终浓度都为0.1%。阳性对照Cisapride(西沙比利)的测试浓度为0.1μM。所有的化合物溶液都经过常规的5到10分钟超声和振荡以保证化合物完全溶解。
[0303] 3.电生理记录系统和数据分析
[0304] 本实验采用手动膜片钳系统(HEKA EPC-10信号放大器及数字转换系统,购自德国HEKA Electronics)作全细胞电流的记录。表面生长有CHO hERG细胞的圆形玻片被放置于倒置显微镜下的电生理记录槽中。记录槽内以细胞外液作持续灌流(大约每分钟1毫升)。实验过程采用常规全细胞膜片钳电流记录技术。如无特殊说明,实验都是在常规室温下进行(~25℃)。细胞钳制在-80mV的电压下。细胞钳制电压去极化到+20mV以激活hERG钾通道,5秒后再钳制到-50mV以消除失活并产生尾电流。尾电流峰值用作hERG电流大小的数值。上述步骤所记录的hERG钾电流在记录槽内持续的细胞外液灌流下达到稳定后则可以叠加灌流待测试的药物,直到药物对hERG电流的抑制作用达到稳定状态。一般以最近的连续3个电流记录线重合作为判断是否稳定状态的标准。达到稳定态势以后以细胞外液灌流冲洗直到hERG电流回复到加药物之前的大小。一个细胞上可以测试一个或多个药物,或者同一种药物的多个浓度,但是在不同药物之间需要以细胞外液冲洗。Cisapride(西沙必利,购自Sigma)被用于实验中作为阳性对照以保证所使用的细胞质量正常。试验数据由HEKAPatchmaster,Microsoft Excel以及Graphpad Prism提供的数据分析软件进行分析,测试结果见表3。
[0305] 表3 部分化合物对hERG钾离子通道阻滞活性
[0306]
[0307] 表3的测试结果表明,本发明涉及的化合物的hERG通道阻滞作用较弱,明显弱于GSK公司处于II期临床的GSK2141795,同样弱于苯环被呋喃环等杂环替代的衍生物31(WO2015/144021A1),例如,在同等浓度下,化合物VII-30的阻滞作用分别为化合物31和GSK2141795的0.32和0.4,由于hERG通道阻滞作用与药物的心脏毒性风险相关。因此,该类化合物的低hERG钾离子通道阻滞活性有利于降低毒副作用风险,提高其成药性。
[0308] 实施例64.药物口服药代动力学实验
[0309] 实验方法:以SD大鼠为实验动物,灌胃给药10mg/kg,尾静脉静注给药2mg/kg。灌胃给药的尾静脉取血时间点为0.25,0.5,1,2,4,6,8,10,24小时;静脉给药取血时间点为0.05,0.1,0.17,0.5,1,2,4,6,8,10,24小时。取全血0.3ml,离心后取血浆0.1ml采用LC-MS进行分析。
[0310] 表4 SD大鼠口服给药后主要药动学参数汇总
[0311]
[0312] 本发明分别考察了化合物VII-1a、VII-30和VII-33在大鼠体内的药代动力学性质,表4测试结果表明,化合物VII-1a可口服吸收,体内具有较高的暴露量,Cmax达到了132ng/mL,AUC0-t达到了1484ng/h/mL,相较之下,制成有机盐之后,其L-苹果酸盐VII-30和D-酒石酸盐VII-33的口服生物利用度得到了显著改善,其AUC0-t分别达到了2354、1948ng/h/mL,分别提高了58%和30%,研究表明,制成L-苹果酸盐和D-酒石酸盐有助于其口服吸收,更利于后续的研究与开发。
[0313] 实施例.65化合物的体内抗肿瘤活性
[0314] 1)裸小鼠移植瘤模型建立:将1×107个测试肿瘤细胞注射入裸小鼠腋下,传三代后,剖取HGC27种鼠瘤块,放入盛有生理盐水的玻璃皿内,剥弃表面血管,切开去除坏死区域后,将瘤块切成1-2mm3,用套管针接入于裸小鼠左腋下。
[0315] 2)动物分组及给药安排:待肿瘤生长至平均体积100-300mm3后,将20小鼠按瘤体积随机分组,以上各组受试动物按给药容量10mL/kg灌胃给予相应受试物,每天一次。
[0316] 3)数据测定和统计:每周称重和测量肿瘤体积2次,给药周期21天,于第22天称量体重和测量肿瘤体积后处死裸小鼠取瘤块称重,计算相对肿瘤体积(RTV)、相对肿瘤增值率(T/C)和肿瘤抑制百分率(IR),做统计学检测。计算公式如下:(a)TV(tumor volume)=1/2×a×b2,其中a、b分别表示肿瘤的长和宽;(b)RTV(relative tumor volume)=Vt/V0,其中V0为分组给药时(即d0)所测得的肿瘤体积,Vt为每一次测量时的肿瘤体积;(c)T/C(%)=TRTV/CRTV×100%,其中TRTV为治疗组的RTV,CRTV为溶剂对照组的RTV;(d)IR(%)=(1-TWt/TWc)×100%,其中TWt为治疗组的瘤重,TWc为溶剂对照组的瘤重。
[0317] 表5 化合物对人胃癌HGC27裸小鼠移植瘤的实验治疗作用
[0318]
[0319] t-test,与对照相比,***:P<0.001,*:P<0.05。
[0320] 表6 化合物对人卵巢癌SKOV3裸小鼠移植瘤的肿瘤重量的影响
[0321]
[0322] t-test,与对照相比,***:P<0.001,*:P<0.05。
[0323] 表7 化合物对人肾癌786-O裸小鼠移植瘤的实验治疗作用
[0324]
[0325] t-test,与对照相比,***:P<0.001,**:P<0.01,*:P<0.05。
[0326] 如表5、表6和表7所示,化合物VII-1a和VII-30具有强效的体内抗肿瘤活性,以化合物VII-30为例(50mg/kg,灌胃),在人胃癌HGC27裸小鼠移植瘤、人卵巢癌SKOV3裸小鼠移植瘤、人肾癌786-O裸小鼠移植瘤上,均能有效抑制肿瘤的生长,其T/C分别达到了17.27%,32.96%和22.86%,其体内抗肿瘤活性优于游离形式的VII-1a(表4),该结果与药代动力学性质的结果一致,表明与L-苹果酸成盐有助于提高其体内抗肿瘤活性。与与对比文件CN201510101220中的化合物6相比,以化合物VII-1a及其苹果酸盐具有更强的体内抗肿瘤活性。
[0327] 综上所述,本发明所涉及的多氟取代氮杂环类衍生物具有广阔的抗肿瘤应用前景。