镨掺杂氟化铈/凹凸棒石上转换复合光催化材料及其制备方法与应用转让专利

申请号 : CN201810340657.0

文献号 : CN108479859B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李霞章何承溧左士祥姚超刘文杰

申请人 : 常州大学

摘要 :

本发明属于化工新材料领域,特别涉及一种镨掺杂氟化铈/凹凸棒石上转换复合光催化材料及其制备方法与应用。将Pr(NO3)3·6H2O,Ce(NO3)3·6H2O,NH4F,凹凸棒石分别加入到去离子水中溶解,调节体系pH为4~5,并磁力搅拌使其混合均匀。然后将其转移到微波水热釜里进行反应,设定功率400W反应1‑3h,设定温度为150~170℃,将制备的样品离心分离,然后将样品烘干,研磨,即制得一种镨掺杂氟化铈/凹凸棒石上转换复合光催化材料。该材料可以应用于光催化脱硫领域,在3h光照下,脱硫率可达到95%。

权利要求 :

1.一种镨掺杂氟化铈/凹凸棒石上转换复合光催化材料,其特征在于:所述复合光催化材料其组成通式为:Pr1-xCexF3/ATP,其中,Pr/(Pr+Ce)=0.1~0.4,Ce1-xPrxF3占ATP质量的20%

60%;

~

所述的镨掺杂氟化铈/凹凸棒石上转换复合光催化材料的制备方法步骤如下:(1)将Pr(NO3)3·6H2O,Ce(NO3)3·6H2O,NH4F,ATP加入到去离子水中超声波溶解,调节体系pH为4 5,使其混合均匀,然后将其转移到微波水热釜里进行微波水热反应,制得镨掺杂~氟化铈/凹凸棒石上转换复合光催化材料样品;所述的Pr(NO3)3·6H2O+Ce(NO3)3·6H2O与NH4F的摩尔比为1:3 ,其中Pr/(Pr+Ce)=0.1 0.4;

~

(2)将步骤(1)中制备的样品用离心机离心,清洗干净,然后将样品烘干,研磨,即制得镨掺杂氟化铈/凹凸棒石上转换复合光催化材料;

所述复合光催化材料用于光催化脱硫。

2.如权利要求1所述的镨掺杂氟化铈/凹凸棒石上转换复合光催化材料,其特征在于:步骤(1)所述微波功率为400W,微波水热反应温度为150 170℃,微波水热反应时间为1 3h。

~ ~

3.如权利要求1所述的镨掺杂氟化铈/凹凸棒石上转换复合光催化材料,其特征在于:步骤(2)所述的离心转速6000 r/min ,离心时间5min。

4.如权利要求1所述的镨掺杂氟化铈/凹凸棒石上转换复合光催化材料,其特征在于:步骤(2)所述的烘干温度为80℃,烘干时间为10 12h。

~

说明书 :

镨掺杂氟化铈/凹凸棒石上转换复合光催化材料及其制备方

法与应用

技术领域

[0001] 本发明属于化工新材料领域,具体涉及一种镨掺杂氟化铈/凹凸棒石上转换复合光催化材料及其制备方法与应用。

背景技术

[0002] 近年来,随着燃料油用量的不断增加,其中含有的含硫化合物燃烧排放出大量的SOx。燃油燃烧产生的硫氧化物(SOx)一直是酸雨和大气霾的主要来源之一,严重影响环境和人体健康。因此,生产低硫汽油是一种必然趋势。目前,在我国所使用的催化裂化汽油(简称FCC汽油)中硫含量在500~1600ppm,其中难以处理的含硫化合物主要有噻吩、烷基取代噻吩和苯并噻吩等。为了去除燃料中含有的硫化合物,已经广泛探索了催化加氢脱硫(HDS),氧化脱硫(ODS),吸附脱硫(ADS)和生物脱硫等各种方法。其中,传统的催化加氢脱硫技术成熟,但需要很高的压力、温度和昂贵的氢气。应该注意的是,即使在非常苛刻的条件下,包括二苯并噻吩(DBT)及其衍生物在内的大体积硫有机物也难以减少。然而,光催化氧化脱硫作为氧化脱硫的一种,因其拥有易操作、能耗低、无污染等特点,引起了广泛的关注。
[0003] 凹凸棒石(ATP)作为一种天然的粘土材料,其具有较大的比表面积、优越的吸附性能和独特的空隙结构被广泛应用于催化剂载体。但是,由于其内部含有半导体性质的氧化铁,使得凹凸棒也具有半导体性质。南京理工大学Zhang J等(Nanotechnology,2013,24;Acs Sustainable Chemistry&Engineering,2016,4)曾利用其半导体性质,以CdS和曙红敏化凹凸棒用以光解水制氢,因此其半导体性质得到证实。然而由于其带隙较宽,仅可对紫外光响应,而紫外光只占太阳光的5%,所以对太阳光的利用率非常低下。为了充分利用太阳光能量中占多数的可见光,多种半导体复合形成异质结是最有效的一种方法。

发明内容

[0004] CeF3是一种具有独特物理和化学性能的功能性稀土氟化物,具有优良的上转换发光效应。
[0005] 为了解决太阳光的利用率的问题,本发明提供了一种镨掺杂氟化铈/凹凸棒石上转换复合光催化材料,通过在改性处理后的凹凸棒石表面原位生长复合粒径均匀的镨掺杂CeF3纳米粒子,构建Z型异质结,便于激发光生电子与空穴的分离并且使光生电子和空穴不易复合。一方面,CeF3作为上转换发光材料,可将近红外光或可见光上转换为可见光或紫外3+
光,使复合材料扩大光响应范围,提高自然光的利用率;另一方面,Pr 具有较为丰富的能级,且具有较高的上转换发光效率,最适合高能光子的产生。而CeF3中的Ce3+的离子半径非常接近Pr3+,使得Pr3+可以轻易地掺杂进入Ce3+的主体晶格中。并且CeF3具有较低的声子能量和较高的化学稳定性,非常适用于基体材料。
[0006] 本发明通过镨掺杂氟化铈与凹凸棒石(ATP)形成异质结,不仅减少光生电子与空穴的复合,而且更进一步有效地扩大了半导体材料的光响应范围,提高了太阳光的利用率,从而大大提高了镨掺杂氟化铈/凹凸棒石上转换复合光催化材料的光催化活性。
[0007] 本发明提供的镨掺杂氟化铈/凹凸棒石上转换复合光催化材料,其组成通式为:Pr1-xCexF3/ATP,其中,Pr/(Pr+Ce)=0.1~0.4,Ce1-xPrxF3占ATP质量的20%~60%。x范围为
0.6~0.9。
[0008] 本发明还提供了一种上述镨掺杂氟化铈/凹凸棒石上转换复合光催化材料的制备方法:
[0009] (1)将Pr(NO3)3·6H2O,Ce(NO3)3·6H2O,NH4F,ATP加入到去离子水中超声波溶解,调节体系pH为4~5,使其混合均匀。然后将其转移到微波水热釜里进行微波水热反应,设定功率400W,温度设定为150~170℃,时间设定为1~3h;
[0010] (2)将步骤(1)中制备的样品用离心机离心,清洗干净。然后将样品烘干,研磨,即制得镨掺杂氟化铈/凹凸棒石上转换复合光催化材料。
[0011] 其中,(Pr(NO3)3·6H2O+Ce(NO3)3·6H2O)与NH4F的摩尔比为1:3,Pr/(Pr+Ce)=0.1~0.4,计算反应生成的Ce1-xPrxF3的质量占ATP质量的20%~60%。
[0012] 离心是取反应后下层悬浊液离心,转速6000r/min,时间5min,烘干条件为烘箱80℃烘干,约10~12h。
[0013] 本发明微波水热的过程中同时反应生成镨掺杂氟化铈,镨掺杂CeF3是原位生长在凹凸棒石上的,结合紧密。利用微波作为加热工具,实现分子水平上的搅拌,克服水热容器加热不均匀的缺点,缩短反应时间,提高工作效率,有加热速度快,加热均匀,无温度梯度,无滞后效应等优点;最重要的是,合成的纳米颗粒均匀,粒径小,比表面积大,作为催化剂催化活性更高。
[0014] 本发明还提供了一种上述镨掺杂氟化铈/凹凸棒石上转换复合光催化材料的应用,即采用该复合光催化材料进行光催化脱硫。
[0015] 本发明的显著效果在于:
[0016] 本发明将稀土上转换发光材料与凹凸棒复合,间接地扩大了凹凸棒的光响应范围,更有效的提高了自然光的利用率。
[0017] 本发明发现Pr1-xCexF3在经过酸化处理的ATP上原位生长(凹凸棒石在pH为4~5环境下ZETA电位为负,Ce3+与F-在凹凸棒石表面因静电自主装,实现原位生长。),凹凸棒与稀土上转换材料Ce1-xPrxF3以离子键的作用强力地结合在一起,避免了稀土上转换材料与凹凸棒简单的机械混合,以及在光催化脱硫的过程中很容易分离的问题。
[0018] 本发明中的凹凸棒作为半导体被激发生成光生电子与空穴,与CeF3形成异质结使光生电子与空穴难以复合,同时CeF3作为稀土上转换材料将可见光转为紫外光扩大了光响应范围,以降解含硫化合物。与此同时,因其本身具有较大的比表面积和独特的孔道结构,发挥了其他半导体不具备的特有吸附性能,在光催化脱硫过程中会吸附部分含硫化合物,从而提高脱硫率。
[0019] 相比于普通水热反应制备的催化剂粒径不均匀,粒径较大,比表面积较小,催化剂活性较小;微波水热反应制备复合光催化材料时间短,催化剂粒径均匀,粒径较小,比表面积大催化剂催化活性更高。

附图说明

[0020] 图1为本发明对比实施例1制备的Pr0.3Ce0.7F3、实施例1制备的40%Pr0.3Ce0.7F3/ATP及原料ATP的XRD图;
[0021] 图2为本发明实施例1制备的40%Pr0.3Ce0.7F3/ATP的TEM图。

具体实施方式

[0022] 实施例1
[0023] (1)将0.26g Pr(NO3)3·6H2O,0.61g Ce(NO3)3·6H2O,0.16g NH4F,0.90g ATP加入到去离子水中超声波溶解,调节体系pH为4~5,并轻摇烧杯使其混合均匀。然后将其转移到微波水热釜里进行微波水热,设定温度为160℃,时间设定为70min;
[0024] (2)将步骤(1)中制备的样品用离心机离心,再水洗干净。然后将样品烘干,研磨,即制得镨掺杂氟化铈/凹凸棒上转换复合光催化材料40%Pr0.3Ce0.7F3/ATP。
[0025] 对所得样品进行X射线粉末衍射表征其结构和组成,并且利用透射电子显微镜观察样品的TEM图片,按照实施例1的工艺制备的40%Pr0.3Ce0.7F3/ATP的XRD图如图1所示,复合材料中分别出现了Pr0.3Ce0.7F3和ATP的特征峰,说明Pr0.3Ce0.7F3成功与ATP复合,制备出了Pr0.3Ce0.7F3/ATP上转换复合光催化材料;
[0026] 本实施例1所得到的40%Pr0.3Ce0.7F3/ATP的TEM如图2所示:在凹凸棒石(ATP)的表面上均匀地分布着Pr0.3Ce0.7F3颗粒;
[0027] 本发明还提供了一种利用本实施例制备的40%Pr0.3Ce0.7F3/ATP复合光催化材料进行光催化脱硫的方法:称取0.40g二苯并噻吩溶解在500ml正辛烷中以制备200ppm的模拟油,在光催化反应装置中加入40%Pr0.3Ce0.7F3/ATP和模拟油(质量比1:1000),暗吸附30min之后引入模拟太阳光,每隔半小时收集一次样品,加入N-N,二甲基甲酰胺萃取上层清液,用紫外荧光定硫仪测定硫含量,脱硫率(%)根据下列公式计算:
[0028] D=(1-Ct/C0)×100%
[0029] 其中:C0为初始溶液的硫含量,Ct为反应t时间时溶液体系中的硫含量,在3h光照下,40%Pr0.3Ce0.7F3/ATP的脱硫率达到了95%。
[0030] 实施例2
[0031] (1)将0.09g Pr(NO3)3·6H2O,0.78g Ce(NO3)3·6H2O,0.20g NH4F,1.92g ATP加入到去离子水中超声波溶解,调节体系pH为4~5,并轻摇烧杯使其混合均匀。然后将其转移到微波水热釜里进行微波水热,设定温度为160℃,时间设定为70min;
[0032] (2)将步骤(1)中制备的样品用离心机离心,再水洗干净。然后将样品烘干,研磨,即制得镨掺杂氟化铈/凹凸棒上转换复合光催化材料20%Pr0.1Ce0.9F3/ATP。
[0033] 后续检测如实施例1,脱硫率87%。
[0034] 实施例3
[0035] (1)将0.34g Pr(NO3)3·6H2O,0.52g Ce(NO3)3·6H2O,0.13g NH4F,1.75g ATP加入到去离子水中超声波溶解,调节体系pH为4~5,并轻摇烧杯使其混合均匀。然后将其转移到微波水热釜里进行微波水热,设定功率400W,设定温度为160℃,时间设定为70min;
[0036] (2)将步骤(1)中制备的样品用离心机离心,再水洗干净。然后将样品烘干,研磨,即制得镨掺杂氟化铈/凹凸棒上转换复合光催化材料20%Pr0.4Ce0.6F3/ATP。
[0037] 后续检测如实施例1,脱硫率89%。
[0038] 实施例4
[0039] (1)将0.09g Pr(NO3)3·6H2O,0.78g Ce(NO3)3·6H2O,0.20g NH4F,0.64g ATP加入到去离子水中超声波溶解,调节体系pH为4~5,并轻摇烧杯使其混合均匀。然后将其转移到微波水热釜里进行微波水热,设定功率400W,设定温度为160℃,时间设定为70min;
[0040] (2)将步骤(1)中制备的样品用离心机离心,再分别水洗离心一次,乙醇洗离心两次。然后将样品烘干,研磨,即制得镨掺杂氟化铈/凹凸棒上转换复合光催化材料60%Pr0.1Ce0.9F3/ATP。
[0041] 后续检测如实施例1,脱硫率90%。
[0042] 实施例5
[0043] (1)将0.34g Pr(NO3)3·6H2O,0.52g Ce(NO3)3·6H2O,0.13g NH4F,0.58g ATP加入到去离子水中超声波溶解,调节体系pH为4~5,并轻摇烧杯使其混合均匀。然后将其转移到微波水热釜里进行微波水热,设定功率400W,设定温度为160℃,时间设定为70min;
[0044] (2)将步骤(1)中制备的样品用离心机离心,再水洗干净。然后将样品烘干,研磨,即制得镨掺杂氟化铈/凹凸棒上转换复合光催化材料60%Pr0.4Ce0.6F3/ATP。
[0045] 后续检测如实施例1,脱硫率92%。
[0046] 对比实施例1
[0047] (1)将0.26g Pr(NO3)3·6H2O,0.61g Ce(NO3)3·6H2O,0.16g NH4F加入到去离子水中超声波溶解,并轻摇烧杯使其混合均匀。然后将其转移到微波水热釜里进行微波水热,设定功率400W,设定温度为160℃,时间设定为70min;
[0048] (2)将步骤(1)中制备的样品用离心机离心,再水洗干净。然后将样品烘干,研磨,即制得镨掺杂氟化铈Pr0.3Ce0.7F3。
[0049] 对所得样品进行X射线粉末衍射表征其结构和组成,按照对比实施例1的工艺制备的Pr0.3Ce0.7F3的XRD图如图1所示;
[0050] 在3h光照下,本对比实施例1中Pr0.3Ce0.7F3的脱硫率达到了80%。相比于实施例1脱硫率差很多。这是由于本对比实施例中只有稀土元素掺杂的稀土氟化物上转换材料,没有形成异质结的缘故。
[0051] 对比实施例2
[0052] (1)将0.09g Pr(NO3)3·6H2O,0.78g Ce(NO3)3·6H2O,0.20g NH4F加入到去离子水中超声波溶解,并轻摇烧杯使其混合均匀。然后将其转移到微波水热釜里进行微波水热,设定功率400W,设定温度为160℃,时间设定为70min;
[0053] (2)将步骤(1)中制备的样品用离心机离心,再水洗干净。然后将样品烘干,研磨,即制得镨掺杂氟化铈Pr0.1Ce0.9F3。脱硫率74%。
[0054] 对比实施例3
[0055] (1)将0.34g Pr(NO3)3·6H2O,0.52g Ce(NO3)3·6H2O,0.13g NH4F加入到去离子水中超声波溶解,并轻摇烧杯使其混合均匀。然后将其转移到微波水热釜里进行微波水热,设定功率400W,设定温度为160℃,时间设定为70min;
[0056] (2)将步骤(1)中制备的样品用离心机离心,再水洗干净。然后将样品烘干,研磨,即制得镨掺杂氟化铈Pr0.4Ce0.6F3。脱硫率77%。