软磁性合金及磁性部件转让专利

申请号 : CN201810084132.5

文献号 : CN108376597B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 原田明洋松元裕之堀野贤治吉留和宏大塚翔太其他发明人请求不公开姓名

申请人 : TDK株式会社

摘要 :

本发明涉及一种软磁性合金,其由主成分和副成分构成,主成分由组成式(Fe(1-(α+β))X1αX2β)(1-(a+b+c))MaBbPc构成,副成分至少包含C、S及Ti。X1为选自Co及Ni中的1种以上。X2为选自Al等各种元素中的1种以上。M为选自Nb、Hf、Zr、Ta、Mo、W及V中的1种以上。0.020≦a≦0.14、0.020≦b≦0.20、0≦c≦0.040、α≧0、β≧0、0≦α+β≦0.50。C的含量为0.001wt%~0.050wt%、S的含量为0.001wt%~0.050wt%、Ti的含量为0.001wt%~0.080wt%,并且0.10≦C/S≦10。

权利要求 :

1.一种软磁性合金,其特征在于,该软磁性合金由主成分和副成分构成,主成分由组成式(Fe(1-(α+β))X1αX2β)(1-(a+b+c))MaBbPc构成,副成分至少包含C、S及Ti,X1为选自Co及Ni中的1种以上,X2为选自Al、Mn、Ag、Zn、Sn、As、Sb、Bi及稀土类元素中的1种以上,M为选自Nb、Hf、Zr、Ta、Mo、W及V中的1种以上,

0.020≦a≦0.14,

0.020≦b≦0.20,

0≦c≦0.040,

α≧0,

β≧0,

0≦α+β≦0.50,

在将所述软磁性合金的整体计为100wt%的情况下,所述C的含量为0.001wt%~0.050wt%,所述S的含量为0.001wt%~0.050wt%,所述Ti的含量为0.001wt%~0.080wt%,在将所述C的含量除以所述S的含量所得的值设为C/S的情况下,

0.10≦C/S≦10,相对于软磁性合金100重量%,含有0.1重量%以下的除了所述元素以外的元素作为不可避免的杂质。

2.根据权利要求1所述的软磁性合金,其中,

0.73≦1-(a+b+c)≦0.93。

3.根据权利要求1或2所述的软磁性合金,其中,

0≦α{1-(a+b+c)}≦0.40。

4.根据权利要求1或2所述的软磁性合金,其中,α=0。

5.根据权利要求1或2所述的软磁性合金,其中,

0≦β{1-(a+b+c)}≦0.030。

6.根据权利要求1或2所述的软磁性合金,其中,β=0。

7.根据权利要求1或2所述的软磁性合金,其中,α=β=0。

8.根据权利要求1或2所述的软磁性合金,其中,所述软磁性合金由非晶质及初期微晶构成,并且具有所述初期微晶存在于所述非晶质中的纳米异质结构。

9.根据权利要求8所述的软磁性合金,其中,所述初期微晶的平均粒径为0.3nm~10nm。

10.根据权利要求1或2所述的软磁性合金,其中,所述软磁性合金具有由铁基纳米结晶构成的结构。

11.根据权利要求10所述的软磁性合金,其中,所述铁基纳米结晶的平均粒径为5nm~30nm。

12.根据权利要求1或2所述的软磁性合金,其中,所述软磁性合金为薄带形状。

13.根据权利要求1或2所述的软磁性合金,其中,所述软磁性合金为粉末形状。

14.一种磁性部件,其由权利要求1~13中任一项所述的软磁性合金构成。

说明书 :

软磁性合金及磁性部件

技术领域

[0001] 本发明涉及软磁性合金及磁性部件。

背景技术

[0002] 近年来,在电子设备、信息设备、通信设备等中要求低耗电量及高效率。进一步,为了实现低碳化社会,对于上述的要求更为强烈。因此,在电子设备、信息设备、通信设备等的电源电路中,也要求降低能量损失或提高电源效率。而且,对用于电源电路的磁元件的磁芯,要求提高饱和磁通密度并降低磁芯损耗(磁芯损耗)、提高导磁率。如果降低磁芯损耗则电能的损耗就减小,如果提高导磁率则能够将磁性元件小型化,因此,能够实现高效和节能。
[0003] 专利文献1中记载有Fe-B-M(M=Ti、Zr、Hf、V、Nb、Ta、Mo、W)系的软磁性非晶质合金。该软磁性非晶质合金与市售的非晶态铁相比,具有高的饱和磁通密度等,具有良好的软磁特性。
[0004] 专利文献1:日本发明专利第3342767号

发明内容

[0005] 此外,作为降低上述磁芯的磁芯损耗的方法,考虑降低构成磁芯的磁性体的矫顽力。
[0006] 专利文献1公开了铁基软磁性合金通过使微晶相析出而能够提高软磁特性。但是,其中对于能够使微晶相稳定地析出的组成则未作充分的探讨。
[0007] 本发明者们对能够使微晶相稳定地析出的组成进行了探讨。其结果发现,在与专利文献1所记载的组成不同的组成中,也能够使微晶相稳定地析出。
[0008] 本发明的目的在于提供一种同时具有高的饱和磁通密度、低的矫顽力及高的导磁率μ′的软磁性合金等。
[0009] [用于解决课题的技术方案]
[0010] 为了实现上述目的,本发明提供一种软磁性合金,其特征在于,该软磁性合金由主成分和副成分构成,主成分由组成式(Fe(1-(α+β))X1αX2β)(1-(a+b+c))MaBbPc构成,副成分至少包含C、S及Ti,
[0011] X1为选自Co及Ni中的1种以上,
[0012] X2为选自Al、Mn、Ag、Zn、Sn、As、Sb、Bi及稀土类元素中的1种以上,
[0013] M为选自Nb、Hf、Zr、Ta、Mo、W及V中的1种以上,
[0014] 0.020≦a≦0.14,
[0015] 0.020≦b≦0.20,
[0016] 0≦c≦0.040,
[0017] α≧0,
[0018] β≧0,
[0019] 0≦α+β≦0.50,
[0020] 在将所述软磁性合金的整体计为100wt%的情况下,
[0021] 所述C的含量为0.001wt%~0.050wt%,所述S的含量为0.001wt%~0.050wt%,所述Ti的含量为0.001wt%~0.080wt%,
[0022] 在将所述C的含量除以所述S的含量所得的值设为C/S的情况下,
[0023] 0.10≦C/S≦10。
[0024] 本发明的软磁性合金具有上述的特征,由此容易具有如下结构,即,通过实施热处理而容易地成为铁基纳米结晶合金的结构。进一步,具有上述特征的铁基纳米结晶合金为具有饱和磁通密度高、矫顽力低、导磁率μ′高这种优选的软磁特性的软磁性合金。
[0025] 本发明的软磁性合金也可以为0.73≦1-(a+b+c)≦0.93。
[0026] 本发明的软磁性合金也可以为0≦α{1-(a+b+c)}≦0.40。
[0027] 本发明的软磁性合金也可以为α=0。
[0028] 本发明的软磁性合金也可以为0≦β{1-(a+b+c)}≦0.030。
[0029] 本发明的软磁性合金也可以为β=0。
[0030] 本发明的软磁性合金也可以为α=β=0。
[0031] 本发明的软磁性合金也可以为由非晶质及初期微晶构成,并且具有所述初期微晶存在于所述非晶质中的纳米异质结构。
[0032] 本发明的软磁性合金也可以为,所述初期微晶的平均粒径为0.3nm~10nm。
[0033] 本发明的软磁性合金也可以为,具有由铁基纳米结晶构成的结构。
[0034] 本发明的软磁性合金也可以为,所述铁基纳米结晶的平均粒径为5nm~30nm。
[0035] 本发明的软磁性合金也可以为薄带形状。
[0036] 本发明的软磁性合金也可以为粉末形状。
[0037] 另外,本发明的磁性部件由所述的软磁性合金构成。

具体实施方式

[0038] 以下,说明本发明的实施方式。
[0039] 本实施方式的软磁性合金由主成分和副成分构成,主成分由组成式(Fe(1-(α+β))X1αX2β)(1-(a+b+c))MaBbPc构成,副成分至少包含C、S及Ti,其中,
[0040] X1为选自Co及Ni中的1种以上,
[0041] X2为选自Al、Mn、Ag、Zn、Sn、As、Sb、Bi及稀土类元素中的1种以上,
[0042] M为选自Nb、Hf、Zr、Ta、Mo、W及V中的1种以上,
[0043] 0.020≦a≦0.14,
[0044] 0.020≦b≦0.20,
[0045] 0≦c≦0.040,
[0046] α≧0,
[0047] β≧0,
[0048] 0≦α+β≦0.50,
[0049] 在将上述软磁性合金整体计为100wt%的情况下,
[0050] 上述C的含量为0.001wt%~0.050wt%,上述S的含量为0.001wt%~0.050wt%,上述Ti的含量为0.001wt%~0.080wt%,
[0051] 在将上述C的含量除以上述S的含量所得的值设为C/S的情况下,
[0052] 0.10≦C/S≦10。
[0053] 具有上述组成的软磁性合金由非晶质构成,容易成为不含由粒径大于30nm的结晶构成的结晶相的软磁性合金。而且,在对该软磁性合金进行热处理的情况下,容易析出铁基纳米结晶。而且,含有铁基纳米结晶的软磁性合金容易具有良好的磁特性。
[0054] 换言之,具有上述组成的软磁性合金容易成为使铁基纳米结晶析出的软磁性合金的初始原料。
[0055] 铁基纳米结晶是粒径为纳米级,并且Fe的结晶结构为bcc(体心立方晶体结构)的结晶。本实施方式中,优选使平均粒径为5nm~30nm的铁基纳米结晶析出。这种析出了铁基纳米结晶的软磁性合金其饱和磁通密度容易变高,并且其矫顽力容易降低。并且,其导磁率μ′容易变高。此外,导磁率μ′是复数导磁率的实部。
[0056] 此外,热处理前的软磁性合金可以完全仅由非晶质构成,但优选由非晶质及粒径为15nm以下的初期微晶构成,并且具有上述初期微晶存在于上述非晶质中的纳米异质结构。通过具有初期微晶存在于非晶质中的纳米异质结构,在热处理时容易使铁基纳米结晶析出。此外,本实施方式中,优选上述初期微晶的平均粒径为0.3nm~10nm。
[0057] 以下,对本实施方式的软磁性合金的各成分进行详细说明。
[0058] M为选自Nb、Hf、Zr、Ta、Mo、W及V中的1种以上。另外,作为M的种类,优选为选自Nb、Hf及Zr中的1种以上。由于M的种类为选自Nb、Hf及Zr中的1种以上,从而在热处理前的软磁性合金中更难以产生由粒径大于30nm的结晶构成的结晶相。
[0059] M的含量(a)满足0.020≦a≦0.14。M的含量(a)优选为0.020≦a≦0.10。在a小的情况下,在热处理前的软磁性合金中容易产生由粒径大于30nm的结晶构成的结晶相,在产生结晶相的情况下,通过热处理不能使铁基纳米结晶析出,矫顽力容易变高,导磁率μ′容易降低。在a大的情况下,饱和磁通密度容易降低。
[0060] B的含量(b)满足0.020≦b≦0.20。另外,优选为满足0.020≦b≦0.14。在b小的情况下,在热处理前的软磁性合金中容易产生由粒径大于30nm的结晶构成的结晶相,在产生结晶相的情况下,通过热处理不能使铁基纳米结晶析出,矫顽力容易变高。在b大的情况下,饱和磁通密度容易降低。
[0061] P的含量(c)满足0≦c≦0.040。也可以为c=0。即,也可以不含P。通过含有P,导磁率μ′容易得到提高。另外,从使饱和磁通密度、矫顽力及导磁率μ′全部达到优选的值的观点出发,优选为满足0.001≦c≦0.040,更优选为满足0.005≦c≦0.020。在c大的情况下,在热处理前的软磁性合金中容易产生由粒径大于30nm的结晶构成的结晶相,在产生结晶相的情况下,通过热处理不能使铁基纳米结晶析出,矫顽力容易变高,导磁率μ′容易降低。
[0062] 关于Fe的含量(1-(a+b+c)),没有特别的限制,但优选为0.73≦(1-(a+b+c))≦0.93。通过将(1-(a+b+c))设为上述的范围内,在热处理前的软磁性合金中更不容易产生由粒径大于30nm的结晶构成的结晶相。
[0063] 进一步,本实施方式的软磁性合金中除了包含上述的主成分以外,作为副成分还含有C、S及Ti。在将软磁性合金整体计为100wt%的情况下,C的含量为0.001wt%~0.050wt%,S的含量为0.001wt%~0.050wt%,Ti的含量为0.001wt%~0.080wt%。进一步,在将上述C的含量除以上述S的含量所得的值设为C/S的情况下,0.10≦C/S≦10。
[0064] 通过使C、S及Ti的全部以上述的微量的含量存在,从而能够得到同时具有高的饱和磁通密度、低的矫顽力及高的导磁率μ′的软磁性合金。上述效果是通过同时含有C、S及Ti的全部而实现的。在不包含C、S及Ti中的任意一种以上的情况下,矫顽力增加,导磁率μ′降低。
[0065] 即使C/S在上述的范围之外,矫顽力也容易增加,并且导磁率μ′也容易降低。
[0066] 通过使C、S及Ti的全部以上述微量的含量存在,由此,即使在M的含量(a)小的情况下(例如0.020≦a≦0.050),也容易产生粒径为15nm以下的初期微晶。其结果,能够得到同时具有高的饱和磁通密度、低的矫顽力及高的导磁率μ′的软磁性合金。上述的效果是通过同时含有C、S及Ti的全部而实现的。在不含有C、S及Ti中的任意一种以上的情况下,特别是在M的含量(a)小的情况下,在热处理前的软磁性合金中容易产生由粒径大于30nm的结晶构成的结晶相,从而通过热处理不能使铁基纳米结晶析出,矫顽力容易变高。换言之,在含有C、S及Ti的全部的情况下,即使在M的含量(a)小的情况下(例如0.020≦a≦0.050),也不易产生由粒径大于30nm的结晶构成的结晶相。而且,通过减小M的含量,能够增大Fe的含量,特别是能够得到同时具有高的饱和磁通密度、低的矫顽力及高的导磁率μ′的软磁性合金。
[0067] C的含量优选为0.001wt%以上0.040wt%以下,更优选为0.005wt%以上0.040wt%以下。S的含量优选为0.001wt%以上0.040wt%以下,更优选为0.005wt%以上
0.040wt%以下。Ti的含量优选为0.001wt%以上0.040wt%以下,更优选为0.005wt%以上
0.040wt%以下。进一步,在将上述C的含量除以上述S的含量所得的值设为C/S的情况下,优选为0.25≦C/S≦4.0。通过将C、S和/或Ti的含量设为上述的范围内,并且将C/S设为上述的范围内,特别使得矫顽力容易降低,导磁率μ′容易变高。
[0068] 另外,在本实施方式的软磁性合金中,也可以由X1和/或X2来取代Fe的一部分。
[0069] X1为选自Co及Ni中的1种以上。关于X1的含量,也可以为α=0。即,也可以不含X1。另外,在将组成整体的原子数计为100at%时,X1的原子数优选为40at%以下。即,优选为满足0≦α{1-(a+b+c)}≦0.40。
[0070] X2为选自Al、Mn、Ag、Zn、Sn、As、Sb、Bi、N、O及稀土类元素中的1种以上。关于X2的含量,也可以为β=0。即,也可以不含X2。另外,在将组成整体的原子数计为100at%时,X2的原子数优选为3.0at%以下。即,优选为满足0≦β{1-(a+b+c)}≦0.030。
[0071] 作为将Fe取代为X1和/或X2的取代量的范围,以原子数为基准,为Fe的一半以下。即,为0≦α+β≦0.50。在α+β>0.50的情况下,通过热处理难以制成铁基纳米结晶合金。
[0072] 此外,本实施方式的软磁性合金中也可以含有除了上述元素以外的元素作为不可避免的杂质。例如,相对于软磁性合金100重量%,也可以含有0.1重量%以下的杂质。
[0073] 以下,对本实施方式的软磁性合金的制造方法进行说明。
[0074] 对本实施方式的软磁性合金的制造方法没有特别的限定。例如,有通过单辊法制造本实施方式的软磁性合金的薄带的方法。另外,薄带也可以为连续薄带。
[0075] 在单辊法中,首先,准备最终得到的软磁性合金中包含的各金属元素的纯金属,以与最终得到的软磁性合金成为同组成的方式进行称量。而且,将各金属元素的纯金属熔解并混合,制作母合金。此外,对于上述纯金属的熔解方法没有特别的限制,例如有在腔室内抽真空后通过高频加热使其熔解的方法。此外,母合金和最终得到的由铁基纳米结晶构成的软磁性合金通常是相同的组成。
[0076] 接着,将所制作的母合金加热使其熔融,得到熔融金属(熔液)。对于熔融金属的温度没有特别的限制,例如可以设为1200℃~1500℃。
[0077] 在单辊法中,主要可通过调整辊的旋转速度来调整所得到的薄带的厚度,但是,例如通过调整喷嘴与辊之间的间隔或熔融金属的温度等也能够调整所得到的薄带的厚度。对于薄带的厚度没有特别的限制,例如可以设为5μm~30μm。
[0078] 在后述的热处理前的时间点,薄带为不含粒径大于30nm的结晶的非晶质。通过对非晶质的薄带实施后述的热处理,能够得到铁基纳米结晶合金。
[0079] 此外,对于确认热处理前的软磁性合金的薄带中是否含有粒径大于30nm的结晶的方法没有特别的限制。例如,关于是否存在粒径大于30nm的结晶,可以通过通常的X射线衍射测定来进行确认。
[0080] 另外,热处理前的薄带中可以完全不含粒径为15nm以下的初期微晶,但优选含有初期微晶。即,热处理前的薄带优选为由非晶质及该非晶质中存在的该初期微晶构成的纳米异质结构。此外,对于初期微晶的粒径没有特别的限制,优选平均粒径在0.3nm~10nm的范围内。
[0081] 另外,对于是否存在上述的初期微晶、以及初期微晶的平均粒径的观察方法,没有特别的限制,例如,可通过对利用离子铣而薄片化了的试样使用透射电子显微镜得到受限视场衍射图像、纳米束衍射图像、明视场图像或高分辨率图像而进行确认。在使用受限视场衍射图像或纳米束衍射图像的情况下,在衍射图案中,在非晶质的情况下形成环状的衍射,与之相对,在不是非晶质的情况下形成起因于结晶结构的衍射斑点。另外,在使用明视场图像或高分辨率图像的情况下,通过以倍率1.00×105~3.00×105倍进行目视观察,能够观察到是否存在初期微晶以及其平均粒径。
[0082] 对于辊的温度、旋转速度及腔室内部的气氛没有特别的限制。为了非晶质化,优选辊的温度为4℃~30℃。辊的旋转速度越快则初期微晶的平均粒径趋向于越小,为了得到平均粒径为0.3nm~10nm的初期微晶,优选将辊的旋转速度设为25米/秒~30米/秒。从成本方面考虑,腔室内部的气氛优选大气。
[0083] 另外,对用于制造铁基纳米结晶合金的热处理条件没有特别的限制。根据软磁性合金的组成的不同,优选的热处理条件也不同。通常,优选的热处理温度大致为400℃~600℃,优选的热处理时间大致为0.5小时~10小时。但是,根据其组成,有时也有偏离上述范围时才存在优选的热处理温度及热处理时间的情况。另外,对于热处理时的气氛没有特别的限制。可以在大气这样的活性气氛下进行,也可以在氩气这样的惰性气氛下进行。
[0084] 另外,对于所得到的铁基纳米结晶合金的平均粒径的计算方法没有特别的限制。例如,可通过使用透射型电子显微镜进行观察而算出。另外,对于确认结晶结构是bcc(体心立方晶体结构)的方法也没有特别的限制。例如,可使用X射线衍射测定进行确认。
[0085] 另外,作为得到本实施方式的软磁性合金的方法,除了上述的单辊法以外,还有例如通过水雾化法或气体雾化法得到本实施方式的软磁性合金的粉体的方法。以下,对气体雾化法进行说明。
[0086] 在气体雾化法中,与上述的单辊法同样地得到1200℃~1500℃的熔融合金。之后,在腔室内喷射上述熔融合金,从而制作粉体。
[0087] 此时,将气体喷射温度设为4℃~30℃,并且将腔室内的蒸汽压设为1hPa以下,由此容易地得到上述优选的纳米异质结构。
[0088] 通过气体雾化法制作粉体之后,以400℃~600℃进行0.5分钟~10分钟的热处理,由此,能够防止各粉体彼此烧结而出现的粉体粗大化现象,并且能够促进元素的扩散,能够在短时间内到达热力学的平衡状态,并且能够除去应变及应力,容易得到平均粒径为10nm~50nm的铁基软磁性合金。
[0089] 以上,对本发明的一实施方式进行了说明,但本发明不限于上述的实施方式。
[0090] 对于本实施方式的软磁性合金的形状没有特别限制。如上所述,可以示例薄带形状或粉末形状,但除此之外,还可以考虑块形状等。
[0091] 对于本实施方式的软磁性合金(铁基纳米结晶合金)的用途没有特别的限制。例如,可举出磁性部件,其中,还可以特别举出磁芯。可以良好地用作感应器用、特别是强力感应器用的磁芯。本实施方式的软磁性合金除了可以用于磁芯之外,还可以用于薄膜感应器和磁头。
[0092] 以下,对由本实施方式的软磁性合金得到磁性部件、特别是磁芯及感应器的方法进行说明,但由本实施方式的软磁性合金得到磁芯及感应器的方法不限于下述的方法。另外,作为磁芯的用途,除感应器之外,还可以举出变压器及电动机等。
[0093] 作为由薄带形状的软磁性合金得到磁芯的方法,例如可举出将薄带形状的软磁性合金进行卷绕的方法或进行层叠的方法。在层叠薄带形状的软磁性合金时经由绝缘体进行层叠的情况下,能够得到进一步提高了特性的磁芯。
[0094] 作为由粉末形状的软磁性合金得到磁芯的方法,例如可举出,在与适当的粘合剂混合之后,使用模型进行成形的方法。另外,在与粘合剂进行混合之前,通过对粉末表面实施氧化处理或包覆绝缘膜等,成为比电阻提高、更适于高频带的磁芯。
[0095] 对于成形方法没有特别的限制,可以示例使用模型的成形或模制成形等。对于粘合剂的种类没有特别的限制,可以示例硅酮树脂。对于软磁性合金粉末和粘合剂的混合比率也没有特别的限制。例如,相对于软磁性合金粉末100质量%,混合1质量%~10质量%的粘合剂。
[0096] 例如,相对于软磁性合金粉末100质量%,混合1质量%~5质量%的粘合剂,使用模型进行压缩成形,由此,能够得到占积率(粉末充填率)为70%以上、且施加了1.6×104A/m的磁场时的磁通密度为0.45T以上、且比电阻为1Ω·cm以上的磁芯。上述特性等于或高于通常的铁素体磁芯的特性。
[0097] 另外,例如,相对于软磁性合金粉末100质量%,混合1质量%~3质量%的粘合剂,在粘合剂的软化点以上的温度条件下通过模型进行压缩成形,由此,能够得到占积率为4
80%以上、施加了1.6×10A/m的磁场时的磁通密度为0.9T以上、且比电阻为0.1Ω·cm以上的压粉磁芯。上述的特性是比一般的压粉磁芯更优异的特性。
[0098] 进一步,对于成为上述磁芯的成形体,作为去应变的热处理,在成形后进行热处理,由此,磁芯损耗进一步降低,有用性得到提高。此外,通过降低构成磁芯的磁性体的矫顽力而降低磁芯的磁芯损耗。
[0099] 另外,通过对上述磁芯实施绕线来得到电感部件。对于绕线的实施方法及电感部件的制造方法没有特别的限制。例如,可举出在通过上述方法制造的磁芯上卷绕至少1匝以上的绕组的方法。
[0100] 进一步,在使用软磁性合金颗粒的情况下,有在将绕线线圈在内置于磁性体的状态下进行加压成形使其一体化而制造电感部件的方法。该情况下,容易得到能够应对高频大电流的电感部件。
[0101] 进一步,在使用软磁性合金颗粒的情况下,通过将在软磁性合金颗粒中添加粘合剂及溶剂而制成膏的软磁性合金膏、及在线圈用的导体金属中添加粘合剂及溶剂而制成膏的导体膏交替印刷层叠后进行加热烧成,能够得到电感部件。或者,通过使用软磁性合金膏制作软磁性合金片,在软磁性合金片的表面印刷导体膏,将它们进行层叠并烧成,由此能够得到磁性体中内置有线圈的电感部件。
[0102] 在此,在使用软磁性合金颗粒制造电感部件的情况下,从得到优异的Q特性方面考虑,优选使用最大粒径以筛径计为45μm以下、且中心粒径(D50)为30μm以下的软磁性合金粉末。为了将最大粒径以筛径计设为45μm以下,可以使用网眼45μm的筛子,仅使用通过筛子的软磁性合金粉末。
[0103] 所使用的软磁性合金粉末的最大粒径越大,高频区域下的Q值倾向于越低,特别是在使用最大粒径以筛径计超过45μm的软磁性合金粉末的情况下,有时存在高频区域下的Q值大幅降低的情况。但是,在不重视高频区域下的Q值的情况下,可以使用偏差大的软磁性合金粉末。因为偏差大的软磁性合金粉末能够较廉价地制造,所以在使用偏差大的软磁性合金粉末的情况下,能够降低成本。
[0104] 【实施例】
[0105] 以下,基于实施例具体说明本发明。
[0106] 以成为下表所示的各实施例及比较例的合金组成的方式称量原料金属,通过高频加热进行熔解,制作母合金。
[0107] 之后,将所制作的母合金加热使其熔融,制成1300℃的熔融状态的金属,之后,在大气中,通过以30米/秒的旋转速度使用20℃的辊的单辊法,将上述金属向辊进行喷射,以制作薄带。薄带的厚度为20μm~25μm、薄带的宽度约为15mm、薄带的长度约为10m。
[0108] 对得到的各薄带进行X射线衍射测定,确认有无粒径大于30nm的结晶。而且,在不存在粒径大于30nm的结晶的情况下,记为由非晶质相构成;在存在粒径大于30nm的结晶的情况下,记为由结晶相构成。此外,非晶质相中也可以包含有粒径为15nm以下的初期微晶。
[0109] 之后,对于各实施例及比较例的薄带,以下表所示的条件进行热处理。对热处理后的各薄带测定饱和磁通密度、矫顽力及导磁率。饱和磁通密度(Bs)是使用振动试样型磁力计(VSM)以磁场为1000kA/m的条件下进行测定的。矫顽力(Hc)是使用直流BH示踪器在磁场为5kA/m的条件下进行测定的。导磁率(μ′)是使用阻抗分析仪在频率为1kHz的条件下进行测定的。在本实施例中,对于饱和磁通密度而言,将1.30T以上记为良好,将1.45T以上记为更良好。对于矫顽力而言,将3.0A/m以下记为良好,将2.5A/m以下记为更良好。对于导磁率μ′而言,将50000以上记为良好,将54000以上记为更良好。
[0110] 此外,以下所示的实施例中,只要没有特别的记载,则全部通过X射线衍射测定、及使用透射型电子显微镜的观察来确定具有平均粒径为5nm~30nm且结晶结构为bcc的铁基纳米结晶。
[0111]
[0112]
[0113]
[0114]
[0115]
[0116]
[0117]
[0118]
[0119]
[0120] 表10
[0121]
[0122]
[0123] 表12
[0124]
[0125] 表1中记载了使M的含量(a)、B的含量(b)及副成分的含量变化的实施例。此外,M的种类为Nb。
[0126] 各成分的含量在规定的范围内的实施例的饱和磁通密度、矫顽力及导磁率μ′均良好。另外,满足0.020≦a≦0.10及0.020≦b≦0.14的实施例的饱和磁通密度及矫顽力特别良好。
[0127] 表2中,除了记载实施例16之外,还记载了不含选自C、S及Ti中的1种以上的比较例。
[0128] 不含选自C、S及Ti中的1种以上的比较例均为矫顽力过高且导磁率μ′过低的结果。另外,a=0.020且Fe的含量(1-(a+b+c))为0.940的比较例18~20是,热处理前的薄带由结晶相构成,热处理后的矫顽力显著增大,导磁率显著减小。另一方面,虽然a为0.020但含有C、S及Ti的全部的实施例16是,热处理前的薄带由非晶质相构成,通过进行热处理,能够得到具有显著大的饱和磁通密度、良好的矫顽力及良好的导磁率μ′的试样。
[0129] 表3中记载了使M的含量(a)发生变化的实施例及比较例。
[0130] 满足0.020≦a≦0.14的实施例的饱和磁通密度、矫顽力及导磁率μ′良好。另外,满足0.020≦a≦0.10的实施例17~20的饱和磁通密度及矫顽力特别良好。
[0131] 与之相对,a=0.018的比较例是,热处理前的薄带由结晶相构成,热处理后的矫顽力显著增大,并且导磁率显著减小。另外,a=0.15的比较例是饱和磁通密度过低的结果。
[0132] 表4中记载了使M的种类发生变化的实施例及比较例。即使使M的种类发生变化但各成分的含量仍在规定的范围内的实施例是,其饱和磁通密度、矫顽力及导磁率μ′良好。另外,满足0.020≦a≦0.10的实施例是其饱和磁通密度及矫顽力特别良好。
[0133] 表5中记载了使B的含量(b)发生变化的实施例及比较例。
[0134] 满足0.020≦b≦0.20的实施例是,其饱和磁通密度、矫顽力及导磁率μ′良好。特别是满足0.020≦b≦0.14的实施例是,其饱和磁通密度及矫顽力特别良好。与之相对,b=0.018的比较例是,热处理前的薄带由结晶相构成,热处理后的矫顽力显著增大,且导磁率显著减小。另外,b=0.220的比较例是饱和磁通密度过小的结果。
[0135] 表6中记载了使副成分C及S的含量发生变化的实施例及比较例。
[0136] C的含量为0.001wt%~0.050wt%、S的含量为0.001wt%~0.050wt%、且0.10≦C/S≦10的实施例是,其饱和磁通密度、矫顽力及导磁率μ′全部良好。特别是C的含量为0.005wt%~0.040wt%、S的含量为0.005wt%~0.040wt%、且0.25≦C/S≦4.00的实施例的饱和磁通密度及矫顽力特别良好。
[0137] 另一方面,C的含量或S的含量在规定的范围之外的比较例为矫顽力过高的结果。进一步,还存在导磁率μ′过低的比较例。
[0138] 进一步,即使C的含量及S的含量在规定的范围内而C/S在规定的范围之外的比较例是矫顽力过高、且导磁率μ′过低的结果。
[0139] 表7中记载了使Ti的含量发生变化的实施例及比较例。
[0140] Ti的含量为0.001wt%~0.080wt%的实施例的饱和磁通密度、矫顽力及导磁率μ′全部良好。特别是,Ti的含量为0.005wt%~0.040wt%的实施例为饱和磁通密度及矫顽力特别良好的结果。与之相对,Ti的含量在规定的范围之外的比较例为矫顽力过高、且导磁率μ′过低的结果。
[0141] 表8中记载了使P的含量(c)发生变化的实施例及比较例。
[0142] 满足0≦c≦0.040的实施例的饱和磁通密度、矫顽力及导磁率μ′良好。特别是满足0.001≦c≦0.040的实施例的矫顽力及导磁率μ′特别良好。进一步,满足0.001≦c≦0.020的实施例的饱和磁通密度也特别良好。与之相对,c=0.045的比较例是,热处理前的薄带由结晶相构成,热处理后的矫顽力显著增大,且导磁率显著减小。
[0143] 表9是使主成分的组成在本申请发明的范围内发生变化的实施例。在所有的实施例中,饱和磁通密度、矫顽力及导磁率μ′均良好。
[0144] 表10是对于实施例19使M的种类发生了变化的实施例。
[0145] 从表10可知,即使使M的种类发生变化,也显示良好的特性。
[0146] 表11是对于实施例16由X1和/或X2取代了Fe的一部分的实施例。
[0147] 从表11可知,即使由X1和/或X2取代Fe的一部分,也显示良好的特性。
[0148] 表12是对于实施例16通过使辊的旋转速度和/或热处理温度发生变化而使初期微晶的平均粒径及铁基纳米结晶合金的平均粒径发生变化的实施例。
[0149] 在初期微晶的平均粒径为0.3nm~10nm、且铁基纳米结晶合金的平均粒径为5nm~30nm的情况下,与脱离上述范围的情况相比,饱和磁通密度和矫顽力均良好。