一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法转让专利

申请号 : CN201810171185.0

文献号 : CN108441830B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 周大雨孙纳纳徐进徐军张昱赵鹏

申请人 : 大连理工大学

摘要 :

本发明属于材料制备领域,公开了一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法。先使用标准的RCA清洗工艺,除去表面的残留的杂质和脏污;然后以金属铪和拟掺杂单质金属或非金属作为靶材,在Ar和O2混合气氛中,采用反应磁控溅射,沉积非晶二氧化铪基薄膜;之后对沉积好的薄膜进行退火晶化,得到正交相Pca21空间群晶体结构的二氧化铪基铁电薄膜。本发明提出的反应磁控溅射制备二氧化铪基铁电薄膜的方法具有以下优点:沉积速率快、基材温度低、对膜层的损伤少;薄膜与基片的结合好;薄膜纯度高、致密性好、成膜均匀性好;溅射电源选择灵活、掺杂元素选择灵活多样、靶材冷却没有特殊要求;工艺重复性好、薄膜成长条件容易控制且易于实现工业化。

权利要求 :

1.一种采用反应磁控溅射制备金属-绝缘体-半导体结构电容器的方法,其特征在于以下步骤:

步骤一:采用RCA清洗工艺清洗p-Si基片,除去表面的杂质和脏污;

步骤二:将处理后的基片放置在磁控溅射的样品台上,本底真空抽至高真空至5x10-

4Pa,通入氩气对金属铪靶和掺杂剂硅靶进行预溅射,铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,硅靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方,;再通入高纯氩气和高纯氧气的混合气体,对金属铪靶和掺杂剂靶采用中频反应磁控进行溅射,制备HfO2基非晶薄膜;高纯氩气和高纯氧气纯度均为99.99%,高纯氩气作为工作气体,高纯氧气作为反应气体;

通过调节工作气压、溅射功率、基底温度和溅射时间工艺参数,控制掺杂剂的掺杂量和HfO2基非晶薄膜的厚度;工艺参数具体为:靶基距为120mm,混合气体流量Ar:O2=20:20,工作气压为0.5Pa,预溅射时间5min,溅射时间为60min,金属铪靶溅射功率为80W,掺杂剂硅靶溅射功率为50W,基底温度为200℃,得到掺杂量为4mol%、厚度为20nm的HfSiO2基非晶薄膜;

步骤三:在N2气氛下,将步骤二得到的HfO2基非晶薄膜进行退火处理,得到正交相Pca21空间群晶体结构在室温附近稳定的HfO2基铁电薄膜;工艺参数具体为:退火气氛:氮气或氧气,加热温度为700℃,保温时间为20s;

步骤四:制备厚度为100nm顶电极,形成金属-绝缘体-半导体结构电容器。

说明书 :

一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法

技术领域

[0001] 本发明属于材料制备技术领域,涉及一种具有正交相Pca21空间群晶体结构的二氧化铪基铁电薄膜的制备方法。

背景技术

[0002] 在全球化、信息化、科技化的大时代,人们对智能化硬件的需求越来越高,铁电材料因其优异的介电性、压电性、热释电性、铁电性以及电光效应、光折变效应和非线性光学效应等重要特性,在新型信息存储器、传感器和光电器件等多个领域有着广泛的应用前景。传统的钙钛矿结构铁电材料因与半导体CMOS集成工艺技术兼容性差和难以实现三维纳米结构制备等缺点严重制约了铁电存储器等集成铁电器件的发展,急需新的材料来进行替代。以HfO2为代表的二元氧化物高介电常数(高-k)薄膜材料自上世纪90年代起成为研究热点,并于近年来在微电子工业中广泛取代SiO2作为晶体管栅介质和动态随机存储器(DRAM)电容器介质。近年来,HfO2基薄膜铁电性质的发现为超大集成密度铁电器件的研究和应用带来了新的发展契机。HfO2薄膜在常压下主要存在三种稳定的晶体结构,分别是单斜相(monoclinic)、四方相(tetragonal)和立方相(cubic)。在室温下HfO2稳定存在的形式是单斜相(空间群P21/c);升温到2050K转化成四方相(P42/nmc);继续升温到2803K转化为立方相(Fm3m)。
[0003] HfO2基薄膜是否具备铁电性质与其晶体结构密切相关。研究证明,HfO2铁电相属于正交晶系,空间群为Pca21,该物相晶格是非中心对称的,符合经典电介质理论中材料产生铁电性质的必要微观结构条件。目前,实现HfO2正交铁电相在室温附近稳定的方法主要有阳离子或阴离子掺杂、顶电极夹持、薄膜厚度和退火晶化工艺的控制等。其中,离子掺杂是最有效且重复性最好的方法。该方法曾广泛应用于制备HfO2高-k材料和高韧性的ZrO2材料。目前,HfO2基铁电薄膜的制备方法主要有原子层沉积、化学溶液法和磁控溅射等。其中磁控溅射法具有沉积速率快、基材温度低、对膜层的损伤少;薄膜与基片的结合好;薄膜纯度高、致密性好、成膜均匀性好;工艺重复性好、薄膜成长条件容易控制并且易于实现工业化等优点。Olsen等人在文章“Co-sputtering yttrium into hafnium oxide thin film to produce ferroelectric properties,Applied Physics Letters,101,082905(2015)”报道了一种采用HfO2和Y2O3氧化物陶瓷靶材磁控溅射制备Y掺杂HfO2铁电薄膜的方法。Lee等人在文章“Preparation and characterization of ferroelectric Hf0.5Zr0.5O2thin films grown by reactive sputtering,Nanotechnology,28,305703(2017)”报道了一种采用HfO2和ZrO2陶瓷靶材磁控溅射制备Hf0.5Zr0.5O2铁电薄膜的方法。Lun Xu等人在文章“Kinetic pathway of the ferroelectric phase formation in doped HfO2films,Journal of Applied Physics,112,124104(2017)”中报道了一种利用Sc2O3,Y2O3,Al2O3,SiO2,GeO2,ZrO2,Nb2O5等氧化物靶材和HfO2陶瓷靶材进行磁控溅射制备多种元素掺杂HfO2基铁电薄膜的方法。上述报道都是采用磁控溅射方法制备HfO2基铁电薄膜,但是所使用的靶材均为陶瓷氧化物,因此只能采用射频电源进行溅射,另外陶瓷靶材在溅射过程中容易开裂、对冷却要求高,需要采用特殊的工艺制备加工,因此陶瓷靶材成本高。本发明采用反应磁控溅射,利用金属铪靶材和掺杂剂靶材制备HfO2基铁电薄膜。该方法具有溅射电源选择灵活、掺杂元素选择灵活多样和靶材冷却没有特殊的要求等优点,克服了采用氧化物陶瓷靶材电源选择单一、靶材易开裂和靶材冷却要求高等问题。

发明内容

[0004] 本发明目的在于提供一种具有正交相Pca21空间群晶体结构的的二氧化铪基铁电薄膜的制备方法,其中采用金属铪和拟掺杂单质金属或非金属作为靶材,在Ar和O2混合气氛中,通过反应溅射制备HfO2基铁电薄膜。其中采用元素掺杂使HfO2正交相Pca21空间群晶体结构在室温附近稳定,同时,通过更换掺杂剂靶材可以实现不同元素的掺杂。
[0005] 为了达到上述目的,本发明采用的技术方案如下:
[0006] 一种采用反应磁控溅射制备二氧化铪基铁电薄膜的方法,包括以下步骤:
[0007] 步骤一:采用半导体行业标准的RCA清洗工艺清洗基片,除去表面的杂质和脏污。
[0008] 所述的基片采用Si、Ge或三五族半导体材料中的一种,所述三五族半导体为砷化镓等。
[0009] 步骤二:将处理后的基片放置在磁控溅射的样品台上,本底真空抽至高真空,通入氩气对金属铪靶和掺杂剂靶进行预溅射,去除靶材表面的氧化物和油污,预溅射时间不小于5min。再通入高纯氩气和氧气的混合气体,对金属铪靶和掺杂剂靶进行溅射,制备HfO2基非晶薄膜。其中氩气作为工作气体、高纯氧气作为反应气体,氩气被电离成氩正离子和电子,氩正离子在电场作用下轰击金属铪靶和掺杂剂靶,使两种靶材发生溅射,溅射出的金属铪离子和掺杂剂离子与氧气反应,生成HfO2基非晶薄膜,沉积到基片上。。
[0010] 通过调节工作气压、溅射功率、基底温度和溅射时间等工艺参数,控制掺杂剂的掺杂量和HfO2基非晶薄膜的厚度,其中,靶基距为90-160mm,混合气体流量为Ar:O2=(10-40):(10-40)sccm,工作气压为0.3-0.8Pa,Hf靶溅射功率为50-100W,掺杂靶溅射功率为30-
120W,基底温度为室温-300℃,溅射时间为30-90min,得到掺杂量为1-50%、厚度为10-30nm的HfO2基非晶薄膜。
[0011] 所述的磁控溅射设备的电源可以采用直流、脉冲直流、中频或射频电源中的一种;所述的磁控溅射靶材形式,可以采用圆柱靶或平面磁控靶的一种;所述的磁控溅射靶材放置方式,还可以采用靶面与靶面并排安置或相对安置,靶材与样品台垂直的放置方式或靶材与基片台成角度的斜靶放置方式的一种;所述的靶材,其纯度不小于99.9%;所述的高真空的真空度不大于5x10-4Pa;所述的高纯氩气和氧气,其纯度不小于99.99%;所述的掺杂靶采用钇、锆、铝、硅、锗、锶和钕靶中的一种。
[0012] 步骤三:将步骤二得到的HfO2基非晶薄膜采用顶电极不加持的方式进行退火处理,得到正交相Pca21空间群晶体结构稳定的HfO2基铁电薄膜。退火工艺参数具体为:退火气氛:氮气或氧气,加热温度为600-800℃,保温时间为20-40s。其中,顶电极不加持的方式具体为沉积HfO2基非晶薄膜后,先退火再沉积顶电极。
[0013] 步骤四:制备顶电极,形成金属-绝缘体-半导体结构电容器,利用铁电测试仪测试电容器的铁电性能。
[0014] 所述的制备顶电极的方法可以采用直流磁控溅射、反应磁控溅射、脉冲直流磁控溅射和蒸发镀膜中的一种;所述的顶电极采用高导电性金属Au、Pt、Al、Cu和TiN中的一种。所述的顶电极厚度为80-150nm。
[0015] 进一步地,上述方法中还可以在基片上沉积底电极后,再沉积HfO2基非晶薄膜,进行退火处理,制备顶电极,形成金属-绝缘体-金属结构的电容器,利用铁电测试仪测试电容器的铁电性能。
[0016] 进一步地,上述步骤三中所述的退火处理还可以采用顶电极加持的方法,在制备HfO2基非晶薄膜后,先沉积顶电极,再进行退火处理。
[0017] 本发明采用金属铪和拟掺杂单质金属或非金属靶材,电源选择灵活且靶材冷却没有特殊要求。同时,通过更换掺杂剂靶材可以实现不同元素的掺杂,得到正交相Pca21空间群晶体结构在室温附近稳定的二氧化铪基铁电薄膜,并且采用此方法制备的二氧化铪基铁电薄膜的纯度高、致密性好、成膜均匀性好、表面粗糙度低。
[0018] 本发明的有益效果是:本发明提供了一种正交相Pca21空间群晶体结构在室温附近稳定的二氧化铪基铁电薄膜方法,能够改变传统陶瓷靶材溅射电源选择单一、靶材易开裂和靶材冷却要求高等问题。同时,该方法具有工艺简单、成本低、过程可控等优点。

附图说明

[0019] 图1为本发明方法中二氧化铪基铁电薄膜制备方法流程图;
[0020] 图2是Y掺杂HfO2在掺杂量为1mol%,薄膜厚度为10nm,样品的XRD图谱,其中o代表正交相,m代表单斜相。
[0021] 图3是Y掺杂HfO2在掺杂量为1mol%,薄膜厚度为10nm,样品的AFM形貌图。
[0022] 图4是Y掺杂HfO2在掺杂量为1mol%,薄膜厚度为10nm,样品的电滞回线。

具体实施方式

[0023] 为使本发明的目的、技术方案及优点更加清晰,以下结合附图和具体实例对本发明的操作过程作进一步详细说明。需说明,此处所描述的具体实例仅用于解释本发明,其中图示为示意性质,并不用于限定本发明的范围。
[0024] 实施案例1:
[0025] 本实施例中,选用p-Si基片作为基底,采用半导体行业标准的RCA清洗工艺进行清洗。铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,钇靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方,靶基距为90mm,采用中频反应磁控溅射,本底真空抽至5x10-4Pa,高纯氩气(99.99%)作为工作气体,高纯氧气(99.99%)作为反应气体,Ar:O2=10:10sccm,工作气压0.3Pa,Hf靶溅射功率50W,Y靶溅射功率30W,基片温度为室温,预溅射时间5min,溅射时间30min,得到Y掺杂量为1mol%,薄膜厚度为10nm的HfYO2非晶薄膜。
对其进行退火处理,在N2气氛下,温度为600℃,保温时间为20s,快速降温晶化,得到HfYO2铁电薄膜,并且薄膜表面较为光滑平整、没有明显的起伏,均方根粗糙度为1.89nm,样品的XRD图谱和AFM形貌如图2和图3所示。随后采用反应磁控溅射制备80nm的TiN顶电极,得到金属-绝缘体-半导体型电容器,利用铁电测试仪测试电容器的铁电性能,其电滞回线如图4所示。
[0026] 实施案例2:
[0027] 本实施例中,选用p-Si基片作为基底,采用半导体行业标准的RCA清洗工艺进行清洗。铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,硅靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方,靶基距为120mm,采用中频反应磁控溅射,本底真空抽至5x10-4Pa,高纯氩气(99.99%)作为工作气体,高纯氧气(99.99%)作为反应气体,Ar:O2=20:20sccm,工作气压0.5Pa,Hf靶溅射功率80W,Si靶溅射功率50W,基片温度为200℃,预溅射时间5min,溅射时间60min,得到Si掺杂量为4mol%,薄膜厚度为20nm的HfSiO2非晶薄膜。对其进行退火处理,在N2气氛下,温度为700℃,保温时间为20s,快速降温晶化,得到HfSiO2铁电薄膜。随后采用反应磁控溅射制备100nm的TiN顶电极,得到金属-绝缘体-半导体型电容器,利用铁电测试仪测试电容器的铁电性能。
[0028] 实施案例3:
[0029] 本实施例中,选用p-Si基片为基底,采用半导体行业标准的RCA清洗工艺进行清洗。铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,锆靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方,靶基距为160mm,采用中频反应磁控溅射,本底真空抽至5x10-4Pa,高纯氩气(99.99%)作为工作气体,高纯氧气(99.99%)作为反应气体,Ar:O2=40:40sccm,工作气压0.8Pa,Hf靶溅射功率100W,Zr靶溅射功率120W,基片温度为300℃,预溅射时间10min,溅射时间90min,得到掺杂量50mol%,厚度30nm的HfZrO2非晶薄膜。
对其进行退火处理,在N2气氛下,温度为800℃,保温时间为40s,快速降温晶化,得到HfZrO2铁电薄膜。随后采用反应磁控溅射制备150nm的TiN顶电极,得到金属-绝缘体-半导体型电容器,利用铁电测试仪测试电容器的铁电性能。
[0030] 实施案例4:
[0031] 本实施例中,选用p-Ge基片为基底,采用半导体行业标准的RCA清洗工艺进行清洗。采用射频反应磁控溅射制备10nm的TiN底电极。利用中频反应磁控溅射制备HfZrO2铁电薄膜,铪靶选用面对面的平面磁控靶,纯度为99.9%,与样品台垂直放置,锆靶选用圆柱靶,纯度为99.9%,放置在平面磁控靶的斜上方,靶基距为160mm,本底真空抽至4x10-4Pa,高纯氩气(99.99%)作为工作气体,高纯氧气(99.99%)作为反应气体,Ar:O2=40:40sccm,工作气压0.8Pa,Hf靶溅射功率100W,Zr靶溅射功率120W,基片温度为300℃,预溅射时间10min,溅射时间90min,得到掺杂量50mol%,厚度30nm的HfZrO2非晶薄膜。对其进行退火处理,在O2气氛下,温度为600℃,保温时间为40s,快速降温晶化,得到HfZrO2铁电薄膜。随后采用反应磁控溅射制备150nm的TiN顶电极,得到金属-绝缘体-金属型电容器,利用铁电测试仪测试电容器的铁电性能。
[0032] 上述实施实例仅用以说明而非限制本发明的技术方案,任何不脱离本发明精神和范围的技术方案均应涵盖在本发明的专利申请范围当中。